Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (1): 68-78.doi: 10.3724/SP.J.1226.2022.21015.

Previous Articles    

Spatial and temporal patterns of solar radiation in China from 1957 to 2016

PeiDu Li1,2,XiaoQing Gao1(),JunXia Jiang1,2,LiWei Yang1,YuJie Li1,2   

  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-03-10 Accepted:2021-06-11 Online:2022-02-28 Published:2022-03-03
  • Contact: XiaoQing Gao


Solar energy is clean and renewable energy that plays an important role in mitigating impacts of environmental problems and climate change. Solar radiation received on the earth's surface determines the efficiency of power generation and the location and layout of photovoltaic arrays. In this paper, the average daily solar radiation of 77 stations in China from 1957 to 2016 was analyzed in terms of spatial and temporal characteristics. The results indicate that Xinjiang, the Qinghai-Tibet Plateau, North, Central and East China show a decreasing trend with an average of 2.54×10-3 MJ/(m2?10a), while Northwest and Northeast China are basically stabilized, and Southwest China shows a clear increasing trend with an average increase of 1.79×10-3 MJ/(m2?10a). The average daily solar radiation in summer and winter in China from 1957 to 2016 was 18.74 MJ/m2 and 9.09 MJ/m2, respectively. Except for spring in Northwest, East and South China, and summer in northeast China, the average daily solar radiation in all other regions show a downward trend. A critical point for the change is 1983 in the average daily solar radiation. Meanwhile, large-scale (25-30 years) oscillation changes are more obvious, while small-scale (5-10 years) changes are stable and have a global scope. The average daily solar radiation shows an increasing-decreasing gradient from west to east, which can be divided into three areas west of 80°E, 80°E-100°E and east of 100°E. The average daily solar radiation was 2.07 MJ/m2 in the 1980s, and that in 1990s lower than that in the 1960s and the 1970s. The average daily solar radiation has rebounded in the 21st century, but overall it is still lower than the average daily solar radiation from 1957 to 2016 (13.87 MJ/m2).

Key words: average daily solar radiation, temporal variability, spatial distribution characteristics, China

Figure 1

Average daily solar radiation changes (a, Xinjiang; b, Qinghai-Tibet Plateau; c, Northwest China; d, Southwest China; e, Northeast China; f, North China; g, Central China; h, East China; i, South China) in China during 1957-2016"

Figure 2

Accumulative anomaly curve of daily average solar radiation (a, Xinjiang; b, Qinghai-Tibet Plateau; c, Northwest China; d, Southwest China; e, Northeast China; f, North China; g, Central China; h, East China; i, South China) in China during 1957-2016"

Table 1

Statistics on seasonal characteristic value of average daily radiation in China during 1957-2016"

RegionSeasonMaximum (MJ/m2)Minimum (MJ/m2)Range (MJ/m2)Average (MJ/m2)Z value
Qinghai-Tibet PlateauSpring22.5216.166.3620.39-4.53
Northwest ChinaSpring21.2216.354.8718.741.78
Southwest ChinaSpring18.7312.915.8215.191.83
Northeast ChinaSpring18.2315.023.2116.68-1.63
North ChinaSpring20.7016.923.7818.64-1.82
Central ChinaSpring16.0710.365.7113.21-2.37
East ChinaSpring16.9811.895.0914.620.56
South ChinaSpring15.068.736.3412.191.75

Figure 3

Daily average solar radiation of the real part of the wavelet contour map (a, Xinjiang; b, Qinghai-Tibet Plateau; c, Northwest China; d, Southwest China; e, Northeast China; f, North China; g, Central China; h, East China; i, South China) in China"

Figure 4

Wavelet variance diagram of daily average solar radiation in China"

Figure 5

The spatial distribution characteristics of daily average solar radiation in China from 1957 to 2016 [GS(2019)1822] (a, 1960s; b, 1970s; c, 1980s; d, 1990s; e, 2000s; f, 1957-2016)"

Armstrong S , Hurley WG , 2010. A new methodology to optimise solar energy extraction under cloudy conditions. Renewable Energy, 35(4): 780-787. DOI: 10.1016/j.renene. 2009.10.018 .
doi: 10.1016/j.renene. 2009.10.018
Blal M , Khelifi S , Dabou R , et al. , 2020. A prediction models for estimating global solar radiation and evaluation meteorological effect on solar radiation potential under several weather conditions at the surface of Adrar environment. Measurement, 152: 107348. DOI: 10.1016/j.measurement. 2019.107348 .
doi: 10.1016/j.measurement. 2019.107348
Breyer C , Bogdanov D , Gulagi A , et al. , 2017. On the role of solar photovoltaics in global energy transition scenarios. Progress in Photovoltaics, 25(8): 727-745. DOI: 10.1002/pip.2885 .
doi: 10.1002/pip.2885
Brock TD , 1981. Calculating solar-radiation for ecological-studies. Ecological Modelling, 14(1-2): 1-19. DOI: 10. 1016/0304-3800(81)90011-9 .
doi: 10. 1016/0304-3800(81)90011-9
Che HZ , Shi GY , Zhang XY , et al. , 2005. Analysis of 40 years of solar radiation data from China, 1961-2000. Geophysical Research Letters, 32(6): L06803. DOI: 10.1029/2004GL022322 .
doi: 10.1029/2004GL022322
Choi CS , Cagle AE , Macknick J , et al. , 2020. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Frontiers in Environmental Science, 8: 1- 3-9. DOI: 10.3389/fenvs.2020.00140 .
doi: 10.3389/fenvs.2020.00140
Droma JP , 2007. Discussion on the solar radiation and its effects on human beings. Journal of Tibet University.
Fang HJ , Qin WM , Wang LC , et al. , 2021. Solar brightening/dimming over China's Mainland: effects of atmospheric aerosols, anthropogenic emissions, and meteorological conditions. Remote Sensing, 13(1): . DOI: 10.3390/rs13010088 .
doi: 10.3390/rs13010088
Feng F , Wang K , 2019. Determining factors of monthly to decadal variability in surface solar radiation in China: evidences from current reanalyses. Journal of Geophysical Research: Atmospheres, 124(16): 9161-9182. DOI: 10.1029/2018JD030214 .
doi: 10.1029/2018JD030214
Feng Y , Hao WP , Li HR , et al. , 2020. Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renewable & Sustainable Energy Reviews, 118: 109393. DOI: 10.1016/j.rser.2019.109393 .
doi: 10.1016/j.rser.2019.109393
Frohlich C , 1987. Variability of the solar-constant on time scales of minutes to Years. Journal of Geophysical Research-Atmospheres, 92(D1): 796-800. DOI: 10.1029/JD092iD01p00796 .
doi: 10.1029/JD092iD01p00796
Furlan C , de Oliveira AP , Soares J , et al. , 2012. The role of clouds in improving the regression model for hourly values of diffuse solar radiation. Applied Energy, 92: 240-254. DOI: 10.1016/j.apenergy.2011.10.032 .
doi: 10.1016/j.apenergy.2011.10.032
Gilgen H , Wild M , Ohmura A , 1998. Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. Journal of Climate, 11(8): 2042-2061. .
Gu ZJ , Feng DT , Duan XW , et al. , 2020. Spatial and temporal patterns of rainfall erosivity in the Tibetan Plateau. Water, 12(1): 200. DOI: 10.3390/w12010200 .
doi: 10.3390/w12010200
Hernandez RR , Easter SB , Murphy-Mariscal ML , et al. , 2014. Environmental impacts of utility-scale solar energy. Renewable & Sustainable Energy Reviews, 29: 766-779. DOI: 10.1016/j.rser.2013.08.041 .
doi: 10.1016/j.rser.2013.08.041
Kaplan AG , Kaplan YA , 2020. Developing of the new models in solar radiation estimation with curve fitting based on moving least-squares approximation. Renewable Energy, 146: 2462-2471. DOI: 10.1016/j.renene.2019.08.095 .
doi: 10.1016/j.renene.2019.08.095
Kendall MG , 1948. Rank Correlation Methods. 4th Edition, Griffin, London.
Lang JL , Zhang YY , Zhou Y , et al. , 2017. Trends of PM2.5 and chemical composition in Beijing, 2000-2015. Aerosol and Air Quality Research, 17(2): 412-425. DOI: 10.4209/AAQR.2016.07.0307 .
