Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (6): 587–598.doi: 10.3724/SP.J.1226.2017.00587

• REVIEW • 上一篇    

A review on the ambit and prospects of C3 and C4 plants in Nigeria

Abdulwakeel Ayokun-nun Ajao1,2, Oludare Oladipo Agboola3, Sefiu Adekilekun Saheed1   

  1. 1. Department of Botany, Obafemi Awolowo University, Ile-Ife, Nigeria 220005;
    2. Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, Auckland Park, South Africa 2006;
    3. Department of Botany, University of Lagos, Akoka, Nigeria 101017
  • 收稿日期:2017-01-12 出版日期:2017-12-01 发布日期:2018-11-23
  • 通讯作者: Abdulwakeel Ayokun-nun Ajao, Department of Botany, Obafemi Awolowo University, Ile-Ife 220005, Nigeria. E-mail:ajwak880@gmail.com E-mail:ajwak880@gmail.com
  • 基金资助:
    The authors thank Dr. Sabiu Saheed for encouraging us to write this review; also, the support of Mr. Alayande Kazeem and Dr. Balogun Fatai Oladunni is greatly appreciated.

A review on the ambit and prospects of C3 and C4 plants in Nigeria

Abdulwakeel Ayokun-nun Ajao1,2, