下载排行

一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行
当前位置: 最近1个月下载排行

Please wait a minute...
选择: 显示/隐藏图片
1. Progress, problems and prospects of palynology in reconstructing environmental change in inland arid areas of Asia
YongTao Zhao,YunFa Miao,Yan Lei,XianYong Cao,MingXing Xiang
Sciences in Cold and Arid Regions    2021, 13 (4): 271-291.   DOI: 10.3724/SP.J.1226.2021.20049.
摘要726)   HTML72)    PDF(pc) (5371KB)(1376)    收藏

Studying the climatic and environmental changes on different time scales in inland arid regions of Asia can greatly improve our understanding of climatic influences for the Qinghai-Tibet Plateau in the context of global change. Pollen, as a remnant of seed plants, is sensitive to environmental factors including precipitation, temperature and altitude, and is a classic proxy in environmental reconstruction. In the last two decades, great progress in the application of palynology to inland areas of Asia has highlighted the role of palynology in paleoclimatic and paleoenvironmental research. The main progress is as follows. (1) On the tectonic time scale of the late Cenozoic, the palaeoclimatological sequence has been established on the basis of pollen percentage, concentration and taxon. Pollen data have revealed a continuous enhancement of drought in the inland arid region of Asia, in contrast to evidence acquired based on other proxies. (2) In the late Quaternary, an increase in herbaceous plants further supports the intensification of drought associated with global cooling. In more detail, the palynological record shows a glacial-interglacial pattern consistent with changes in global ice volume. (3) The Holocene pollen record has been established at a high resolution and across a wide range of inland areas. In general, it presents an arid grassland environment in the early Holocene, followed by the development of woody plants in the mid- to late-Holocene climate optimum. This pattern is related to moisture changes in areas dominated by the westerlies. There are also significant regional differences in the pattern and amplitude of vegetation response to the Holocene environment. (4) Modern pollen studies based on vegetation surveys, meteorological data and statistics show that topsoil palynology can better reflect regional vegetation types (e.g., grassland, meadow, desert). Drier climates yield higher pollen contents of drought-tolerant plants such as Chenopodioideae, Ephedra, and Nitriaria, while contents of Artemisia and Poaceae are greater under humid climates. Besides these achievements, problems remain in palynological research: for example, pollen extraction, identification, interpretation, and quantitative reconstruction. In the future, we encourage strengthened interdisciplinary cooperation to improve experimental methods and innovation. Firstly, we should strengthen palynological classification and improve the skill of identification; secondly, laboratory experiments are needed to better constrain pollen transport dynamics in water and air; thirdly, more rigorous mathematical principles will improve the reliability of reconstructions and deepen the knowledge of plant geography; and finally, new areas and methods in palynology should be explored, for example DNA, UV-B and isotopic analysis. It is expected that palynology will continue to develop, and we hope it will continue to play an important role in the study of past climatic and environmental changes.

图表 | 参考文献 | 相关文章 | 多维度评价
2. A concise overview on historical black carbon in ice cores and remote lake sediments in the northern hemisphere
Poonam Thapa,JianZhong Xu,Bigyan Neupane
Sciences in Cold and Arid Regions    2021, 13 (3): 179-194.   DOI: 10.3724/SP.J.1226.2021.20055.
摘要757)   HTML120)    PDF(pc) (5910KB)(3105)    收藏

Black Carbon (BC), as a driver of environmental change, could significantly impact the snow by accelerating melting and decreasing albedo. Systematic documentation of BC studies is crucial for a better understanding of its spatial and temporal trends. This study reviewed the BC studies in the ice core and remote lake sediments and their sources in the northern hemisphere. The literature surveyed points to around 2.9 to 3.7 times increase of BC in the European Alps and up to a three-fold increase of BC in the Himalayan-Tibetan Plateau (HTP) after the onset of industrialization in Europe and Asia, respectively. BC concentration from Greenland ice core showed seven times increase with an interrupted trend after 1950's. South Asian emissions were dominant in the HTP along with a contribution from the Middle East, whereas Western European and local emissions were responsible for the change in BC concentration in the European Alps. In the Arctic, contributions from North America, Europe and Asia persisted. Similarly, a historical reconstruction of lake sediments records demonstrates the effects of emissions from long-range transport, sediment focusing, local anthropogenic activities, precipitation and total input of flux on the BC concentration.

图表 | 参考文献 | 相关文章 | 多维度评价
3. Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction
YuLan Zhang, ShiChang Kang, Min Xu, Michael Sprenger, TanGuang Gao, ZhiYuan Cong, ChaoLiu Li, JunMing Guo, ZhiQiang Xu, Yang Li, Gang Li, XiaoFei Li, YaJun Liu, HaiDong Han
Sciences in Cold and Arid Regions    2017, 9 (2): 97-111.   DOI: 10.3724/SP.J.1226.2017.00097
摘要425)   HTML    PDF(pc) (1325KB)(1918)    收藏
Light-absorbing impurities on glaciers are important factors that influence glacial surface albedo and accelerate glacier melt. In this study, the quantity of light-absorbing impurities on Keqikaer Glacier in western Tien Shan, Central Asia, was measured. We found that the average concentrations of black carbon was 2,180 ng/g, with a range from 250 ng/g to more than 10,000 ng/g. The average concentrations of organic carbon and mineral dust were 1,738 ng/g and 194 μg/g, respectively. Based on simulations performed with the Snow Ice Aerosol Radiative model simulations, black carbon and dust are responsible for approximately 64% and 9%, respectively, of the albedo reduction, and are associated with instantaneous radiative forcing of 323.18 W/m2 (ranging from 142.16 to 619.25 W/m2) and 24.05 W/m2 (ranging from 0.15 to 69.77 W/m2), respectively. For different scenarios, the albedo and radiative forcing effect of black carbon is considerably greater than that of dust. The estimated radiative forcing at Keqikaer Glacier is higher than most similar values estimated by previous studies on the Tibetan Plateau, perhaps as a result of black carbon enrichment by melt scavenging. Light-absorbing impurities deposited on Keqikaer Glacier appear to mainly originate from central Asia, Siberia, western China (including the Taklimakan Desert) and parts of South Asia in summer, and from the Middle East and Central Asia in winter. A footprint analysis indicates that a large fraction (>60%) of the black carbon contributions on Keqikaer Glacier comes from anthropogenic sources. These results provide a scientific basis for regional mitigation efforts to reduce black carbon.
参考文献 | 相关文章 | 多维度评价
4. Ecophysiological responses to drought stress in Populus euphratica
ChunYan Zhao,JianHua Si,Qi Feng,TengFei Yu,Huan Luo,Jie Qin
Sciences in Cold and Arid Regions    2021, 13 (4): 326-336.   DOI: 10.3724/SP.J.1226.2021.20025.
摘要388)   HTML23)    PDF(pc) (6610KB)(719)    收藏

Ecophysiological responses to drought stress of Populus euphratica in Alashan Desert Eco-hydrology Experimental Research Station were investigated. Results show that under mild and moderate drought stress, stomatal length, aperture, area and density is likely to decrease in the early days, but afterwards this is likely to recovery with treatment over the passage of treatment time. Under severe drought stress, these properties appear to decline continuously. However, after 45 days of drought-stress treatment, the decline is not as noticeable as before, indicating that Populus euphratica could possibly reduce water evaporation by shutting down the stoma, leading to an improvement in its water use efficiency with better survival under drought stress conditions. The leaf area first decreases, and then increases under mild and moderate drought stress conditions, with the average values under different degree of stress found to be approximately 129.52, 120.08, 116.63 and 107.28 cm2, respectively. Under moderate stress conditions, the leaf water potential appears to show a continuous decline where the average values under different degree of stress are found to be -1.27, -1.85, -4.29 and -4.80 MPa, respectively. In terms of proline content, the results demonstrate that this factor appears to increase significantly under moderate and severe drought stress conditions. Especially under severe drought stress condition, the content is found to be more than 700 μg/g. Ranging over average values of 14.64 and 15.90 nmol/g under moderate and severe drought stress, respectively, Malondialdehyde content is found to increase quite rapidly under moderate and severe drought stress conditions at first, which then appears to decrease gradually with the treatment over time.