doi: 10.4209/AAQR.2016.07.0307
Lewis NS , Nocera DG , 2007. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 103(43): 15729-15735. DOI: 10.1073/pnas. 0603395103 .
doi: 10.1073/pnas. 0603395103
Liang F , Xia XA , 2005. Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000. Annales Geophysicae, 23(7): 2425-2432. DOI: 10.5194/angeo-23-2425-2005 .
doi: 10.5194/angeo-23-2425-2005
Lin CG , Wu HP , Ou TH , et al. , 2019. A new perspective on solar dimming over the Tibetan Plateau. International Journal of Climatology, 39(1): 302-316. DOI: 10.1002/joc.5807 .
doi: 10.1002/joc.5807
Liu PR , Tong XJ , Zhang JS , et al. , 2020. Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China. Renewable Energy, 149: 1360-1369. DOI: 10.1016/j.renene.2019.10.136 .
doi: 10.1016/j.renene.2019.10.136
Lopez G , Gueymard CA , Bosch JL , et al. , 2018. Modeling water vapor impacts on the solar irradiance reaching the receiver of a solar tower plant by means of artificial neural networks. Solar Energy, 169: 34-39. DOI: 10.1016/j.solener.2018.04.023 .
doi: 10.1016/j.solener.2018.04.023
Lopez-Moreno JI , Soubeyroux JM , Gascoin S , et al. , 2020. Long-term trends (1958-2017) in snow cover duration and depth in the Pyrenees. International Journal of Climatology, 40(14): 6122-6136. DOI: 10.1002/joc.6571 .
doi: 10.1002/joc.6571
Mann HB , 1945. Nonparametric tests against trend. The Econometric Society, 13(3): 245-259. DOI: 0012-9682(194507)13:3<245:NTAT>2.0.CO;2-U .
doi: 0012-9682(194507)13:3<245:NTAT>2.0.CO;2-U
Mostafaeipour A , Qolipour M , Rezaei M , et al. , 2019. Investigation of off-grid photovoltaic systems for a reverse osmosis desalination system: A case study. Desalination, 454: 91-103. DOI: 10.1016/j.desal.2018.03.007 .
doi: 10.1016/j.desal.2018.03.007
Nagel D , Herber A , Thomason LW , et al. , 1998. Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996. Journal of Geophysical Research-Atmospheres, 103(D2): 1857-1870. DOI: 10.1029/97JD02678 .
doi: 10.1029/97JD02678
Obama B , 2017. The irreversible momentum of clean energy. Science, 355(6321): 126-129. DOI: 10.1126/science.aam6284 .
doi: 10.1126/science.aam6284
Perera FP , 2017. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environmental Health Perspectives, 125(2): 141-148. DOI: 10.1289/EHP299 .
doi: 10.1289/EHP299
Pinker R , Zhang B , Dutton E , 2005. Do satellites detect trends in surface solar radiation? Science, 308(5723): 850-854. DOI: 10.1126/science.1103159 .
doi: 10.1126/science.1103159
Pollitt H , 2020. Analysis: Going carbon neutral by 2060 'will make China richer'. Carbon Brief, 24.
Qi Y , Fang S , Zhou W , 2014. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecologica Sinica, 34(24): 7444-7453. DOI: 10.5846/stxb201303130409 .
doi: 10.5846/stxb201303130409
Qian Y , Kaiser DP , Leung LR , et al. , 2006. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophysical Research Letters, 33(1): L01812. DOI: 10.1029/2005GL024586 .
doi: 10.1029/2005GL024586
Qian Y , Wang WG , Leung LR , et al. , 2007. Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophysical Research Letters, 34(12): . DOI: 10.1029/2006GL028800 .
doi: 10.1029/2006GL028800
Rycroft MJ , ISraelsson S , Price C , 2000. The global atmospheric electric circuit, solar activity and climate change. Journal of Atmospheric and Solar-Terrestrial Physics, 62(17-18): 1563-1576. DOI: 10.1016/S1364-6826(00)00112-7 .
doi: 10.1016/S1364-6826(00)00112-7
Shafiee S , Topal E , 2009. When will fossil fuel reserves be diminished? Energy Policy, 37(1): 181-189. DOI: 10.1016/j.enpol.2008.08.016 .
doi: 10.1016/j.enpol.2008.08.016
Stanhill G , Cohen S , 2001. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107(4): 255-278. DOI: 10.1016/S0168-1923(00)00241-0 .
doi: 10.1016/S0168-1923(00)00241-0
Tang WJ , Yang K , Qin J , et al. , 2011. Solar radiation trend across China in recent decades: a revisit with quality-controlled data. Atmospheric Chemistry and Physics, 11(1): 393-406. DOI: 10.5194/acp-11-393-2011 .
doi: 10.5194/acp-11-393-2011
Tarasova TA , Fomin BA , 2000. Solar radiation absorption due to water vapor: Advanced broadband parameterizations. Journal of Applied Meteorology, 39(11): 1947-1951. DOI: 10.1175/1520-0450(2000)039<1947:SRADTW>2.0.CO;2 .
doi: 10.1175/1520-0450(2000)039<1947:SRADTW>2.0.CO;2
Valipour M , 2012. Comparison of surface irrigation simulation models: Full hydrodynamic, zero inertia, kinematic wave. Journal of Agricultural Science, 4(12): 68-74. DOI: 10. 5539/jas.v4n12p68 .
doi: 10. 5539/jas.v4n12p68
Wang LC , Lu YB , Zou L , et al. , 2019. Prediction of diffuse solar radiation based on multiple variables in China. Renewable & Sustainable Energy Reviews, 103: 151-216. DOI: 10.1016/j.rser.2018.12.029 .
doi: 10.1016/j.rser.2018.12.029
Wang MM , Zang HX , Cheng LL , et al. , 2019. Application of DBN for estimating daily solar radiation on horizontal surfaces in Lhasa, China. Innovative Solutions for Energy Transitions, 158: 49-54. DOI: 10.1016/j.egypro.2019.01.034 .
doi: 10.1016/j.egypro.2019.01.034
Wilberforce T , Baroutaji A , El Hassan Z , et al. , 2019. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies. Science of the Total Environment, 659: 851-861. DOI: 10.1016/j.scitotenv.2018.12.257 .
doi: 10.1016/j.scitotenv.2018.12.257
Wild M , Gilgen H , Roesch A , et al. , 2005. From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, 308(5723): 847-850. DOI: 10.1126/science.1103215 .
doi: 10.1126/science.1103215
Wu F , Fu C , 2011. Assessment of GEWEX/SRB version 3.0 monthly global radiation dataset over China. Meteorology and Atmospheric Physics, 112(3): 155-166. DOI: 10.1007/s00703-011-0136-x .
doi: 10.1007/s00703-011-0136-x
Xiao MZ , Yu ZB , Cui YZ , 2020. Evaluation and estimation of daily global solar radiation from the estimated direct and diffuse solar radiation. Theoretical and Applied Climatology, 140(3-4): 983-992. DOI: 10.1007/s00704-020-03140-4 .
doi: 10.1007/s00704-020-03140-4
Yang S , Wang XL , Wild M , 2019. Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958-2016). Journal of Climate, 32(18): 5901-5913. DOI: 10.1175/JCLI-D-18-0666.1 .
doi: 10.1175/JCLI-D-18-0666.1
Yu L , Zhang M , Wang LC , et al. , 2020. Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001-2015. Atmospheric Environment, 223: 117198. DOI: 10.1016/j.atmosenv.2019. 117198 .
doi: 10.1016/j.atmosenv.2019. 117198
Zhang G , Ma YY , 2020. Clear-sky surface solar radiation and the radiative effect of aerosol and water vapor based on simulations and satellite observations over Northern China. Remote Sensing, 12(12): 105162. DOI: 10.3390/rs12121931 .
doi: 10.3390/rs12121931
Zhang Y , Li Z , 2015. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sensing of Environment, 160: 252-262. DOI: 10.1016/j.rse.2015.02.005 .
doi: 10.1016/j.rse.2015.02.005
Zhang Y , Qin B , Chen W , 2003. Analysis of solar radiation variations over Nanjing region in recent 40 years. Journal of Geographical Sciences, 13(1): 97-104. DOI: 10.1007/BF02873152 .
doi: 10.1007/BF02873152
Zhang YL , Qin BQ , Chen WM , 2004. Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China. Theoretical and Applied Climatology, 78(4): 217-227. DOI: 10.1007/s00704-003-0030-7 .
doi: 10.1007/s00704-003-0030-7
Zhao Q , Yao WX , Zhang CX , et al. , 2019. Study on the influence of fog and haze on solar radiation based on scattering-weakening effect. Renewable Energy, 134: 178-185. DOI: 10.1016/j.renene.2018.11.027 .
doi: 10.1016/j.renene.2018.11.027
Zou HY , Du HB , Ren JZ , et al. , 2017. Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review. Renewable & Sustainable Energy Reviews, 69: 197-206. DOI: 10.1016/j.rser.2016.11.053 .
doi: 10.1016/j.rser.2016.11.053
[1] WenJu Cheng,HaiYang Xi,Sindikubwabo Celestin. Application of geodetector in sensitivity analysis of reference crop evapotranspiration spatial changes in Northwest China [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 314-325.
[2] XueXiang Chang,WenZhi Zhao,XueLi Chang,Bing Liu,Jun Du. Assessing spatial and temporal variability in water consumption and the maintainability oasis maximum area in an oasis region of Northwestern China [J]. Sciences in Cold and Arid Regions, 2020, 12(4): 217-233.
[3] BaiCui Xu,JingHu Pan. Analysis of structural characteristics and spatial distribution of the national intangible cultural heritage in China and its policy implications [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 389-406.
[4] JiaXi Yang,ZhenChao Li,Ye Yu,ZhiYuan Zheng,XuHong Hou,XiaoQing Gao. Comparative study of surface energy and land-surface parameters in different climate zones in Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 283-294.
[5] FangLei Zhong, AiJun Guo, XiaoJuan Yin, JinFeng Cui, Xiao Yang, YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436-446.
[6] CaiXia Zhang, XunMing Wang, YongZhong Su, ZhiWen Han, ZhengCai Zhang, Ting Hua. Change in summer daily precipitation and its relation with air temperature in Northwest China during 1957–2016 [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 317-325.
[7] Na Li, ChangZhen Yan, JiaLi Xie, JianXia Ma. Cultivated-land change in Mu Us Sandy Land of China before and after the first-stage grain-for-green policy [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 347-353.
[8] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[9] YaFeng Zhang, XinPing Wang, YanXia Pan, Rui Hu. Intrastorm stemflow variability of a xerophytic shrub within a water-limited arid desert ecosystem of northern China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 495-502.
[10] Irina Chesnokova, Dmitry Sergeev. Complex analysis of the damage caused by geocryologic processes (as exemplified by effects on the Chara-China Railway track, Transbaikal region) [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 335-338.
[11] XiaoMei Peng, ShengChun Xiao, GuoDong Cheng, QuanYan Tian, HongLang Xiao. Microcoring and dendrometer-detected intra-annual wood formation of Populus euphratica in the Ejina Oasis,northwestern China [J]. Sciences in Cold and Arid Regions, 2017, 9(1): 54-66.
[12] XinPing Wang, YaFeng Zhang, Rui Hu, YanXia Pan, HaoJie Xu, Wei Shi, YanXia Jin, Hiroshi Yasuda. Revisit of event-based rainfall characteristics at Shapotou area in northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484.
[13] JinKui Wu, ShiWei Liu, LePing Ma, Jia Qin, JiaXin Zhou, Hong Wei. Comparison analysis of sampling methods to estimate regional precipitation based on the Kriging interpolation methods: A case of northwestern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 485-494.
[14] YanLin Zhang, XiaoLi Chang, Ji Liang, DongLiang Luo, RuiXia He. The efficacy of Kriging spatial interpolation for filling temporal gaps in daily air temperature data: A case study in northeast China [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 441-449.
[15] HuiJun Jin, XiaoLi Chang, DongLiang Luo, RuiXia He, LanZhi Lü, SiZhong Yang, DongXin Guo, XueMei Chen, Stuart A. Harris. Evolution of permafrost in Northeast China since the Late Pleistocene [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 269-296.
Full text



No Suggested Reading articles found!