Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (1): 1–11.doi: 10.3724/SP.J.1226.2020.00001.

• •    下一篇

  

  • 收稿日期:2019-06-23 接受日期:2019-10-08 出版日期:2020-02-29 发布日期:2020-03-17

Characteristics of permafrost degradation in Northeast China and its ecological effects: A review

ShanShan Chen,ShuYing Zang(),Li Sun   

  1. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, Heilongjiang 150025, China
  • Received:2019-06-23 Accepted:2019-10-08 Online:2020-02-29 Published:2020-03-17
  • Contact: ShuYing Zang E-mail:zsy6311@163.com

Abstract:

Latitudinal permafrost in Northern Northeast (NNE) China is located in the southern margin of the Eurasian continent, and is very sensitive to climatic and environmental change. Numerical simulations indicate that air temperature in the permafrost regions of Northeast China has been on the rise since the 1950s, and will keep rising in the 21st century, leading to extensive degradation of permafrost. Permafrost degradation in NNE China has its own characteristics, such as northward shifts in the shape of a "W" for the permafrost southern boundary (SLP), discontinuous permafrost degradation into island-like frozen soil, and gradually disappearing island permafrost. Permafrost degradation leads to deterioration of the ecological environment in cold regions. As a result, the belt of larch forests dominated by Larix gmelinii has shifted northwards and wetland areas with symbiotic relationships with permafrost have decreased significantly. With rapid retreat and thinning of permafrost and vegetation change, the CO2 and CH4 flux increases with mean air temperature from continuous to sporadic permafrost areas as a result of activity of methanogen enhancement, positively feeding back to climate warming. This paper reviews the features of permafrost degradation, the effects of permafrost degradation on wetland and forest ecosystem structure and function, and greenhouse gas emissions on latitudinal permafrost in NNE China. We also put forward critical questions about the aforementioned effects, including: (1) establish long-term permafrost observation systems to evaluate the distribution of permafrost and SLP change, in order to study the feedback of permafrost to climate change; (2) carry out research about the effects of permafrost degradation on the wetland ecosystem and the response of Xing'an larch to global change, and predict ecosystem dynamics in permafrost degradation based on long-term field observation; (3) focus intensively on the dynamics of greenhouse gas flux in permafrost degradation of Northeast China and the feedback of greenhouse gas emissions to climate change; (4) quantitative studies on the permafrost carbon feedback and vegetation carbon feedback due to permafrost change to climate multi-impact and estimate the balance of C in permafrost regions in the future.

Key words: climate warming, permafrost degradation, greenhouse gas emissions, ecosystem impact

"

Zone MAAT (°C) MAGT (°C) Continuity Thickness (m) Area (×104 km2)
Discontinuous <-5 -4 to 0 70%-80% 50-100 6.16
Island -5 to -3 -2 to 0 30%-70% 20-50 6.6
Sporadic -3 to 0 -1 to 0 5%-30% 5-20 26

"

"

Location Frozen soil type Ecosystem Measuring method Period CH4 flux CO2 flux N2O flux Reference
52°56'N Continuous permafrost Peatland Eddy covariance May to October -3.9 to 40.2 mg/(m2·d) NA NA Yu et al., 2017
51°08'N Discontinuous permafrost Wetland Static chamber

May to October

(2011, 2012)