图表 | 参考文献 | 相关文章 | 多维度评价
5. Cryosphere evapotranspiration in the Tibetan Plateau: A review
KunXin Wang,YinSheng Zhang,Ning Ma,YanHong Guo,YaoHui Qiang
Sciences in Cold and Arid Regions    2020, 12 (6): 355-370.   DOI: 10.3724/SP.J.1226.2020.00355
摘要710)   HTML45)    PDF(pc) (3596KB)(1172)    收藏

Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system. Meanwhile, the cryosphere's hydrological process is receiving extensive attention, and its water problem needs to be understood from multiple perspectives. As the main part of the Chinese cryosphere, the Tibetan Plateau faces significant climate and environmental change. There are active interaction and pronounced feedback between the environment and ETa in the cryosphere. This article mainly focuses on the research progress of ETa in the Tibetan Plateau. It first reviews the ETa process, characteristics, and impact factors of typical underlying surfaces in the Tibetan Plateau (alpine meadows, alpine steppes, alpine wetlands, alpine forests, lakes). Then it compares the temporal and spatial variations of ETa at different scales. In addition, considering the current greening of cryosphere vegetation due to climate change, it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget.

图表 | 参考文献 | 相关文章 | 多维度评价
6. Decomposition effects of Lanzhou lily (Lilium davidii var. unicolor) flowers on soil physical and chemical properties and microbial community diversity
Jie Li,YaJun Wang,Yang Qiu,ZhongKui Xie,YuBao Zhang,CuiPing Hua
Sciences in Cold and Arid Regions    2022, 14 (3): 212-222.   DOI: 10.3724/SP.J.1226.2022.21056.
摘要291)   HTML107)    PDF(pc) (3908KB)(618)    收藏

Timely removal of the flower is a key agricultural measure to ensure the concentrated supply of nutrients for the growth of underground bulbs and to increase the yield of lilies. Removing flowers and returning them to the field is one of the traditional ways of treatment, and field litter is formed at this time. Previous study showed that the decomposition of litter changes the soil properties. In order to study the effects of lily litter decomposition on soil physical and chemical properties and microbial structure, three treatments were set up in reference to the Decomposition Bag Method: control (CK), Lanzhou lily flower treatment (LZF), and Zhongbai No.1 flower treatment (ZBF). The effects of lily decomposition on soil physical and chemical properties and microbial community composition were studied in order to provide a scientific basis and theoretical guidance for the planting process of Lanzhou lily. The results show that the decomposition of lily flowers significantly increased the contents of soil organic matter, soil total nitrogen, soil total phosphorus and soil available potassium, and decreased soil pH. RDA shows that soil available nutrients and pH were the driving factors for the change of the soil microbial community. A short-term change of soil microenvironment caused by the decomposed lily flower is beneficial to growing the Lanzhou lily. However, under the correlation analysis of environmental factors, the long-term effects of returning the Lanzhou lily flower to the field, such as the trend of soil acidification, need to be further studied.

图表 | 参考文献 | 相关文章 | 多维度评价
7. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006
WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun
Sciences in Cold and Arid Regions    2016, 8 (5): 367-377.   DOI: 10.3724/SP.J.1226.2016.00367
摘要386)   HTML    PDF(pc) (6039KB)(649)    收藏
Ice documentation and response to prominent warming, especially after the 1990s, is further investigated because it is concerned whether ice records have absence. A δ18O series of a Laohugou (LHG) shallow ice core (20.12 m) in the northeastern Tibetan Plateau was reconstructed covering the period of 1960-2006. The ice core δ18O record had significant positive correlations with the warm season (May-September) air temperatures at adjacent meteorological stations and the 500 hPa temperatures in boreal China, indicating that the δ18O record could be considered a credible proxy of regional temperature. A clear, cold temperature event in 1967 and rapid warming after the 1990s were captured in the LHG δ18O series, revealing that it could record extreme air-temperature events on both regional and global scales. The LHG δ18O variations had evident positive correlations with both the summer surface outgoing longwave radiation (OLR) in the Mongolia region and the summer meridional wind at 500 hPa in the LHG region during 1960-2006, suggesting that the increased OLR in the Mongolia region might have intensified the Mongolia Low and expanded the pressure gradient to the LHG region (the Shulehe High), which would have pushed the westerlies further north and suppressed southward incursions of cold air into the LHG region, and thus augmented the temperature rise. The regional atmospheric circulation difference (1985-2006 minus 1960-1984) suggested that the anticyclone in the Mongolia region might have developed the easterly wind, which transported warmer air from the east toward the LHG region and weakened the cold penetration of the westerlies, resulting in the temperature rise since the middle 1980s.
参考文献 | 相关文章 | 多维度评价
8. Coupling numerical simulation with remotely sensed information for the study of frozen soil dynamics
HuiRan Gao,WanChang Zhang
Sciences in Cold and Arid Regions    2020, 12 (6): 404-417.   DOI: 10.3724/SP.J.1226.2020.00404
摘要396)   HTML234)    PDF(pc) (10153KB)(413)    收藏

The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.

图表 | 参考文献 | 相关文章 | 多维度评价
9. Fossil Taiwannia from the Lower Cretaceous Yixian Formation of western Liaoning, Northeast China and its phytogeography significance
MingZhen Zhang,BaoXia Du,PeiHong Jin,BaiNian Sun
Sciences in Cold and Arid Regions    2018, 10 (6): 502-515.   DOI: 10.3724/SP.J.1226.2018.00502
摘要581)   HTML45)    PDF(pc) (784KB)(1217)    收藏

Fossil Taiwania was discovered from the Lower Cretaceous Yixian Formation of Lingyuan City, western Liaoning Province, Northeast China. It is identified as a new species, Taiwania lingyuanensis sp. nov.. The present specimen is preserved as impressions with well defined leaf shoots system and reproductive structures. Leaves are dimorphic, spirally and imbricately arranged. They are scale-like on the main and cone-bearing branchlets, and subulate to falcate-subulate on the juvenile or sterile shoots. The seed cones are singly elliptic, ovate or elongate-ovate and terminally borne on ultimate shoots, bearing 22–24 scale-bracts complexes imbricately and helically arranged around the cone axis, the bracts are broad-ovate, rhomboidal or hexagonal with entire margins. Both the leafy shoots morphology and reproductive structures are similar to extant Taiwania. Furthermore, geological distribution and molecular biological evidences support that Taiwania is probably originated from the eastern Asia at least in the Early Cretaceous and widely distributed in the North Hemisphere thereafter.

图表 | 参考文献 | 相关文章 | 多维度评价
10. Soil freezing process and different expressions for the soil-freezing characteristic curve
JunPing Ren, Sai K. Vanapalli, Zhong Han
Sciences in Cold and Arid Regions    2017, 9 (3): 221-228.   DOI: 10.3724/SP.J.1226.2017.00221
摘要931)   HTML    PDF(pc) (4411KB)(1380)    收藏
The soil-freezing characteristic curve (SFCC), which represents the relationship between unfrozen water content and sub-freezing temperature (or suction at ice-water interface) in a freezing soil, can be used for understanding the transportation of heat, water, and solute in frozen soils. In this paper, the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve (SWCC) of unfrozen unsaturated soil are reviewed. Based on similar characteristics between SWCC and SFCC, a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes. Various SFCC expressions from the literature are summarized. Four widely used expressions (i.e., power relationship, exponential relationship, van Genuchten 1980 equation and Fredlund and Xing 1994 equation) are evaluated using published experimental data on four different soils (i.e., sandy loam, silt, clay, and saline silt). Results show that the exponential relationship and van Genuchten (1980) equation are more suitable for sandy soils. The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes; however, it exhibits limitations when fitting the saline silt data. The Fredlund and Xing (1994) equation is suitable for fitting the SFCCs for all soils studied in this paper.
参考文献 | 相关文章 | 多维度评价
11. The mass-balance characteristics and sensitivities to climate variables of Laohugou Glacier No. 12, western Qilian Mountains, China
JiZu Chen, ShiChang Kang, Xiang Qin, WenTao Du, WeiJun Sun, YuShuo Liu
Sciences in Cold and Arid Regions    2017, 9 (6): 543-553.   DOI: 10.3724/SP.J.1226.2017.00543
摘要547)   HTML    PDF(pc) (3481KB)(726)    收藏
Due to global warming, glaciers on the Tibetan Plateau (TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during 2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were -385 mm water equivalent (w.e.) in 2010/2011 and -232 mm w.e. in 2011/2012, respectively. The mean equilibrium-line altitude (ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970s. The mean accumulation area ratio (AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 ℃ increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of 130 mm w.e. per 10% change in total precipitation.
参考文献 | 相关文章 | 多维度评价
12. Review on simulation of land-surface processes on the Tibetan Plateau
Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan
Sciences in Cold and Arid Regions    2019, 11 (2): 93-115.   DOI: 10.3724/SP.J.1226.2019.00093.
摘要423)   HTML45)    PDF(pc) (9572KB)(566)    收藏

The Tibetan Plateau (TP) has powerful dynamics and thermal effects, which makes the interaction between its land and atmosphere significantly affect climate and environment in the regional or global area. By retrospecting the latest research progress in the simulation of land-surface processes (LSPs) over the past 20 years, this study discusses both the simulation ability of land-surface models (LSMs) and the modification of parameterization schemes from two perspectives, the models' applicability and improved parameterization schemes. Our review suggests that different LSMs can well capture the spatiotemporal variations of the physical quantities of LSPs; but none of them can be fully applied to the plateau, meaning that all need to be revised according to the characteristics specific to the TP. Avoiding the unstable iterative computation and determining the freeze?thaw critical temperature according to the thermodynamic equilibrium equation, the unreasonable freeze?thaw parameterization scheme can be improved. Due to the complex underlying surface of the TP, no parameterization scheme of roughness length can well simulate the various characteristics of the turbulent flux over the TP at different temporal scales. The uniform soil thermodynamic and hydraulic parameterization scheme is unreasonable when it is applied to the plateau, as a result of the strong soil heterogeneity. There is little research on the snow-cover process so far, and the improved scheme has no advantage over the original one due to the lack of some related physical processes. The constant interaction among subprocesses of LSPs makes the improvement of a multiparameterization scheme yield better simulation results. According to the review of existing research, adding high-quality observation stations, developing a parameterization scheme suitable for the special LSPs of the TP, and adjusting the model structures can be helpful to the simulation of LSPs on the TP.

图表 | 参考文献 | 相关文章 | 多维度评价
13. A review of the interaction between the cryosphere and atmosphere
YongJian Ding,JianPing Yang,ShengXia Wang,YaPing Chang
Sciences in Cold and Arid Regions    2020, 12 (6): 329-342.   DOI: 10.3724/SP.J.1226.2020.00329
摘要760)   HTML69)    PDF(pc) (5485KB)(1122)    收藏

The interaction between the cryosphere and atmosphere is an essential and extremely sensitive mutual action process on the earth. Due to global warming and the cryospheric melting, more and more attention has been paid to the interaction process between the cryosphere and atmosphere, especially the feedback of the cryosphere change to the atmosphere. A comprehensive review of the studies on the interaction between the cryosphere and atmosphere is conducted from two aspects: (1) effects of climate change on the cryosphere or responses of the cryosphere to climate change; and (2) feedback of the cryosphere change to the climate. The response of the cryosphere to climate change is lagging. Such a lagging and cumulative effect of temperature rise within the cryosphere have resulted in a rapid change in the cryosphere in the 21st century, and its impacts have become more significant. The feedback from cryosphere change on the climate are omnifarious. Among them, the effects of sea ice loss and snow cover change, especially the Arctic sea ice loss and the Northern Hemisphere snow cover change, are the most prominent. The Arctic amplification (AA) associated with sea ice feedback is disturbing , and the feedback generated by the effect of temperature rise on snow properties in the Northern Hemisphere is also of great concern. There are growing evidence of the impact of the Arctic cryosphere melting on mid-latitude weather and climate. Weakened storm troughs, steered jet stream and amplified planetary waves associated with energy propagation become the key to explaining the links between Arctic cryosphere change and atmospheric circulation. There is still a great deal of uncertainty about how cryosphere change affects the weather and climate through different atmospheric circulation processes at different spatial and temporal scales due to observation and simulation problems.

图表 | 参考文献 | 相关文章 | 多维度评价
14. The influence of the underpassing frozen connecting passage on the deformation of the existing tunnel
JunHao Chen,Jian Zhang,BiJian Chen,Gen Lu
Sciences in Cold and Arid Regions    2022, 14 (4): 223-233.   DOI: 10.1016/j.rcar.2022.09.001.
摘要903)   HTML469)    PDF(pc) (8356KB)(591)    收藏

Based on the engineering background of the contact channel between Shangyang and Gushan of Fuzhou Metro Line 2 undercrossing the existing tunnel line, the freezing temperature field of the contact channel, the displacement field of the existing tunnel line and the contact channel with different net distances and horizontal angles are analyzed by ANSYS finite element software and field measurement method. The obtained results indicate that during the freezing period, the temperature drops at different measuring holes are almost the same. The temperature near the bottom freezing tube drops faster than that far from the tube. It is found that the bilateral freezing technique improves the formation of the freezing wall in the intersection area. In this case, the intersection time of the cross-section is 7 days faster than that of the adjacent ordinary section. The change curve of the displacement of the surface uplift in different freezing periods with the distance from the center of the channel is "M" shaped. The maximum uplift displacement at 12 m from channel center is 25 mm. The vertical displacement of the measuring point located above the central axis of the connecting channel is large. The farther the point from the central axis, the smaller the corresponding vertical displacement. When the horizontal angle between the existing tunnel and the connecting channel is less than 60°, the existing vertical displacement of the tunnel changes rapidly with the horizontal angle, reaching 0.17 mm/°. Meanwhile, when the net distance is less than 6.1 m, the change rate of the vertical displacement of the tunnel is up to 2.4 mm/m.

图表 | 参考文献 | 相关文章 | 多维度评价
15. Comparison of sampling schemes for spatial prediction of soil organic carbon in Northern China
XuYang Wang,YuQiang Li,YuLin Li,YinPing Chen,Jie Lian,WenJie Cao
Sciences in Cold and Arid Regions    2020, 12 (4): 200-216.   DOI: 10.3724/SP.J.1226.2020.00217.
摘要1758)   HTML123)    PDF(pc) (9242KB)(731)    收藏

Determining an optimal sample size is a key step in designing field surveys, and is particularly important for detecting the spatial pattern of highly variable properties such as soil organic carbon (SOC). Based on 550 soil sampling points in the near-surface layer (0 to 20 cm) in a representative region of northern China’s agro-pastoral ecotone, we studied effects of four interpolation methods such as ordinary kriging (OK), universal kriging (UK), inverse distance weighting (IDW) and radial basis function (RBF) and random subsampling (50, 100, 200, 300, 400, and 500) on the prediction accuracy of SOC estimation. When the Shannon's Diversity Index (SHDI) and Shannon's Evenness Index (SHEI) was 2.01 and 0.67, the OK method appeared to be a superior method, which had the smallest root mean square error (RMSE) and the mean error (ME) nearest to zero. On the contrary, the UK method performed poorly for the interpolation of SOC in the present study. The sample size of 200 had the most accurate prediction; 50 sampling points produced the worst prediction accuracy. Thus, we used 200 samples to estimate the study area's soil organic carbon density (SOCD) by the OK method. The total SOC storage to a depth of 20 cm in the study area was 117.94 Mt, and its mean SOCD was 2.40 kg/m2. The SOCD kg/(C?m2) of different land use types were in the following order: woodland (3.29) > grassland (2.35) > cropland (2.19) > sandy land (1.55).

图表 | 参考文献 | 相关文章 | 多维度评价
16. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal
Mohan Bahadur Chand,Rijan Bhakta Kayastha
Sciences in Cold and Arid Regions    2018, 10 (5): 357-368.   DOI: 10.3724/SP.J.1226.2018.00357
摘要738)   HTML14890)    PDF(pc) (4797KB)(875)    收藏

The extensive debris that covers glaciers in the ablation zone of the Himalayan region plays an important part in regulating ablation rates and water availability for the downstream region. The melt rate of ice is determined by the amount of heat conducted through debris material lying over the ice. This study presents the vertical temperature gradients, thermal properties in terms of thermal diffusivity and thermal conductivity, and positive degree-day factors for the debris-covered portion of Lirung Glacier in Langtang Valley, Nepal Himalaya using field-based measurements from three different seasons. Field measurements include debris temperatures at different debris thicknesses, air temperature, and ice melt during the monsoon (2013), winter (2013), and pre-monsoon (2014) seasons. We used a thermal equation to estimate thermal diffusivity and thermal conductivity, and degree-day factors (DDF) were calculated from cumulative positive temperature and ice melt of the measurement period. Our analysis of debris temperature profiles at different depths of debris show the daily linear gradients of ?20.81 °C/m, 4.05 °C/m, and ?7.79 °C/m in the monsoon, winter, and pre-monsoon seasons, respectively. The values of thermal diffusivity and thermal conductivity in the monsoon season were 10 times greater than in the winter season. The large difference in these values is attributed to surface temperature and moisture content within the debris. Similarly, we found higher values of DDFs at thinner debris for the pre-monsoon season than in the monsoon season although we observed less melting during the pre-monsoon season. This is attributed to higher cumulative temperature during the monsoon season than in the pre-monsoon season. Our study advances our understanding of heat conductivity through debris material in different seasons, which supports estimating ice melt and discharge from glacierized river basins with debris-covered glaciers in the Himalayan region.

图表 | 参考文献 | 相关文章 | 多维度评价
17. Biological improvement of saline alkali soil reference system: A review
XueQin Wang,Xu Xing,FengJu Zhang,Kong Xin
Sciences in Cold and Arid Regions    2018, 10 (6): 516-521.   DOI: 10.3724/SP.J.1226.2018.00000
摘要839)   HTML86)    PDF(pc) (284KB)(1084)    收藏

This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system. There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.

参考文献 | 相关文章 | 多维度评价
18. How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis, Northwest China
HaiYang Xi,JingTian Zhang,Qi Feng,Lu Zhang,JianHua Si,TengFei Yu
Sciences in Cold and Arid Regions    2019, 11 (1): 62-80.   DOI: 10.3724/SP.J.1226.2019.00062
摘要488)   HTML27)    PDF(pc) (10223KB)(273)    收藏

Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling (WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes, China, to assess effects of groundwater-depth change on the canopy leaf area index (LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7?2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.

图表 | 参考文献 | 相关文章 | 多维度评价
19. Assessing the impacts of ecological-living-productive land changes on eco-environmental quality in Xining City on Qinghai-Tibet Plateau, China
ZiYi Gao,HaiFeng Zhang,XiaoNan Yang,ZhiYuan Song
Sciences in Cold and Arid Regions    2019, 11 (3): 194-207.   DOI: 10.3724/SP.J.1226.2019.00194.
摘要390)   HTML21)    PDF(pc) (5003KB)(673)    收藏

The Ecological-living-productive land (ELPL) classification system was proposed in an effort to steer China’s land pattern to an ecological-centered path, with the development model shifting from a single function into more integrated multi-function land use. The focus is coordinating the man-land contradictions and developing an intensive, efficient and sustainable land use policy in an increasingly tense relationship between humans and nature. Driven by socioeconomic change and rapid population growth, many cities are undergoing urban sprawl, which involves the consumption of cropland and ecological land and threatens the ecological balance. This paper aims to quantitatively analyze the critical effects of ELPL changes on eco-environmental quality according to land use classification based on leading function of ecology, living and production from 1990 to 2015 with a case study of Xining City. Also, four future land use scenarios were simulated for 2030 using the Future Land Use Simulation (FLUS) model that couples human and natural effects. Our results show a decrease in productive land (PL) and an increase in ecological land (EL) and living land (LL) in Xining City. Forestry ecological land (FEL) covered the top largest proportion; agriculture productive land (APL) showed the greatest reduction and urban and rural living land (U-RLL) presented a dramatic increase. The eco-environmental quality improved in 1990-2010, mainly affected by the conversion of APL to FEL and GEL. However, the encroachment of U-RLL into APL, other ecological land (OEL) and FEL was the main contributor to the decline in eco-environmental quality in 2010-2015 as well as the primary reason for the increase area of lower-quality. The Harmonious Development (HD)-Scenario, characterized by a rational allocation of LL and PL and a better eco-environment, would have implications for planning and monitoring future management of ELPL, and may represent a valuable reference for local policy-makers.

