Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (4): 283-294.doi: 10.3724/SP.J.1226.2019.00283.

Previous Articles     Next Articles

Comparative study of surface energy and land-surface parameters in different climate zones in Northwest China

JiaXi Yang1,2,ZhenChao Li1,Ye Yu1,4,ZhiYuan Zheng3,XuHong Hou1,XiaoQing Gao1()   

  1. 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100875, China
    3. Center for Monsoon and Environment Research, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
    4. Pingliang Land Surface Process and Severe Weather Research Station, Chinese Academy of Sciences, Pingliang, Gansu 730000, China
  • Received:2018-12-07 Online:2019-08-31 Published:2019-09-02
  • Contact: XiaoQing Gao


Based on observational data of arid, semi-arid and semi-humid areas in Northwest China, the characteristics of surface-water heat transfer and land-surface parameters were compared and analyzed. The results show that the annual mean net radiation was largest in the semi-humid area, followed by the semi-arid area, and then the arid area: 77.72 W/m2, 67.73 W/m2, and 55.47 W/m2, respectively. The annual mean sensible heat flux was largest in the arid area, followed by the semi-arid and semi-humid areas, while latent heat flux showed the reverse. The annual mean sensible heat flux in arid, semi-arid, and semi-humid areas was 85.7 W/m2, 37.59 W/m2, and 27.55 W/m2, respectively. The annual mean latent heat flux was 0 W/m2, 26.08 W/m2, and 51.19 W/m2, respectively. The annual mean soil-heat flux at the 5-cm soil layer in arid, semi-arid, and semi-humid areas was 1.00 W/m2, 0.82 W/m2, and -1.25 W/m2, respectively. The annual mean surface albedo was largest in the arid area, followed by the semi-humid area; and the smallest was in the semi-arid area: 0.24, 0.21, and 0.18, respectively. The annual mean Bowen ratio in the semi-arid area was about 2.06, and that in semi-humid area was about -0.03. The annual mean soil thermal conductivity in the arid, semi-arid, and semi-humid areas was 0.26 W/(m?k), 1.15 W/(m?k), and 1.20 W/(m?k), respectively.

Key words: surface energy, land-surface parameters, different climate zones, Northwest China

Figure 1

Site location and underlying surface information"

Table 1

Specific climatic and geographic information"

City Climatic Region Longitude and latitude Altitude Annual mean PET Annual mean precipitation Underlying surface
Dunhuang Extreme arid region 40°10'N 1,150 m 3,400 mm 39 mm Gobi
Yuzhong Semi-arid region 35°57'N 1,965.8 m 1,450 mm 381.8 mm Native vegetation
Pingliang Semi-humid region 35°34'N 1,630 m 1,000 mm 500 mm Farmland

Table 2

Technical parameters of experimental instruments used at three stations"

City Radiometer Soil-heat flux plate 3D sonic anemometer Gas analyzer
Dunhuang Instrument









Range 3,000-50,000 nm -2,000-2,000 W/m2 0-360 deg (WD)

0-5,148 mg/m3 (CO2)

0-42 g/m3 (H2O)

Yuzhong and Pingliang Instrument









Range 4,500-42,000 nm -2,000-2,000 W/m2 0-360 deg (WD)

0-5,148 mg/m3 (CO2)

0-42 g/m3 (H2O)

Figure 2

Annual mean variation of net radiation at three stations"

Figure 3

Seasonal average diurnal change of net radiation at three stations"

Figure 4

Annual mean variation of heat flux at Pingliang and Yuzhong"

Figure 5

Daily average variation of sensible heat flux over four seasons at Pingliang and Yuzhong"

Figure 6

Daily average variation of latent heat flux over four seasons at Pingliang and Yuzhong"

Figure 7

Annual mean variation of soil-heat flux at three stations"

Figure 8

Seasonal mean variation of soil-heat flux at three stations"

Figure 9

Annual mean variation of surface albedo at three stations"

Figure 10

Annual mean variation of the Bowen ratio at Pingliang and Yuzhong"

Figure 11

Annual mean variation of soil thermal conductivity at three stations"

