2020, 12 (1) 发布日期: 2020-02-29 上一期
  • Research on pile performance and state-of-the-art practice in cold regions
  • JianKun Liu, TengFei Wang, Zhi Wen
  • DOI:10.3724/SP.J.1226.2018.00001
  • 2018, 10 (1): 1–11 摘要 (140) PDF (3430 KB) (170)
  • A pile foundation is commonly adopted in geotechnical engineering to support structures, and its application has been extended to cold-regions engineering. In past decades, a host of scholars investigated pile behaviors and proposed design guidelines for seasonally frozen ground or permafrost. This paper reviews the research with respect to pile performance and engineering practice in cold regions, organized as follows: (1) creep tests and bearing capacity, (2) frost-jacking hazards, (3) laterally loaded piles, (4) dynamic responses, (5) refreezing due to concrete-hydration heat, and (6) improved countermeasures and design methods. We first summarize previous research and recent progress; then, predict the development trend of pile foundations in cold regions and recommend further research.
  • Measurement for coordinated development of "four modernizations" and its efficiency of prefecture level cities or above in China
  • JingHu Pan, YanXing Hu
  • DOI:10.3724/SP.J.1226.2016.00163
  • 2016, 8 (2): 163–176 摘要 (40) PDF (697 KB) (98)
  • The efficient and coordinated development of industrialization,urbanization,informatization and agricultural modernization(so called "Sihua Tongbu" in China,and hereinafter referred to as "four modernizations") is not only a practical need but also an important strategic direction of integrating urban-rural development and regional development in recent China.This paper evaluated the comprehensive,coupling and coordinated developmental indices of "four modernizations" of China's 343 prefecture-level administrative units,and calculated their efficiency of "four modernizations" in 2001 and 2011.The efficiency evaluation index system was established.The efficiencies and their changing trend during the period 2001-2011 were investigated using the data envelopment analysis(DEA) model.Spatial-temporal pattern of the efficiency of China's prefecture-level units was explored by using exploratory spatial data analysis(ESDA).Finally,the main influencing factors were revealed with the aid of geographically weighted regression(GWR) model.Results indicate that the comprehensive,coupling and coordinated developmental indices and efficiency of "four modernizations" of China's prefecture-level administrative units have obvious spatial differences and show diverse regional patterns.Overall,the efficiency is relatively low,and only few units with small urban populations and economic scale are in DEA efficiencies.The efficiency changing trends were decreasing during 2001-2011,with a transfer of high efficiency areas from inland to eastern coastal areas.The difference between urban and rural per capita investment in fixed assets boasts the greatest influence on the efficiency.
  • Soil freezing process and different expressions for the soil-freezing characteristic curve
  • JunPing Ren, Sai K. Vanapalli, Zhong Han
  • DOI:10.3724/SP.J.1226.2017.00221
  • 2017, 9 (3): 221–228 摘要 (104) PDF (4411 KB) (85)
  • The soil-freezing characteristic curve (SFCC), which represents the relationship between unfrozen water content and sub-freezing temperature (or suction at ice-water interface) in a freezing soil, can be used for understanding the transportation of heat, water, and solute in frozen soils. In this paper, the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve (SWCC) of unfrozen unsaturated soil are reviewed. Based on similar characteristics between SWCC and SFCC, a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes. Various SFCC expressions from the literature are summarized. Four widely used expressions (i.e., power relationship, exponential relationship, van Genuchten 1980 equation and Fredlund and Xing 1994 equation) are evaluated using published experimental data on four different soils (i.e., sandy loam, silt, clay, and saline silt). Results show that the exponential relationship and van Genuchten (1980) equation are more suitable for sandy soils. The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes; however, it exhibits limitations when fitting the saline silt data. The Fredlund and Xing (1994) equation is suitable for fitting the SFCCs for all soils studied in this paper.
  • Comparative study of probable maximum precipitation and isohyetal maps for mountainous regions, Pakistan
  • Muhammad Waseem Boota, Ghulam Nabi, Tanveer Abbas, HuiJun Jin, Ayesha Yousaf, Muhammad Azeem Boota
  • DOI:10.3724/SP.J.1226.2018.00055
  • 2018, 10 (1): 55–68 摘要 (53) PDF (4789 KB) (74)
  • Probable maximum precipitation (PMP) is widely used by hydrologists for appraisal of probable maximum flood (PMF) used for soil and water conservation structures, and design of dam spillways. A number of methods such as empirical, statistical and dynamic are used to estimate PMP, the most favored being statistical and hydro-meteorological. In this paper, PMP estimation in mountainous regions of Pakistan is studied using statistical as well as physically based hydro-meteorological approaches. Daily precipitation, dew point, wind speed and temperature data is processed to estimate PMP for a one-day duration. Maximum precipitation for different return periods is estimated by using statistical approaches such as Gumble and Log-Pearson type-III (LP-III) distribution. Goodness of fit (GOF) test, chi-square test, correlation coefficient and coefficient of determination were applied to Gumble and LP-III distributions. Results reveal that among statistical approaches, Gumble distribution performed the best result compared to LP-III distribution. Isohyetal maps of the study area at different return periods are produced by using the GIS tool, and PMP in mountainous regions varies from 150 to 320 mm at an average value of 230.83 mm. The ratio of PMP for one-day duration to highest observed rainfall (HOR) varied from 1.08 to 1.29 with an average value of 1.18. An appropriate frequency factor (Km) is very important which is a function of mean for observed precipitation and PMP for 1-day duration, and Km values varies from 2.54 to 4.68. The coefficient of variability (Cv) varies from minimum value of 28% to maximum value of 43.35%. It was concluded that the statistical approach gives higher results compared to moisture maximization (MM) approach. In the hydro-meteorological approach, moisture maximization (MM) and wind moisture maximization (WMM) techniques were applied and it was concluded that wind moisture maximization approach gives higher results of PMP as compared to moisture maximization approach as well as for Hershfield technique. Therefore, it is suggested that MM approach is the most favored in the study area for PMP estimation, which leads to acceptable results, compared to WMM and statistical approaches.
  • A mathematical approach to evaluate maximum frost heave of unsaturated silty clay
  • Lin Geng, XianZhang Ling, Liang Tang, Jun Luo, XiuLi Du
  • DOI:10.3724/SP.J.1226.2017.00438
  • 2017, 9 (5): 438–446 摘要 (82) PDF (2776 KB) (73)
  • Maximum frost heave of unsaturated frost-susceptible soils, in conjunction with a high water table, is an important consideration for the design of foundations in seasonally frozen regions. Therefore, it is necessary to evaluate accurately and efficiently the maximum frost heave for a given soil. For this purpose, a series of one-sided freezing experiments was conducted on unsaturated silty clay in an open system. Multistage cooling of sufficient duration was applied to the soil sample's top, while constant above-zero temperatures were maintained at the bottom. Then, a simple methodology for calculating maximum frost heave at a given cooling temperature was derived utilizing information obtained within the limited time allotted for each stage. On this basis, an empirical equation for defining maximum frost heave as a function of cooling temperature and overburden pressure was determined. Overall, this study provides a simple and practical procedure that is applicable to the evaluation of maximum frost heave of unsaturated frost-susceptible soils.
  • Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area
  • Yan Lu, Xin Yi, WenBing Yu, WeiBo Liu
  • DOI:10.3724/SP.J.1226.2017.00580
  • 2017, 9 (6): 580–586 摘要 (103) PDF (1972 KB) (71)
  • Snow covers the road embankments in winter in high latitude permafrost zones. The effect of snow cover on embankments was simulated based on field measurements of boundary conditions and initial ground temperature profile in Mohe, China. The effect of thermosyphons on the embankment warmed by snow cover was evaluated by numerical simulations as well. The results indicate that the difference of thermal regimes between non-thermosyphon and thermosyphon embankments reaches to 22 m in depth below the ground surface. It is much warmer in the non-thermosyphon embankment body in winter. Affected by the snow cover, heat flux gradually spreads into the deep ground of the subgrade over time. The permafrost table under the slope toe of a thermosyphon embankment is 1.2 m higher than that of a non-thermosyphon embankment in the 20th year. In addition, the permafrost table at the slope toe of a thermosyphon embankment is 26 cm deeper over 20 years. These results indicate that thermosyphons can greatly weaken the warm effect of snow cover. However, thermosyphons cannot avoid the degradation of permafrost under the scenarios of snow cover. Therefore, composite measures need to be adopted to keep embankment stability in snowy permafrost zones.
  • Cracking in an expansive soil under freeze–thaw cycles
  • Yang Lu, SiHong Liu
  • DOI:10.3724/SP.J.1226.2017.00392
  • 2017, 9 (4): 392–397 摘要 (85) PDF (2977 KB) (71)
  • Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing. Cracking can also occur in expansive clayey soils under freeze–thaw cycles, of which little attention has been paid on this issue. In this study, laboratory experiment and cracking analysis were performed on an expansive soil. Crack patterns were quantitatively analyzed using the fractal concept. The relationships among crack pattern, water loss, number of freeze–thaw cycles, and fractal dimension were discussed. It was found that crack patterns on the surface exhibit a hierarchical network structure that is fractal at a statistical level. Cracks induced by freeze–thaw cycles are shorter, more irregularly oriented, and slowly evolves from an irregularly rectilinear pattern towards a polygonal or quasi–hexagonal one; water loss, closely related to specimen thickness, plays a significant role in the process of soil cracking; crack development under freeze-thaw cycles are not only attributed to capillary effect, but also to expansion and absorption effects.
  • High-resolution mass spectrometric characterization of dissolved organic matter from warm and cold periods in the NEEM ice core
  • JianZhong Xu, Amanda Grannas, CunDe Xiao, ZhiHeng Du, Amanda Willoughby, Patrick Hatcher, YanQing An
  • DOI:10.3724/SP.J.1226.2018.00038
  • 2018, 10 (1): 38–46 摘要 (53) PDF (3711 KB) (68)
  • Dissolved organic matter (DOM) is an important component of ice cores but is currently poorly characterized. DOM from one Holocene sample (HS, aged at 1600-4500 B.P.) and one Last Glacial Maximum sample (LS, aged at 21000-25000 B.P.) from the North Greenland Eemian Ice Drilling (NEEM) ice core were analyzed by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). CHO compounds contributed 50% of the compounds identified in negative-ionization mode in these two samples, with significant contributions from organic N, S, and P compounds, likely suggesting that marine DOM was an important source in these samples. Overall, the chemical compositions are similar between these two samples, suggesting their consistent DOM sources. However, subtle differences in the DOM between these two samples are apparent and could indicate differences in source strength or chemistry occurring through both pre- and post-depositional processes. For example, higher relative amounts of condensed carbon compounds in the HS DOM (5%), compared to the LS DOM (2%), suggest potentially important contributions from terrestrial sources. Greater incorporation of P in the observed DOM in the LS DOM (22%), compared to the HS DOM (13%), indicate more active microbiological processes that likely contribute to phosphorus incorporation into the DOM pool. Although these two samples present only a preliminary analysis of DOM in glacial/interglacial periods, the data indicate a need to expand the analysis into a broader range of ice-core samples, geographical locations, and glacial/interglacial periods.
  • Effects of heavy metal (Pb) concentration on some growth parameters of plants grown in lead polluted soil under organic fertilizer amendment
  • Ojo M. Oseni, Adekunle A. Adelusi, Esther O. Dada, Abdulfatai B. Rufai
  • DOI:10.3724/SP.J.1226.2016.00036
  • 2016, 8 (1): 36–45 摘要 (33) PDF (303 KB) (68)
  • This study investigated morphological variation and biomass accumulation that occurred in Sida acuta and Chromolaena odorata plants grown in lead polluted soil under organic fertilizer amendment. The study was carried out in the screen house at the Biological Gardens of the Obafemi Awolowo University, Ile-Ife, Osun State. The experiment was a factorial combination of one heavy metal (Pb) at five levels of concentration (0, 200, 400, 800 and 1,000 mg/kg) in a completely randomized design, and were replicated three times for each of the two plants and two levels (0 g/kg and 9.4 g/kg) of organic fertilizer (OBD-Plus). Each pot was filled with 5 kg of air-dried and sieved soil and placed on a plastic tray for the collection of excess water. Two weeks after planting, seedlings of uniform height were transplanted from the nursery to experimental pots at the rate of one seedling per pot and grown for 10 weeks. The growth parameters of the plants were biomonitored for 7 weeks. After 10 weeks of treatment, the plants were harvested and dried to calculate the biomass accumulation. The two plant species performed better under fertilizer application than without it. For each of the plant species the growth parameters decreased as the levels of Pb concentration increased. Furthermore, the plants' biomass decreased significantly (p<0.05) as the levels of Pb concentration increased. The organic fertilizer helped to improve the plants' performance in lead-polluted soil.
  • Characterization of landscape pattern based on land economic niche change: A case study in Ganzhou, Gansu Province, China
  • HuaLi Tong, PeiJi Shi, XueBin Zhang, ZaiYan Li
  • DOI:10.3724/SP.J.1226.2018.00261
  • 2018, 10 (3): 261–270 摘要 (42) PDF (1614 KB) (63)
  • Land use change has a profound impact on biodiversity and ecological processes, and is closely related to changes in landscape patterns. This paper introduces the theory and method of land economic niche into landscape ecology, which provides a new method for spatial characterization of urban and rural spatial landscape patterns. Based on this theory, this paper analyzes the landscape pattern of Ganzhou District by using Landsat images as data source in 1995, 2000, 2005, 2010 and 2015. We calculated the land economic niche by applying the niche potential theory. Combined with the theory of landscape ecology, we explored the effects of the land economic niche change on the landscape pattern at a county scale. The results show that economic niche of construction land, watershed and farmland increased during 1995-2015, and grassland declined significantly. The economic niche of farmland, construction land, watershed and grassland show a negative correlation with the number of patches (NP), fragmentation index (FN) and the fractal dimension index (FD), and had a positive correlation with the aggregation index (AI). There was no significant correlation between the forest land economic niche and landscape metrics. The change of land economic niche has a driving effect on the landscape pattern of the county, which can represent the economic development direction of Ganzhou District. The land economic niche is closely related to the landscape type which can directly obtain an economic benefit.
  • Numerical simulation and experimental validation of moisture-heat coupling for saturated frozen soils
  • ZhiMing Li, Jian Chen, Kai Sun, Bin Zhang
  • DOI:10.3724/SP.J.1226.2017.00250
  • 2017, 9 (3): 250–257 摘要 (60) PDF (1039 KB) (63)
  • In seasonally frozen regions, freezing-and-thawing action is the main cause responsible for the destruction of canals, which is closely linked to the temperature gradient and water transport. To investigate the behaviour of soils under freezing-and-thawing actions, many numerical models have been established that consider the important coupling of moisture transport and temperature evolution; but they contain excessive parameters, some of which are rather difficult to determine. Based on the well-known Harlan's theory, a simple moisture-heat coupling model was recently proposed to quantify the coupled moisture-heat transport performance of soils in terms of the central temperature and porosity. The mathematical module of COMSOL Multiphysics was further employed to solve the governing equations numerically. To validate our model, a thorough experimental scheme was carried out in our lab. The measured temperature distribution was found to be consistent with the predicted results.
  • Proline and soluble sugars accumulation in three pepper species (Capsicum spp) in response to water stress imposed at different stages of growth
  • Gideon O. Okunlola, Richard O. Akinwale, Adekunle A. Adelusi
  • DOI:10.3724/SP.J.1226.2016.00205
  • 2016, 8 (3): 205–211 摘要 (67) PDF (325 KB) (62)
  • Drought is a major production constraint for major fruits and vegetable crops in the tropics.This study was conducted to investigate the effect of limited water supply at three growth stages (vegetative,flowering and fruiting) on the accumulation of proline and soluble sugars in three pepper species.Seeds of the three pepper species,Capsicum chinense Jacq.,C.annuum L.and C.frutescens L.were raised in a nursery and the seedlings were transplanted into seventy two plastic pots arranged in a randomized complete block design with three replicates,25 days after planting.Four water treatments,200 mL of water supplied twice daily (W1),once in every three days (W2),once in every five days (W3),and zero water supplied throughout growing period (W0) were imposed at three vegetative,flowering,and fruiting growth stages.Data were collected on relative water content,free proline and total soluble sugar.Data collected were subjected to analysis of variance and means were separated using Duncan's multiple range test.Results show that the concentration of proline and soluble sugar in leaves of the three pepper species were found to be remarkable at the different stages of growth in the stressed plants.
  • Influence of fines content on the anti-frost properties of coarse-grained soil
  • TianLiang Wang, ZuRun Yue, TieCheng Sun, JinChuang Hua
  • DOI:10.3724/SP.J.1226.2015.00407
  • 2015, 7 (4): 407–413 摘要 (38) PDF (4001 KB) (62)
  • This paper aims to determine the optimal fines content of coarse-grained soil required to simultaneously achieve weaker frost susceptibility and better bearing capacity. We studied the frost susceptibility and strength properties of coarse-grained soil by means of frost heaving tests and static triaxial tests, and the results are as follows:(1) the freezing temperature of coarse-grained soil decreased gradually and then leveled off with incremental increases in the percent content of fines; (2) the fines content proved to be an important factor influencing the frost heave susceptibility and strength properties of coarse-grained soil. With incremental increases in the percent content of fines, the frost heave ratio increased gradually and the cohesion function of fines effectively enhanced the shear strength of coarse-grained soil before freeze-thaw, but the frost susceptibility of fines weakened the shear strength of coarse-grained soil after freeze-thaw; (3) with increasing numbers of freeze-thaw cycles,the shear strength of coarse-grained soil decreased and then stabilized after the ninth freeze-thaw cycle, and therefore the mechanical indexes of the ninth freeze-thaw cycle are recommended for the engineering design values; and (4) considering frost susceptibility and strength properties as a whole, the optimal fines content of 5% is recommended for railway subgrade coarse-grained soil fillings in frozen regions.
  • Cutting of Phragmites australis as a lake restoration technique: Productivity calculation and nutrient removal in Wuliangsuhai Lake, northern China
  • Jan Felix Köbbing, Niels Thevs, Stefan Zerbe
  • DOI:10.3724/SP.J.1226.2016.00400
  • 2016, 8 (5): 400–410 摘要 (46) PDF (2545 KB) (60)
  • Reed is one of the most frequent and dominant species in wetlands all over the world, with common reed (Phragmites australis (Cav.) Trin. ex Steud.) as the most widely distributed species. In many wetlands, P. australis plays a highly ambivalent role. On the one hand, in many wetlands it purifies wastewater, provides habitat for numerous species, and is a potentially valuable raw material, while on the other hand it is an invasive species which expands aggressively, prevents fishing, blocks ditches and waterways, and builds monospecies stands. This paper uses the eutrophic reed-swamp of Wuliangsuhai Lake in Inner Mongolia, northern China, as a case to present the multiple benefits of regular reed cutting. The reed area and aboveground biomass production are calculated based on field data. Combined with data about water and reed nutrient content, the impact of reed cutting on the lake nutrient budget (N and P) is investigated. Currently, at this lake around 100,000 tons of reed are harvested in winter annually, removing 16% and 8% of the total nitrogen and phosphorus influx, respectively. Harvesting all available winter reed could increase the nutrient removal rates to 48% and 24%, respectively. We also consider the effects of summer harvesting, in which reed biomass removal could overcompensate for the nutrient influx but could potentially reduce reed regrowth.
  • Intrastorm stemflow variability of a xerophytic shrub within a water-limited arid desert ecosystem of northern China
  • YaFeng Zhang, XinPing Wang, YanXia Pan, Rui Hu
  • DOI:10.3724/SP.J.1226.2017.00495
  • 2017, 9 (5): 495–502 摘要 (44) PDF (3289 KB) (59)
  • An increasing number of studies in recent years has elucidated distinguishable effects of stemflow on hydrology and biogeochemistry within a variety of ecosystems. Nonetheless, no known studies have investigated the temporal variability of stemflow volume within discrete rainfall events for xerophytic shrubs. Here, stemflow was monitored at 5-min intervals using a tipping-bucket rain gage during the 2015 growing season for a xerophytic shrub (Caragana korshinskii) within a water-limited arid desert ecosystem of northern China. We characterized the stemflow temporal variability, along with rainfall, and found the temporal heterogeneity of rainfall clearly affected the timing of stemflow inputs into basal soil within discrete rainfall events. The rainfall threshold value for stemflow generation is not a constant value but a range (0.6~2.1mm, with an average of 1.1 mm) across rainfall events and is closely associated with the antecedent dry period. Time lags existed between the onset of rainfall and the onset of stemflow, and between rainfall peaks and stemflow peaks. Our findings are expected to be helpful for an improved process-based understanding of the temporal stemflow yield of xerophytic shrubs within water-limited arid desert ecosystems.
  • Direct shear tests of coarse-grained fillings from high-speed railway subgrade in cold regions
  • QingZhi Wang, JianKun Liu, JianHong Fang, AnHua Xu
  • DOI:10.3724/SP.J.1226.2017.00236
  • 2017, 9 (3): 236–242 摘要 (36) PDF (3277 KB) (59)
  • In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway, large scale direct shear tests were conducted with different normal pressures, water contents and temperatures. The results indicate that the relationship between shear displacement and shear stress changed from strain-softening at lower normal pressures to strain-hardening at higher normal pressures, in both unfrozen and frozen states. This phenomenon was mainly due to the shear dilatation deformation effect. The shear displacement-shear stress curves show similar stages. Besides, the shear stress rapidly increased and there was not an increment in the shear displacement during the initial stage of the shear process in the frozen state. In both the unfrozen or frozen states at the same water contents, the shear strength increased with increasing normal pressure.
  • Laboratory and field performance of recycled aggregate base in a seasonally cold region
  • Tuncer B. Edil, Bora Cetin, Ali Soleimanbeigi
  • DOI:10.3724/SP.J.1226.2017.00183
  • 2017, 9 (3): 183–191 摘要 (89) PDF (757 KB) (58)
  • The objective of this project was to characterize the freeze-thaw properties of recycled concrete (RCA) and asphalt (RAP) as unbound base and to assess how they behaved in the field for nearly 8 years. This paper includes an examination of existing information, laboratory studies of freeze-thaw behavior, and evaluation of data from MnROAD field-test sections in a seasonally cold region, i.e., in Minnesota, USA. Test sections were constructed using recycled materials in the granular base layers at the MnROAD test facility. One test section included 100% RAP, another 100% RCA, a third one a 50/50 blend of RCA/natural aggregate, and a fourth one only natural aggregate (Class 5) as a control. The stiffness (i.e., elastic modulus) was monitored during construction and throughout the pavement life by the Minnesota Department of Transportation, along with the variation of temperatures and moisture regimes in the pavement to determine their effects on pavement performance. The resilient modulus of each material was determined by bench-scale testing in accordance with NCHRP 1-28a, as well as by field-scale tests incorporating a falling-weight deflectometer. Specimens were subjected to as many as 20 cycles of freeze-thaw in the laboratory, and the change in their resilient modulus was measured. In the field-test sections constructed with the same materials as the base course, temperature, moisture, and field modulus (from falling-weight deflectometer tests) were monitored seasonally for nearly 8 years. From the temperatures in the base course layer, the number of freeze-thaw cycles experienced in the field was determined for each test section. Inferences were made relative to modulus change versus freeze-thaw cycles. Conclusions were drawn for long-term field performances of the recycled base (RAB) in comparison to natural aggregate.
  • Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data
  • ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie
  • DOI:10.3724/SP.J.1226.2018.00114
  • 2018, 10 (2): 114–125 摘要 (67) PDF (2925 KB) (57)
  • Differential Interferometric Synthetic Aperture Radar (D-InSAR) has been widely used to measure surface deformation over the Tibetan Plateau. However, the accuracy and applicability of the D-InSAR method are not well estimated due to the lack of in-situ validation. In this paper, we mapped the seasonal and long-term displacement of Tanggula (TGL) and Liangdaohe (LDH) permafrost regions with a stack of Sentinel-1 acquisitions using the Small Baseline Subset InSAR (SBAS-InSAR) method. In the TGL region, with its dry soils and sparse vegetation, the InSAR-derived surface-deformation trend was consistent with ground-based leveling results; long-term changes of the active layer showed a settlement rate of around 1 to 3 mm/a due to the melting of ground ice, indicating a degrading permafrost in this area. Around half of the deformation was picked up on monitoring, in contrast with in-situ measurements in LDH, implying that the D-InSAR method remarkably underestimated the surface-deformation. This phenomenon may be induced by the large soil-water content, high vegetation coverage, or a combination of these two factors in this region. This study demonstrates that surface deformation could be mapped accurately for a specific region with Sentinel-1 C-band data, such as in the TGL region. Moreover, although the D-InSAR technology provides an efficient solution for broad surface-deformation monitoring in permafrost regions, it shows a poor performance in the region with high soil-water content and dense vegetation coverage.
  • An improvement of soil temperature simulations on the Tibetan Plateau
  • SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma
  • DOI:10.3724/SP.J.1226.2018.00080
  • 2018, 10 (1): 80–94 摘要 (37) PDF (6264 KB) (57)
  • The simulation of soil temperature on the Tibetan Plateau (TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5 (CLM3.5) and Regional Climatic Model 4 (RegCM4). The improved CLM3.5 and RegCM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.