图表 | 参考文献 | 相关文章 | 多维度评价
20. Refreezing of cast-in-place piles under various engineering conditions
Lei Guo, QiHao Yu, XiaoNing Li, XinBin Wang, YongYu Yue
Sciences in Cold and Arid Regions    2015, 7 (4): 376-383.   DOI: 10.3724/SP.J.1226.2015.00376
摘要390)   HTML    PDF(pc) (375KB)(581)    收藏
In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance of a CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be refrozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2℃ and 9 ℃.
参考文献 | 相关文章 | 多维度评价
21. Study of seasonal snow cover influencing the ground thermal regime on western flank of Da Xing'anling Mountains, northeastern China
XiaoLi Chang, HuiJun Jin, YanLin Zhang, HaiBin Sun
Sciences in Cold and Arid Regions    2015, 7 (6): 666-674.   DOI: 10.3724/SP.J.1226.2015.00666
摘要384)   HTML    PDF(pc) (477KB)(404)    收藏
Although many studies relevant to snow cover and permafrost have focused on alpine, arctic, and subarctic areas, there is still a lack of understanding of the influences of seasonal snow cover on the thermal regime of the soils in permafrost regions in the mid-latitudes and boreal regions, such as that on the western flank of the Da Xing'anling (Hinggan) Mountains, northeastern China. This paper gives a detailed analysis on meteorological data series from 2001 to 2010 provided by the Gen'he Weather Station, which is located in a talik of discontinuous permafrost zone and with sparse meadow on the observation field. It is inferred that snow cover is important for the ground thermal regime in the middle Da Xing'anling Mountains. Snow cover of 10-cm in thickness and five to six months in duration (generally November to next March) can reduce the heat loss from the ground to the atmosphere by 28%, and by 71% if the snow depth increases to 36 cm. Moreover, the occurrence of snow cover resulted in mean annual ground surface temperatures 4.7-8.2 ℃ higher than the mean annual air temperatures recorded at the Gen'he Weather Station. The beginning date for stable snow cover establishment (SE date) and the initial snow depth (SDi) also had a great influences on the ground freezing process. Heavy snowfall before ground surface freeze-up could postpone and retard the freezing process in Gen'he. As a result, the duration of ground freezing was shortened by at least 20 days and the maximum depth of frost penetration was as much as 90 cm shallower.
参考文献 | 相关文章 | 多维度评价
22. Glacier changes in the Qaidam Basin from 1977 to 2018
SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan
Sciences in Cold and Arid Regions    2020, 12 (6): 491-502.   DOI: 10.3724/SP.J.1226.2020.00491
摘要420)   HTML24)    PDF(pc) (5524KB)(356)    收藏

Based on Landsat MSS/TM/OLI remote sensing images, glaciers vector data in the Qaidam Basin were extracted for 1977, 2002, and 2018, and their spatial-temporal variations were analyzed. Results show that there were 2,050 glaciers covering an area of 1,693.54±40.96 km2 and having an ice volume of 108.65±2.43 km3 in the Qaidam Basin in 2018. Glaciers with areas <1.0 km2 accounted for the largest number, while glaciers with areas of 1.0-5.0 km2 accounted for the most glacierized area. In the past 50 years, the number of glaciers decreased by 177, and the glacier area and volume reduced by 338.08 km2 (-8.12 km2/a) and 19.92 km3 (-0.48 km3/a), respectively. Retreat altitudes of glaciers were concentrated at 4,900-5,600 m, 4,700-5,200 m, and 5,000-5,600 m and reduced areas accounted for 95.53%, 77.80%, and 69.19% in the Kunlun, Qilian, and Altun mountains, respectively. The area of north-oriented glaciers decreased the most (-125.43 km2), but the west- and east-oriented glaciers retreated at the fastest rate (i.e., -27.11% and -27.10%). All glaciers showed a decreasing trend in sub-regions of the Qaidam Basin from 1977 to 2018. The decreasing trend was accelerated gradually from northwest to southeast in the northern part of the basin, while glacier change was the smallest in the middle section and gradually accelerated towards both ends of the basin's southern part. The temperature had continued to rise, and the precipitation had increased slowly in the Qaidam Basin during the past 50 years. The continuous rise in air temperature was the main reason for the retreat of glaciers.

图表 | 参考文献 | 相关文章 | 多维度评价
23. Temporal changes in seasonal precipitation over the Sahara Desert from 1979 to 2016
Sindikubwabo Celestin,Qi Feng,RuoLin Li,WenJu Cheng,Jian Ma,Habiyakare Telesphore,Nzabarinda Vincent
Sciences in Cold and Arid Regions    2021, 13 (3): 220-233.   DOI: 10.3724/SP.J.1226.2021.19059.
摘要802)   HTML50)    PDF(pc) (12422KB)(311)    收藏

Rainfall variability dominates livelihoods in all countries of Saharan Africa. To better understand the processes involved in Sahara precipitation changes, we used the Global Precipitation Climatology Center (GPCC) dataset to examine dry and wet seasonal trends in the Sahara region from 1979 to 2016. We also used the European Centre for Medium-Range Weather Forecasts (ECMWF) to evaluate the general atmospheric circulation associated with seasonal change of Sahara precipitation. The Mann-Kendall test and Theil sens' slope estimator methods were adopted to test and estimate the significance and weight of precipitation trend, respectively. The results revealed that Sahara precipitation has increased significantly. The seasonal evaluation shows a positive trend of 0.42 mm/decade and 1.43 mm/decade in JAS (June, August, and September) seasons for the northern and southern Saharan Desert, respectively. Moreover, the JFMA (January, February, March, and April) period shows a negative trend but not statistically significant. An examination of the general circulation and moisture transport changes suggested an increase of rainfall in southern Sahara. The wet period is also driven by northward penetration of moisture originating from the Sahel region, African Easterly Jet (AEJ), and weakening in the upper tropospheric zonal wind. Summer rainfall has also been likely associated with positive anomalies of sea surface temperature (SST) in the North Tropical Atlantic (NTA) and the Mediterranean Sea.

图表 | 参考文献 | 相关文章 | 多维度评价
24. Quantitatively estimate the components of natural runoff and identify the impacting factors in asnow-fed river basin of China
Jia Qin,JinKui Wu,TianDing Han,QiuDong Zhao
Sciences in Cold and Arid Regions    2020, 12 (3): 154-164.   DOI: 10.3724/SP.J.1226.2020.00154
摘要347)   HTML28)    PDF(pc) (6844KB)(199)    收藏

Snowmelt water is an essential runoff source of some alpine rivers in China. This study selected the Upper Burqin River (UBR), a typical snow-fed river, to quantitatively assess the runoff contributions of different components, as well as the causes of runoff variations under the background of cryosphere change and global warming. Based on the spatial-temporal distributions of snow and glaciers during a year, as well as the altitudinal variations of 0 °C isotherm, the high flow hydrographs in UBR was separated into two parts: seasonal snowmelt flood of lower altitudes (<3,000 m) and glacier-snow melt flow in high altitudes (3,000-4,296 m). The daily baseflow hydrograph of UBR was separated by the digital filtering technique. It is concluded that the contributions of snowmelt flow, glacier melt flow, and baseflow (includes rainfall runoff component) to total annual flow volumes are 27.2% (±2.7%), 8.5% (±1.7%), and 64.3% (±3.0%), respectively. The speed of air temperature rise in spring may be the controlling factor for monthly snowmelt flow distributions in the snow-fed river. The volume of snowmelt was determined by spring precipitation (SP) and previous winter's precipitation (PWP). The PWP changes can explain 43.7% of snowmelt changes during 1981-2010 in UBR, while snowmelt change in 1957-1980 is more impacted by SP. The determining factor of snowmelt variation was changed from SP to PAP during the recent decades. Precipitation in current year, excluding previous year's rainfall and snowfall, can only explain 32%-70% of the variability in total runoff.