0.14 mg/(m2·h) 403.47 mg/(m2·h) NA Liu et al., 2015
52°56'N Continuous permafrost Peatland Static chamber November 2010 to April 2011 1.32 mg/(m2 h) 159.83 mg/(m2·h) 72.14 μg/(m2·h) Wang et al., 2013
52°94'N Continuous permafrost Peatland Static chamber June to September 0.21-1.02 mg/(m2·h) NA -21.9 to 25.6 μg/(m2 h) Miao et al., 2011, 2012
52°57'N Continuous permafrost Peatland Static chamber One year 1.51 g/(m2·a) NA NA Miao et al., 2016
52°94'N Continuous permafrost Peatland Static chamber May to October NA NA 1.87-2.66 μg/(m2·h) Cui et al., 2018
48°00'N Sporadic permafrost Peatland Static chamber June to October 1.88 mg/(m2·h) 487.89 mg/(m2·h) 0.004 mg/(m2·h) Mu et al., 2009
Chang XL , Jin HJ , He RX , et al. , 2013. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China. Journal of Glaciology and Geocryology, 35(1): 93-100. DOI: 10.7522/j.issn.1000-0240.2013.0011 . (in Chinese)
doi: 10.7522/j.issn.1000-0240.2013.0011
Cui Q , Song C , Wang X , et al. , 2018. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Science of the Total Environment, 616-617: 427-434. DOI: 10.1016/j.scitotenv.2017.10.246 .
doi: 10.1016/j.scitotenv.2017.10.246
Davis N , 2000. Permafrost: a Guide to Frozen Ground in Transition. Fairbanks, AK, USA: University of Alaska Press.
Ding YJ , Xiao CD , 2014. Challenges in the study of cryospheric changes and their impacts. Advances in Earth Science, 28(10): 1067-1076. DOI: 10.11867/j.issn.1001-8166. 2014. 06.0674 .
doi: 10.11867/j.issn.1001-8166. 2014. 06.0674
Du H , Liu J , Li MH , et al. , 2017. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biology, 24(3): 1256-1266. DOI: 10.1111/gcb.13963 .
doi: 10.1111/gcb.13963
Fu XL , Shao MG , Wei XR , et al. , 2010. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 155: 31-35. DOI: 10.1016/j.geodema.2009.11.020 .
doi: 10.1016/j.geodema.2009.11.020
Gruber S , 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere, 6: 221-233. DOI: 10.5194/tc-6-221-2012 .
doi: 10.5194/tc-6-221-2012
Gu ZW , Zhou YW , 1994. The effects of climate warming and human turbulence on the permafrost in the northward slope of MT. Da Hinggan Ling: take a sample from Amur area. Acta Geographica Sinica, 49(2): 182-187. (in Chinese)
Guo DX , Wang SL , Lu GW , et al. , 1981. Division of permafrost regions in the Da and Xiao Hinggan Mountains, Northeast China. Journal of Glaciology and Geocryology, 3(3): 1-9. (in Chinese)
Guo ZX , Wang ZM , Song KS , et al. , 2008. Changes of vegetation coverage in Northeast China from 1982 to 2003. Acta Botanica Boreali-Occidentalia Sinica, 28(1): 155-163. (in Chinese)
He RX , Jin HJ , Chang XL , et al. , 2009. Degradation of permafrost in the northern part of Northeastern China: present state and causal analysis. Journal of Glaciology and Geocryology, 31(5): 829-834. DOI: 10.1016/S1003-6326(09)60084-4 . (in Chinese)
doi: 10.1016/S1003-6326(09)60084-4
He RX , Jin HJ , Lü LZ , et al. , 2009. Recent changes of permafrost and cold regions environments in the northern part of Northeastern China. Journal of Glaciology and Geocryology, 31(3): 525-531. (in Chinese)
IPCC (2013). Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Jin HJ , Li SX , Wang SL , et al. , 2000. Impacts of climatic change on permafrost and cold regions environments in China. Acta Geographica Sinica, 55(2): 161-173. DOI: 10.3321/j.issn:0375-5444.2000.05.004 . (in Chinese)
doi: 10.3321/j.issn:0375-5444.2000.05.004
Jin HJ , Wu J , Cheng GD , et al. , 1999. Estimation of CH4 emissions from cold wetland ecosystems on the Tibetan Plateau. Journal of Glaciology and Geocryology, 21(4): 339-350. (in Chinese)
Jin HJ , Yu QH , Guo DX , et al. , 2007. Degradation of permafrost in the Xing'an Mountains, Northeast China. Permafrost and Periglacial Processes, 18: 245-258. DOI: 10.1002/ppp.589 .
doi: 10.1002/ppp.589
Jorgenson MT , Racine C , Walters JC , et al. , 2001. Permafrost degradation and ecological changes associated with a warming climate in certral Alasla. Climate Change, 48(4): 551-579. DOI: 10.1023/a:1005667424292 .
doi: 10.1023/a:1005667424292
Kurylyk BL , Macquarrie KTB , Mckenzie JM , 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth Science Reviews, 138: 313-334. DOI: 10.1016/j.earscirev.2014.06.006 .
doi: 10.1016/j.earscirev.2014.06.006
Liu HJ , Bu RC , Liu JT , et al. , 2011. Predicting the wetland distributions under climate warming in the Great Xing'an Mountains, Northeastern China. Ecological Research, 26: 605-613. DOI: 10.1007/s11284-011-0819-2 .
doi: 10.1007/s11284-011-0819-2
Liu X , Guo Y , Hu H , et al. , 2015. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China. Atmospheric Environment, 122: 454-462. DOI: 10.1016/j.atmosenv.2015.10.007 .
doi: 10.1016/j.atmosenv.2015.10.007
Lu GW , Wen BL , Guo DX , 1993. Geographical southern limit of permafrost in Northeastern China. Journal of Glaciology and Geocryology, 15: 214-218. (in Chinese)
Lü JJ , Li XZ , Hu YM , et al. , 2008. Application of frost number model in Northeast China permafrost regionalization. Chinese Journal of Applied Ecology, 19(10): 2271-2276. (in Chinese)
Luo DL , Jin HJ , Jin R , et al. , 2014. Spatio-temporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quaternary International, 349: 187-195. DOI: 10.1016/j.quaint.2014.06.064 .
doi: 10.1016/j.quaint.2014.06.064
Miao YQ , Song CC , Wang XW , et al. , 2011. Nitrous oxide emission from boreal peatland in the continuous permafrost zone, Northeast China. International Symposium on Water Resource and Environmental Protection. IEEE. DOI:10. 1109/ISWREP.2011.5893706 .
doi: 10. 1109/ISWREP.2011.5893706
Miao YQ , Song C , Wang X , et al. , 2016. Annual Carbon Gas Emissions from a Boreal Peatland in Continuous Permafrost Zone, Northeast China. CLEAN―Soil, Air, Water, 44(5): 456-463. DOI: 10.1002/clen.201400377 .
doi: 10.1002/clen.201400377
Miao Y , Song C , Sun L , et al. , 2012. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences, 9(11): 4455-4464. DOI: 10.5194/bg-9-4455-2012 .
doi: 10.5194/bg-9-4455-2012
Mu CC , Shi LY , Sun XX , 2009. Fluxes and controls of CO2, CH4 and N2O in a marsh wetland of Xiao Xing'an Mountains, Northeastern China. Chinese Journal of Plant Ecology, 33(3): 617-623. DOI: 10.3773/j.issn.1005-264x.2009. 03.021 .
doi: 10.3773/j.issn.1005-264x.2009. 03.021
Myers-Smith IH , Forbes BC , Wilmking M , et al. , 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4): 45509-45523. DOI: 10.1088/1748-9326/6/4/045509 .
doi: 10.1088/1748-9326/6/4/045509
Oliva M , Pereira P , Antoniades D , 2018. The environmental consequences of permafrost degradation in a changing climate. Science of the Total Environment, 616-617: 435-437. DOI: 10.1016/j.scitotenv.2017.10.285 .
doi: 10.1016/j.scitotenv.2017.10.285
Post WM , Peng TH , Emanuel WR , et al. , 1990.The global carbon cycle. Soil Science Society of America Journal, 78: 310-326. DOI: 10.1007/978-3-642-84608-3_10 .
doi: 10.1007/978-3-642-84608-3_10
Qiao L , Wu L , Zhang G , 2015. Temporal and spatial changes of land surface temperature in China in recent 50 years. Bull Soil Water Conservation, 35(5): 323-326. (in Chinese)
Sato H , Kobayashi H , Iwahana G , et al. , 2016. Endurance of larch forest ecosystems in eastern Siberia under warming trends. Ecology and Evolution, 6(16): 5690-5704. DOI:10.1002/ece3.2285 .
doi: 10.1002/ece3.2285
Savage KE, Davidson EA , 2001. Inter-annual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 15: 337-350. DOI: 10.1029/1999gb001248 .
doi: 10.1029/1999gb001248
Schuur EAG , Bockheim J , Canadell J , et al. , 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience, 58(8): 701-714. DOI:10.1641/B580807 .
doi: 10.1641/B580807
Shi YF , Mi DS , 1988. Map of Snow, Ice and Frozen Ground in China (1:4000000). Beijing: China Cartographic Publishing House. (in Chinese)
Song C , Wang X , Miao Y , et al. , 2014. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China. Science of the Total Environment, 487: 604-610. DOI: 10.1016/j.scitotenv.2013.09.083 .
doi: 10.1016/j.scitotenv.2013.09.083
Song CC , Xu XF , Sun XX , et al. , 2012. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters, 7(3): 1075-1081. DOI: 10.1088/1748-9326/7/3/034009 .
doi: 10.1088/1748-9326/7/3/034009
Song Y , Song C , Hou A , et al. , 2018. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland. Catena, 165: 381-389. DOI: 10.1016/j.catena.2018.02.026 .
doi: 10.1016/j.catena.2018.02.026
Streletskiy DA , Anisimov O , Vasiliev A , 2014. Permafrost Degradation, Snow and Ice-related Hazards, Risks and Disasters. 2nd ed.. Berlin: Springer-Verlag, pp. 303-344.
Sun GY , 2000. Preliminary discussion on the symbiotic mechanisms of marshes and permafrost: A case study from the Da-Xing'anling Mountains. Journal of Glaciology and Geocryology, 22(4): 309-315. (in Chinese)
Sun GY , Jin HJ , Yu SP , et al. , 2008. The symbiosis models of marshes and permafrost:a case study in Daxingan and Xiaoxingan Mountain range.Wetland Science, 6(4): 479-485.
Sun GY , Yu SP , Wang HX , 2007. Causes, south borderline and subareas of permafrost in Da Hinggan Mountains and Xiao Hinggan Mountains. Scientia Geographica Sinica, 27(1): 68-74. DOI: 10.1631/jzus.2007.A1858 . (in Chinese)
doi: 10.1631/jzus.2007.A1858
Sun J , Li XZ , Wang XW , et al. , 2010. Latitudinal trends in vegetation productivity of permafrost wetlands in Great Hing'an Mountain valleys and its response to global change. IEEE International Conference on Information Management and Engineering. DOI: 10.1109/ICIME.2010.5477617 .
doi: 10.1109/ICIME.2010.5477617
Sun J , Li XZ , Wang XW , et al. , 2011. Latitudinal pattern in species diversity and its response to global warming in permafrost wetlands in the great Hing’an Mountains, China. Russian Journal of Ecology, 42(2): 123-132. DOI: 10.1134/S1067413611020111 .
doi: 10.1134/S1067413611020111
Tarnocai C , Canadell JG , Schuur EA , et al. , 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23(2): 1-11. DOI: 10.1029/2008GB003327 .
doi: 10.1029/2008GB003327
Tchebakova NM , Parfenova E , Soja AJ , 2009. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environment Research Letters, 4(4): 940-941. DOI: 10.1088/1748-9326/4/4/045013 .
doi: 10.1088/1748-9326/4/4/045013
Wang CH , Zhang BL , Liu FT , 1996. A preliminary analysis on the regularity of permafrost degradation, its advantages and disadvantages in the Great and Lesser Xing'an Mountains. Journal of Glaciology and Geocryology, 18(Suppl. 1: 174-180. (in Chinese)
Wang J , Song C , Wang X , et al. , 2012. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, 96: 83-89. DOI: 10.1016/j.catena.2012.03.009 .
doi: 10.1016/j.catena.2012.03.009
Wang J , Song C , Zhang J , et al. , 2014. Temperature sensitivity of soil carbon mineralization and nitrous oxide emission in different ecosystems along a mountain wetland-forest ecotone in the continuous permafrost of Northeast China. Catena, 121(5): 110-118. DOI: 10.1016/j.catena.2014.05.007 .
doi: 10.1016/j.catena.2014.05.007
Wang JY , Song CC , Miao YQ , et al. , 2013. Greenhouse gas emissions from southward transplanted wetlands during freezing-thawing periods in northeast China. Wetlands, 33(6): 1075-1081. DOI: 10.1007/s13157-013-0463-4 .
doi: 10.1007/s13157-013-0463-4
Wang L , Henderson M , Liu B , et al. , 2018. Maximum and minimum soil surface temperature trends over China, 1965-2014. Journal of Geophysical Research, 123(4): 2004-2016. DOI: 10.1002/2017JD027283 .
doi: 10.1002/2017JD027283
Wang SL , Jin HJ , Li SX , et al. , 2000. Permafrost degradation on the Qinghai-Tibet Plateau and its environment impacts. Permafrost and Periglacial Processes, 11(1): 43-53. DOI: 10.1002/(SICI)1099-1530(200001/03)11:1<43:AID-PPP332>3.0.CO;2-H.
doi: 10.1002/(SICI)1099-1530(200001/03)11:1<43:AID-PPP332>3.0.CO;2-H.
Wang SQ , Zhou CH , Liu JY , et al. , 2002. Carbon storage in northeast China as estimated from vegetation and soil inventories. Environment Pollution, 116(Suppl. 1: 157-165. DOI: 10.1016/s0269-7491(01)00269-x .
doi: 10.1016/s0269-7491(01)00269-x
Wang X , Li X , Hu Y , et al. , 2010. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing'an Mountains, Northeastern China. Journal of Environmental Sciences, 22(7): 1057-1066. DOI: 10.1016/S1001-0742(09)60217-5 .
doi: 10.1016/S1001-0742(09)60217-5
Wang X , Song C , Sun X , et al. , 2013. Soil carbon and nitrogen across wetland types in discontinuous permafrost zone of the Xiao Xing'an Mountains, northeastern China. Catena, 101: 31-37. DOI: 10.1016/j.catena.2012.09.007 .
doi: 10.1016/j.catena.2012.09.007
Wang XW , Li XZ , Hu YM , et al. , 2010. Potential carbon mineralization of permafrost peatlands in Great Hing'an Mountains. Wetlands, 30(4): 747-756. DOI: 10.1007/s13157-010-0075-1 .
doi: 10.1007/s13157-010-0075-1
Wei Z , Jin HJ , Zhang JM , et al. , 2011. Prediction of permafrost changes in Northeastern China under a changing climate. Science China, 54 (6): 924-935. DOI: 10.1007/s11430-010-4109-6 .
doi: 10.1007/s11430-010-4109-6
Xie YY , 1985. Climatic condition in the formation and evolution of permafrost in Northeast China. Journal of Glaciology and Geocryology, 7(4): 323-330. (in Chinese)
Xin KD , Ren QJ , 1956. The distribution of permafrost in China. Journal of Geological Knowledge, (10): 15-18. (in Chinese)
Yu X , Song C , Sun L , et al. , 2017. Growing season methane emissions from a permafrost peatland of northeast China: Observations using open-path eddy covariance method. Atmospheric Environment, 153: 135-149. DOI: 10.1016/j.atmosenv.2017.01.026 .
doi: 10.1016/j.atmosenv.2017.01.026
Zhang Z , Wu Q , Xun X , et al. , 2018. Climate change and the distribution of frozen soil in 1980-2010 in northern northeast China. Quaternary International, S1040618217312259. DOI: 10.1016/j.quaint.2018.01.015 .
doi: 10.1016/j.quaint.2018.01.015
Zhao HM , Daniel QT , Lin QX , et al. , 2012. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma, 189-190: 532-539. DOI: 10.1016/j.geoderma.2012.05.013 .
doi: 10.1016/j.geoderma.2012.05.013
Zhou M , Xu XX , Fang L , et al. , 2003. Effects of permafrost and wetland in forests in Great Xing'an Mountains on ecology environment. Jourmal of Beijing University, 25(6): 91-93. (in Chinese)
Zhou YW , Guo DX , Qiu GQ , et al. , 2000. Geocryology in China. Beijing: Science Press. (in Chinese)
Zhou YW , Wang YX , Gao XW , et al. , 1996. Ground temperature, permafrost distribution and climate warming in Northeastern China. Journal of Glaciology and Geocryology, 18(Suppl. 1: 139-147. (in Chinese)
Zubler EM , Fischer AM , Friederike F , et al. , 2016. Climate change signals of CMIP5 general circulation models over the Alps-impact of model selection. International Journal of Climatology, 36(8): 3088-3104. DOI: 10.1002/joc.4538 .
doi: 10.1002/joc.4538
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!