  • Deformation monitoring and analysis at two frost mounds during freeze–thaw cycles along the Qinghai–Tibet Engineering Corridor
  • LiHui Luo, Wei Ma, YanLi Zhuang, ZhongQiong Zhang
  • DOI:10.3724/SP.J.1226.2017.00378
  • 2017, 9 (4): 378–383 摘要 (56) PDF (4199 KB) (57)
  • This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor (QTEC), China. The QTEC is known as a critical infrastructure and passage connecting inland China and the Qinghai–Tibet Plateau (QTP). Three technologies—global navigation satellite system (GNSS), terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV)—were used to estimate the freeze/thaw–induced 3D surface deformation of two frost mounds. Our results showed that (1) the two frost mounds exhibited mainly thaw settlement in thawing periods and frost heave in the freezing period, but frost heave dominated after repeated freeze–thaw cycles; (2) different zones of the mounds showed different deformation characteristics; (3) active-layer thickness (ALT) and elevation changes were highly correlated during thaw periods; (4) integrated 3D-measurement technologies can achieve a better understanding and assessment of hazards in the permafrost area.
  • Freeze-thaw processes of active-layer soils in the Nanweng'he River National Natural Reserve in the Da Xing'anling Mountains, northern Northeast China
  • RuiXia He, HuiJun Jin, XiaoLi Chang, YongPing Wang, LiZhong Wang
  • DOI:10.3724/SP.J.1226.2018.00104
  • 2018, 10 (2): 104–113 摘要 (54) PDF (2066 KB) (56)
  • The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and -moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages: (1) autumn-winter freezing, (2) winter freeze-up, and (3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional (upward from the bottom of the active layer and downward from the ground surface). During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.
  • A review on the ambit and prospects of C3 and C4 plants in Nigeria
  • Abdulwakeel Ayokun-nun Ajao, Oludare Oladipo Agboola, Sefiu Adekilekun Saheed
  • DOI:10.3724/SP.J.1226.2017.00587
  • 2017, 9 (6): 587–598 摘要 (34) PDF (2416 KB) (55)
  • Despite the enormous applications of photosynthesis in global carbon budget and food security, photosynthesis research has not been adequately explored as a research focus in Nigeria. Previous works on C3 and C4 plants in Nigeria were mainly on the use of anatomical characteristics to delimit plant species into their respective pathways, with no attention being paid to its applications. In this review, past and present knowledge gaps in this area of study are elucidated. Information used in this review were sourced from referred research articles and books in reputable journals. The results revealed that C3 and C4 plants are distributed among 21 genera and 11 families in Nigeria. In addition there is dearth of informatio such that only three genera have been classified based on diverse photosynthetic pathways with no information found on the physiological and biochemical characterization of these genera. Moreover, further research is also suggested for tackling new challenges in the area of food productivity and climate change.
  • The temporal and spatial variation of positive degree-day factors on the Koxkar Glacier over the south slope of the Tianshan Mountains, China, from 2005 to 2010
  • Min Xu, HaiDong Han, ShiChang Kang
  • DOI:10.3724/SP.J.1226.2017.00425
  • 2017, 9 (5): 425–431 摘要 (40) PDF (3039 KB) (55)
  • The degree-day model is one important method to estimate glacier melt, which is based on the specific relationship between glacial melting and the sum of daily mean temperatures above the melting point. According to the observation data on the Koxkar Glacier (KG) from 2005 to 2010, we analyzed the temporal and spatial variation of degree-day factors (DDF) and its influential factors. The results indicate that the average value of DDF was 7.2~10.4 mm/(℃·d) on the KG from 2005 to 2010. It showed a decreasing trend between 3,700 m and 4,200 m, and the deceasing trend was more obvious in the upper part of the KG. On a spatial scale, the DDF increased evidently with increasing altitude. The DDF ranged from 3.6 to 9.3 mm/(℃·d) at 3,700 m a.s.l., with the average value of 9.3 mm/(℃·d). It varied from 6.9 to 13.0 mm/(℃·d) at 4,000 m a.s.l., with the average value of 10.2 mm/(℃·d). During the period of ablation, the fluctuation of DDF was not significant at the lower altitude (3,700 m a.s.l.), but it decreased at the higher altitudes (4,000 m a.s.l. and 4,200 m a.s.l.). The debris changes the transmission of heat, which accelerates the melting of a glacier; and the DDF showed high value. This paper will provide the reference for temporal-spatial parameterization schemes of DDF on Tuomuer glaciers of the Tianshan Mountains.