Baldocchi DD , Vogel CA , Hall B , 1997. Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. Geophys Res., 102: 18951-28939. DOI: 10.1029/96JD03325 .
doi: 10.1029/96JD03325
Ba MB , Nicholson SE , Frouin R , 2001. Satellite-derived surface radiation bud get over the African continent: part II: climatologies of the various components. Journal of Climate, 14: 60-76. DOI: 10.1175/1520-0442(2001)014<0045:SDSRBO>2.0.CO;2 .
doi: 10.1175/1520-0442(2001)014<0045:SDSRBO>2.0.CO;2
Brotzge JA , Crawford KC , 2003. Examination of the surface energy budget: a comparison of eddy correlation and bowen ratio measurement systems. Journal of Hydrometoorology, 4: 160-178. DOI: 10.1175/1525-7541(2003)4<160:EOTSEB>2.0.CO;2 .
doi: 10.1175/1525-7541(2003)4<160:EOTSEB>2.0.CO;2
Charney JG , 1975. The dynamics of deserts and droughts in the Sahel. Quarterly Journal of the Royal Meteorological Society, 101: 193-202. DOI: 10.1002/qj.49710142802 .
doi: 10.1002/qj.49710142802
Charney J , Quirk WJ , Chow SH , et al ., 1977. A comparative study of effects of albedo change on drought in semi-arid regions.J. Atmos. Sci., 138: 152-165. DOI: 10.1175/1520-0469(1977)0342.0.CO;2 .
doi: 10.1175/1520-0469(1977)0342.0.CO;2
Dickinson RE , 1995. Land atmosphere interaction. Reviews of Geophysics, 33: 917-922. DOI: 10.1016/B0-12-227090-8/00476-0 .
doi: 10.1016/B0-12-227090-8/00476-0
Du YZ , Li R , Wu TH , et al ., 2015. Research status and progress of soil thermal conductivity. Journal of Glaciology and Geocryology, 37: 1067-1074.
Henderson-Sellers A , Yang ZL , Dicknson RE , 1995. The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 74: 1335-1348. DOI: 10.1175/1520-0477(1993)074<1335:TPFIOL>2.0.CO;2 .
doi: 10.1175/1520-0477(1993)074<1335:TPFIOL>2.0.CO;2
Huang RH , Chen W , Ma YM , et al ., 2001. Land-atmosphere Interaction in Arid Regions in Northwest China and Its Impact on Climate Change in East Asia. Beijing: China Meteorological Press, pp. 295-335. (in Chinese)
Hui W , Ze YH , Liang LG , et al ., 2007. Characters of energy transfer and micrometeorology in near surface layer in dingxin gobi of lower reach of Heihe River. Plateau Meteorology, 26: 938-945. DOI: 10.1002/jrs.1570 .
doi: 10.1002/jrs.1570
Liang XZ , Xu M , Gao W , et al ., 2005. Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. Journal of Geophysical Research Atmospheres, 110: 1341-1355. DOI: 10.1029/2004JD005579 .
doi: 10.1029/2004JD005579
Li ZC , Yang JX , 2017. Comparative study of the soil thermal regime in arid and semi-humid areas. Environ Earth Sci., 76:28. DOI: 10.1007/s12665-016-6354-2 .
doi: 10.1007/s12665-016-6354-2
Li ZC , Yang JX , 2018. The relationship between surface spectral albedo and soil moisture in an arid Gobi area. Theoretical and Applied Climatology, 136: 1475-1482. DOI:10. 1007/s00704-018-2577-3 .
doi: 10. 1007/s00704-018-2577-3
Malek E , 1993. Comparison of the Bowen ratio-energy balance and stability-corrected aerodynamic methods for measurement of evapotranspiration. Theoretical and Applied Climatology, 48: 167-178. DOI: 10.1007/BF00864923 .
doi: 10.1007/BF00864923
Manhatan, Karnas , 1987. Report of Third Session of JSC Working Group on Land Surface Processes and Climate. World Meteorological Organization (WMO).
Nicholson SE , Tucker CJ , Ba MB , 1998. Desertification, drought and surface vegetation: an example from the West African Sahel. Bulletin of the American Meteorological Society, 79: 815-829. DOI: 10.1175/1520-0477(1998)079<0815:ddasva>;2 .
doi: 10.1175/1520-0477(1998)079<0815:ddasva>;2
Priestley CHB , Taylor RJ , 2009. On the assessment of surface heat flux and evaporation using Large-Scale Parameters. Monthly Weather Review, 100: 81-92. DOI: 10.1175/1520-0493(1972)1002.3.CO;2 .
doi: 10.1175/1520-0493(1972)1002.3.CO;2
Shao MA , Wang QJ , Huang MB , 2006. Soil physics. Beijing: Higher Education Press, pp. 68-73. (in Chinese)
Sharon E , Nicholson , 2015. Evolution and current state of our understanding of the role played in the climate system by land surface processes in semi-arid regions. Global and Planetary Change, 133: 201-222. DOI: 10.1016/j.gloplacha.2015.08.010 .