图表 | 参考文献 | 相关文章 | 多维度评价
25. Lessons from construction and health condition evaluation of high-grade highway in permafrost regions
JianHong Fang,QingZhi Wang,KeJin Wang
Sciences in Cold and Arid Regions    2021, 13 (5): 372-378.   DOI: 10.3724/SP.J.1226.2021.21027.
摘要364)   HTML16)    PDF(pc) (6440KB)(289)    收藏

Located in the eastern margin of the Tibetan Plateau, the Gonghe-Yushu high-grade highway was the first of its kind in plateau permafrost regions. Most of the road sections along the high-grade highway are unstable or extremely unstable warm permafrost with an average annual ground temperature above -1 °C, which is vulnerable to global warming and human engineering activities. This paper describes permafrost characteristics, roadbed design, and operation of the Gonghe-Yushu high-grade highway in detail. It is found that thaw settlement of warm and ice-rich permafrost is the main cause of subgrade subsidence in permafrost sections of this highway due to insufficient permafrost survey and drainage design. It is recommended that the interception and drainage system's design be optimized, and the permafrost upper limit and the variation of ground temperature be further investigated to provide essential data for the treatment of highway distress. It should be emphasized that protecting permafrost soil environment and optimized engineering design are crucial to successful high-grade highway engineering in permafrost regions.

图表 | 参考文献 | 相关文章 | 多维度评价
26. Field monitoring of differential frost heave in widened highway subgrade
XuFeng Lu,Feng Zhang,KangWei Tang,DeCheng Feng
Sciences in Cold and Arid Regions    2021, 13 (5): 408-418.   DOI: 10.3724/SP.J.1226.2021.21044.
摘要303)   HTML12)    PDF(pc) (7631KB)(363)    收藏

In cold regions, the widened subgrade could produce uneven frost heave that is detrimental to the pavement. This study investigates the differential frost heave characteristics in a widened subgrade. The field monitoring system mainly consists of temperature, moisture, and displacement sensors and distributed optical fiber cables for strain measurement. The monitoring results show that the cooling period in the subgrade is longer than the warming period. Water content in the subgrade changes significantly within 0-2 m below the subgrade surface but stabilizes within 2-5 m. The maximum frost heave occurs from February to March. In comparison, the existing subgrade has a longer freezing period and larger heave value, caused by the higher density and water content inside. Water in the existing subgrade migrates into the new one after widening, leading to frost heave reduction in the existing subgrade. Simultaneously, the traffic loads result in the consolidation of the new subgrade, thus reducing the heave value in the second year. In the third year, the water supply from the existing subgrade facilitates the frost heave in the new subgrade. The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades. The differential frost heave gradually stabilizes after three years. Finally, an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.

图表 | 参考文献 | 相关文章 | 多维度评价
27. Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China:present and future
JianPing Yang
Sciences in Cold and Arid Regions    2019, 11 (3): 173-183.   DOI: 10.3724/SP.J.1226.2019.00173.
摘要317)   HTML23)    PDF(pc) (2405KB)(302)    收藏

The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly; moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability. The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research.

图表 | 参考文献 | 相关文章 | 多维度评价
28. High-precision measurements of the inter-annual evolution for Urumqi Glacier No.1 in eastern Tien Shan, China
ChunHai Xu,ZhongQin Li,JianXin Mu,PuYu Wang,FeiTeng Wang
Sciences in Cold and Arid Regions    2021, 13 (6): 474-487.   DOI: 10.3724/SP.J.1226.2021.20094
摘要336)   HTML55)    PDF(pc) (13475KB)(270)    收藏

High-precision measuring of glacier evolution remains a challenge as the available global and regional remote sensing techniques cannot satisfactorily capture the local-scale processes of most small- and medium-sized mountain glaciers. In this study, we use a high-precision local remote sensing technique, long-range terrestrial laser scanning (TLS), to measure the evolution of Urumqi Glacier No.1 at an annual scale. We found that the dense point clouds derived from the TLS survey can be used to reconstruct glacier surface terrain, with certain details, such as depressions, debris-covered areas, and supra-glacial drainages can be distinguished. The glacier experienced pronounced thickness thinning and continuous retreat over the last four mass-balance years (2015-2019). The mean surface slope of Urumqi Glacier No.1 gradually steepened, which may increase the removal of glacier mass. The glacier was deeply incised by two very prominent primary supra-glacial rivers, and those rivers presented a widening trend. Extensive networks of supra-glacial channels had a significant impact on accelerated glacier mass loss. High-precision measuring is of vital importance to understanding the annual evolution of this type of glacier.

图表 | 参考文献 | 相关文章 | 多维度评价
29. Biodiversity, productivity, and temporal stability in a natural grassland ecosystem of China
Bing Liu, WenZhi Zhao, YangYang Meng, Chan Liu
Sciences in Cold and Arid Regions    2018, 10 (4): 293-304.   DOI: 10.3724/SP.J.1226.2018.00293
摘要523)   HTML55)    PDF(pc) (1767KB)(914)    收藏

Understanding the effect of biodiversity on ecosystem function is critical to promoting the sustainability of ecosystems and species conservation in natural ecosystems. We observed species composition, species richness and aboveground biomass, and simulated the competitive assemblages in a natural grassland ecosystem of China, aiming to test some assumptions and predictions about biodiversity–stability relationships. Our results show that aboveground productivity and temporal stability increased significantly with increasing species richness, and via a combination of overyielding, species asynchrony, and portfolio effects. Species interactions resulted in overyielding caused by trait-independent complementarity, and were not offset by a negative dominance effect and trait-dependent complementarity effect. Therefore, the mechanisms underlying the biodiversity effect shifted from the selection effect to the complementarity effect as diversity increased, and both effects were coexisted but the complementarity effect represent a mechanism that facilitates long term species coexistence in a natural grassland ecosystem of China.

图表 | 参考文献 | 相关文章 | 多维度评价
30. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances
ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang
Sciences in Cold and Arid Regions    2020, 12 (6): 371-379.   DOI: 10.3724/SP.J.1226.2020.00371
摘要382)   HTML14)    PDF(pc) (4412KB)(670)    收藏

Holocene δ18O records from various archives (ice cores, cave stalagmites, and peat sediments) from the Xinjiang region of northwestern China, in arid central Asia (ACA), are all derived ultimately from local precipitation δ18O (δ18Op). Nevertheless, they have been proposed as indicators of different climatic parameters, such as wetness and temperature changes. This article summarizes previously reported records of moisture sources for the Xinjiang region and the results of modern observations conducted at an ice core site and a peat site in the Altai Mountains. The findings are used to propose that the overall positive trends in Holocene δ18O records from the various archives from the Xinjiang region primarily reflect the Holocene's long-term warming trend. It is concluded that more site-specific modern observations are needed to further elucidate the environmental significance of Holocene δ18O records from this region, especially for the separation of different seasonal temperature signals present within δ18O records.

图表 | 参考文献 | 相关文章 | 多维度评价
31. MODIS observed snow cover variations in the Aksu River Basin, Northwest China
Jing Li,ShiYin Liu,Qiao Liu
Sciences in Cold and Arid Regions    2019, 11 (3): 208-217.   DOI: 10.3724/SP.J.1226.2019.00208.
摘要333)   HTML17)    PDF(pc) (2915KB)(287)    收藏

A major proportion of discharge in the Aksu River is contributed from snow- and glacier-melt water. It is therefore essential to understand the cryospheric dynamics in this area for water resource management. The MODIS MOD10A2 remote-sensing database from March 2000 to December 2012 was selected to analyze snow cover changes. Snow cover varied significantly on a temporal and spatial scale for the basin. The difference of the maximum and minimum Snow Cover Fraction (SCF) in winter exceeded 70%. On average for annual cycle, the characteristic of SCF is that it reached the highest value of 53.2% in January and lowest value of 14.7% in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000 m below and 3,000 m above. The fluctuation of annual average snow cover is strong which shows that the spring snow cover was on the trend of increasing because of decreasing temperatures for the period of 2000-2012. However, temperature in April increased significantly which lead to more snowmelt and a decrease of snow cover. Thus, more attention is needed for flooding in this region due to strong melting of snow.

图表 | 参考文献 | 相关文章 | 多维度评价
32. Zhangmu and Gyirong ports under the threat of glacial lake outburst flood
MiaoMiao Qi,ShiYin Liu,YongPeng Gao
Sciences in Cold and Arid Regions    2020, 12 (6): 461-476.   DOI: 10.3724/SP.J.1226.2020.00461
摘要471)   HTML735)    PDF(pc) (11802KB)(369)    收藏

The Himalayas are prone to glacial lake outburst floods, which can pose a severe threat to downstream villages and infrastructure. The Zhangmu and Gyirong land treaty ports are located on the China-Nepal border in the central Himalayas. In recent years, the expansion of glacial lakes has increased the threat of these two port regions. This article describes the results of mapping the glacial lakes larger than 0.01 km2 in the Zhangmu and Gyirong port regions and analyzes their change. It provides a comprehensive assessment of potentially dangerous glacial lakes and predicts the development of future glacial lakes. From 1988 to 2019, the glacial lakes in these port regions underwent "expansion", and moraine-dammed lakes show the most significant expansion trend. A total of eleven potentially dangerous glacial lakes are identified based on the assessment criteria and historical outburst events; most expanded by more than 150% from 1988 to 2019, with some by over 500%. The Cirenmaco, a moraine-dammed lake, is extremely prone to overtopping due to ice avalanches or the melting of dead ice in the dam. For other large lakes, such as the Jialongco, Gangxico and Galongco, ice avalanches may likely cause the lakes to burst besides self-destructive failure. The potential dangers of the Youmojianco glacial lakes, including lakes Nos. 9, 10 and 11, will increase in the future. In addition, the glacier-bed topography model predicts that 113 glacial lakes with a size larger than 0.01 km2, a total area of 11.88 km2 and a total volume of 6.37×109 m3 will form in the study area by the end of the 21 century. Due to global warming, the glacial lakes in the Zhangmu and Gyirong port regions will continue to grow in the short term, and hence the risk of glacial lake outburst floods will increase.

图表 | 参考文献 | 相关文章 | 多维度评价
33. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent
Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye
Sciences in Cold and Arid Regions    2018, 10 (4): 279-285.   DOI: 10.3724/SP.J.1226.2018.00279
摘要667)   HTML27)    PDF(pc) (1820KB)(494)    收藏

Khaya belongs to the family Meliaceae. In Nigeria the genus is represented by three species viz; K. senegalensis A. Juss., K. grandifoliola C. DC. and K. ivorensis A. Chev. Comparative foliar anatomy of the three Khaya species was carried out to identify and describe distinctive anatomical characters that could possibly be used to delimit the three taxa. Transverse section, epidermal peels and cleared leaves of these three species were made. Characteristic similarity and disparity in the tissues arrangement as well as cell inclusions were noted for description and delimitation. The three Khaya species studied had essentially the same anatomical features, e.g., venation pattern having open polygonal areoles and the veins terminals biforkated. However, there were characters that seem to be species specific, e.g., vien termination number and areole width. The leaf epidermal studies of the three species revealed similarities in stomatal type which are generally staurocytic, epidermal cells and undulating anticlinal cell walls but stomata density varied. Hexacytic stomata is only observed in the abaxial surface of K. grandifoliola which distinguished this species from the others. The leaf petiole shape of the three species are round and difficult to distinguish into adaxial and abaxial surfaces. The cuticle is striated, vascular bundles are heart shape, conjoint, concentric and amphivasal, but are different in epidermal and collenchyma cell layer numbers. The leaf transverse sections of the three Khaya species studied have conjoint, concentric and amphicribral bundles while the leaf cuticle of K. senegalensis and K. grandifoliola are striated but that of Khaya ivorensis is non-striated.

图表 | 参考文献 | 相关文章 | 多维度评价
34. Wave propagation characteristics in frozen saturated soil
ChengCheng Du, DongQing Li, Feng Ming, YuHang Liu, XiangYang Shi
Sciences in Cold and Arid Regions    2018, 10 (2): 95-103.   DOI: 10.3724/SP.J.1226.2018.00095
摘要487)   HTML    PDF(pc) (1442KB)(564)    收藏
Ultrasonic detection technology is of great significance in the detection and evaluation of physical and mechanical properties of frozen soil, but wave propagation characteristics in frozen soil are unclear. Based on the three-phase composition of frozen saturated soil and the mixture theory, considering Bishop's effective stress formula, the wave propagation equations are establish for frozen saturated soil. In wave propagation, an entropy inequality was introduced to describe the coupling of different phases. The analytic expressions of propagation velocity and attenuation law of waves in frozen soil are obtained, and wave propagation characteristics in frozen saturated soil are discussed. Results show that four types of waves (i.e., P1, P2, P3 and S) are found in frozen saturated soil and all four wave types are dissipative waves, in which the attenuation of P3 is the maximum. The velocity of four waves increases sharply at the excitation frequency range of 103-109 Hz, but the wave velocity at high-frequency and low-frequency is almost constant. When volume ice content increases, the wave propagation velocity of P1 and S decreases dramatically, and the velocity of P2 increases gradually, but P3 velocity increases first and then decreases to zero with increasing saturation. The attenuation coefficients of P1 and S waves begins to increase gradually when the volume ice content is about 0.4, P2 increases first and then decreases with an increase of volume ice content and P3 increases with the volume ice content and decreases rapidly from extreme to zero.
参考文献 | 相关文章 | 多维度评价
35. Influence of fines content on the anti-frost properties of coarse-grained soil
TianLiang Wang, ZuRun Yue, TieCheng Sun, JinChuang Hua
Sciences in Cold and Arid Regions    2015, 7 (4): 407-413.   DOI: 10.3724/SP.J.1226.2015.00407
摘要544)   HTML    PDF(pc) (4001KB)(849)    收藏
This paper aims to determine the optimal fines content of coarse-grained soil required to simultaneously achieve weaker frost susceptibility and better bearing capacity. We studied the frost susceptibility and strength properties of coarse-grained soil by means of frost heaving tests and static triaxial tests, and the results are as follows:(1) the freezing temperature of coarse-grained soil decreased gradually and then leveled off with incremental increases in the percent content of fines; (2) the fines content proved to be an important factor influencing the frost heave susceptibility and strength properties of coarse-grained soil. With incremental increases in the percent content of fines, the frost heave ratio increased gradually and the cohesion function of fines effectively enhanced the shear strength of coarse-grained soil before freeze-thaw, but the frost susceptibility of fines weakened the shear strength of coarse-grained soil after freeze-thaw; (3) with increasing numbers of freeze-thaw cycles,the shear strength of coarse-grained soil decreased and then stabilized after the ninth freeze-thaw cycle, and therefore the mechanical indexes of the ninth freeze-thaw cycle are recommended for the engineering design values; and (4) considering frost susceptibility and strength properties as a whole, the optimal fines content of 5% is recommended for railway subgrade coarse-grained soil fillings in frozen regions.
参考文献 | 相关文章 | 多维度评价
36. Evaluating effects of Dielectric Models on the surface soil moisture retrieval in the Qinghai-Tibet Plateau
Rong Liu,Xin Wang,ZuoLiang Wang,Jun Wen
Sciences in Cold and Arid Regions    2021, 13 (1): 62-76.   DOI: 10.3724/SP.J.1226.2021.20067
摘要527)   HTML3520)    PDF(pc) (7208KB)(368)    收藏

Based on the measurement of L-band ground-based microwave radiometer (ELBARA-III type) in the Qinghai-Tibet Plateau and the τ-ω radiative transfer model, this research evaluated the effects of four soil dielectric models, i.e., Wang-Schmugge, Mironov, Dobson, and Four-phase, on the L-band microwave brightness temperature simulation and soil moisture retrieval. The results show that with the same vegetation and roughness parameterization scheme, the four soil dielectric models display obvious differences in microwave brightness temperature simulation. When the soil moisture is less than 0.23 m3/m3, the simulated microwave brightness temperature in Wang-Schmugge model is significantly different from that of the other three models, with maximum differences of horizontal polarization and vertical polarization reaching 8.0 K and 4.4 K, respectively; when the soil moisture is greater than 0.23 m3/m3, the simulated microwave brightness temperature of Four-phase significantly exceeds that of the other three models; when the soil moisture is saturated, maximum differences in simulated microwave brightness temperature with horizontal polarization and vertical polarization are 6.1 K and 4.8 K respectively, and the four soil dielectric models are more variable in the microwave brightness temperature simulation with horizontal polarization than that with vertical polarization. As for the soil moisture retrieval based on the four dielectric models, the comparison study shows that, under the condition of horizontal polarization, Wang-Schmugge model can reduce the degree of retrieved soil moisture underestimating the observed soil moisture more effectively than other parameterization schemes, while under the condition of vertical polarization, the Mironov model can reduce the degree of retrieved soil moisture overestimating the observed soil moisture. Finally, based on the Wang-Schmugge model and FengYun-3C observation data, the spatial distribution of soil moisture in the study area is retrieved.

图表 | 参考文献 | 相关文章 | 多维度评价
37. Artificially frozen ground and related engineering technology in Japan
Satoshi Akagawa
Sciences in Cold and Arid Regions    2021, 13 (2): 77-86.   DOI: 10.3724/SP.J.1226.2021.20046
摘要721)   HTML32249)    PDF(pc) (8720KB)(595)    收藏

Since the 1970's, frozen ground has been developing near the Tokyo Bay area around liquefied natural gas (LNG) in-ground storage tanks. For disaster prevention purposes, the tanks are constructed below the ground surface. Since the temperature of the liquid stored in the tanks is -162 °C the soil surrounding the tanks freezes. Since this frozen ground has existed for almost half a century, we have permafrost near Tokyo. The development of artificial frozen ground may cause frost heaving, resulting in frost heave forces that may cause structural damage of adjacent LNG in-ground storage tanks. Therefore, the demand for frozen ground engineering increased and consequently we now have advanced technology in this area. Fortunately, we use this engineering technology and artificial ground freezing for civil engineering, especially in big and crowded cities like Tokyo. This paper provides a summary of the testing apparatus, test methods, and assessment methods for frost heaving.

图表 | 参考文献 | 相关文章 | 多维度评价
38. Seasonal variation of airborne fungi of the Tiantishan Grottoes and Western Xia Museum, Wuwei, China
YuLong Duan,FaSi Wu,DongPeng He,RuiHong Xu,HuYuan Feng,Tuo Chen,GuangXiu Liu,WanFu Wang
Sciences in Cold and Arid Regions    2021, 13 (6): 522-532.   DOI: 10.3724/SP.J.1226.2021.20102
摘要261)   HTML45)    PDF(pc) (4500KB)(960)    收藏

In this study, a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum, China. A bio-aerosol sampler was used for sampling in four seasons in 2016. Culture-dependent and -independent methods were taken to acquire airborne fungal concentration and purified strains; by the extraction of genomic DNA, amplification of fungal ITS rRNA gene region, sequencing, and phylogenetic analysis, thereafter the fungal community composition and distribution characteristics of different study sites were clarified. We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites. The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m3, no significant difference between the two sites at the Tiantishan Grottoes, with obvious characteristics of seasonal variation, in winter and spring were higher than in summer and autumn. Also, there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum, the outside of the museum was far more than the inside of the museum in the four seasons, particularly in the winter. Eight fungal genera were detected, including Cladosporium, Penicillium, Alternaria, and Filobasidium as the dominant groups. The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution. Relative humidity, temperature and seasonal rainfall influence airborne fungal distribution. Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings. This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.

图表 | 参考文献 | 相关文章 | 多维度评价
39. Complex analysis of the damage caused by geocryologic processes (as exemplified by effects on the Chara-China Railway track, Transbaikal region)
Irina Chesnokova, Dmitry Sergeev
Sciences in Cold and Arid Regions    2017, 9 (3): 335-338.   DOI: 10.3724/SP.J.1226.2017.00335
摘要439)   HTML    PDF(pc) (690KB)(370)    收藏
The report presents an analysis of a unique data set demonstrating the influence of geocryological processes on the 75-km Chara-China Railway track (northern Transbaikal region). The originality of these investigations lies in the study of the influence of natural processes on the road in the absence of any repair works or protective and compensating measures for a long period of time (1998~2014). These conditions allowed assessment of the actual damage to the railroad.
参考文献 | 相关文章 | 多维度评价
40. Manifestations and mechanisms of mountain glacier-related hazards
Xin Wang,Qiao Liu,ShiYin Liu,GuangLi He
Sciences in Cold and Arid Regions    2020, 12 (6): 436-446.   DOI: 10.3724/SP.J.1226.2020.00436
摘要397)   HTML28)    PDF(pc) (2037KB)(518)    收藏

Mountain glacier-related hazards occur worldwide in response to increasing glacier instability and human activity intensity in modern glacierized regions. These hazards are characterized by their spatial aggregation and temporal repeatability. Comprehensive knowledge about mountain glacier-related hazards is critical for hazard assessment, mitigation, and prevention in the mountain cryosphere and downstream regions. This article systematically schematizes various mountain glacier-related hazards and analyzes their inherent associations with glacier changes. Besides, the processes, manifestations, and mechanisms of each of the glacier-related hazards are summarized. In the future, more extensive and detailed systematic surveys, for example, considering integrated ground-air-space patterns, should be undertaken for typical glacierized regions to enhance existing knowledge of such hazards. The use of coupled numerical models based on multi-source data is challenging but will be essential to improve our understanding of the complex chain of processes involved in thermal-hydrogeomorphic glacier-related hazards in the mountain cryosphere.

图表 | 参考文献 | 相关文章 | 多维度评价