doi: 10.1016/j.gloplacha.2015.08.010
Sun ZX , Zhang Q , 2011. Analysis of climatic characteristics of land surface temperature and energy in semi-arid area of Loess Platea. Journal of Desert Research, 31: 1302-1308. DOI: 10.1016/B978-0-444-53599-3.10005-8 . (in Chinese)
doi: 10.1016/B978-0-444-53599-3.10005-8
Taylor CM , Lebel T , 1998. Observational evidence of persistent convective-scale rainfall patterns. Mon. Weather Rev., 126: 1597-1607. DOI: 10.1175/1520-0493(1998)1262.0.CO;2 .
doi: 10.1175/1520-0493(1998)1262.0.CO;2
Wang C , Wei ZG , Li ZC , 2010. Quality control of the data of Dunhuang Gobi meteorological tower station. Journal of Arid Meteorology, 28: 121-127. DOI: 10.3969/j.issn.1006-7639.2010.02.002 . (in Chinese)
doi: 10.3969/j.issn.1006-7639.2010.02.002
Wang JM , 1999. Land surface process experiments and interaction study in China from HEIHE to IMGRASS and GAME-TIBET/TIPEX. Plateau Meteorology, 18: 280-294.
Wang S , Zhang Q , Zhang H , 2008. Study on characteristics of surface albedo and soil thermal conductivity of sparse vegetation. Journal of Desert Research, 28: 119-124. (in Chinese)
Wei ZG , Lv SH , 1995. Distribution characteristics of snow cover in Qinghai-Tibet plateau and its influence on surface albedo. Plateau Meteorology, 14: 67-73. DOI: 10.1007/BF02016334 . (in Chinese)
doi: 10.1007/BF02016334
Xie P , Arkin PA , 1996. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. Journal of Climate, 9: 840-858. DOI: 10.1175/1520-0442(1996)0092.0.CO;2 .
doi: 10.1175/1520-0442(1996)0092.0.CO;2
Yang QG , Yang XG , Ma PL , et al ., 2005. Characteristics of surface radiation and energy balance in winter in Longzhong Loess Platea. Adv Earth Sci., 20: 1012-1021. DOI: 10. 1007/s11769-005-0022-x . (in Chinese)
doi: 10. 1007/s11769-005-0022-x
Yang XG , Zhang Q , Yang QG , et al ., 2010. Characteristics of the overall transport coefficient in the semi-arid region of the loess plateau in Longzhong. Plateau Meteorology, 29: 44-50. (in Chinese)
Zeng J , Shen J , Zhang Q , et al ., 2010. An overview of the spatial patterns of land surface processes over arid and semiarid regions. Sciences in Cold and Arid Regions, 2: 0288-0297.
Zhang CJ , Xie JN , Li DL , et al ., 2002. Effect of East-Asian monsoon on drought climate of northwest China. Plateau Meteorology, 2: 193-198. DOI: 10.1002/mop.10502 .
doi: 10.1002/mop.10502
Zhang Q , Huang J , Zhang L , et al ., 2013. Effects of regional climate warming and drying on surface energy exchange characteristics in Loess Plateau. Acta Physica Sinica, 62: 561-572. DOI: 10.7498/aps.62.139202 . (in Chinese)
doi: 10.7498/aps.62.139202
Zhang Q , Wang S , Wei GA , 2003. A study on physical parameters of local land-surface processes on the Gobi in Northwest China. Chinese Journal of Geophysics, 46: 616-623. DOI: 10.1002/cjg2.408 .
doi: 10.1002/cjg2.408
Zhao L , Lee X , Smith RB , et al ., 2014. Strong contributions of local background climate to urban heat islands. Nature, 511: 216. DOI: 10.1038/nature13462 .
doi: 10.1038/nature13462
Zhou DG , Huang G , Ma YM , 2012. Heat transfer of Gobi in the arid region of northwest China in summer. Transactions of Atmospheric Sciences, 35: 541-549. DOI: 10.1007/s11783-011-0280-z . (in Chinese)
doi: 10.1007/s11783-011-0280-z
[1] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[2] MaoShan Li, ZhongBo Su, YaoMing Ma, XueLong Chen, Lang Zhang, ZeYong Hu. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 103-115.
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang,YongQiu Wu,MeiHui Pan,RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao,ShiHua Lyu,ZhaoGuo Li,LiJuan Wen,Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga,Za Dui,Duodian Luozhu,Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang,JunQia Kong,ZeYu Du,YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu,ZhongKui Xie,XinPing Wang,YaJun Wang,YuBao Zhang,YuHui He,WenMei Li,WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei,XiaoFei Ma,PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong,AiJun Guo,XiaoJuan Yin,JinFeng Cui,Xiao Yang,YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .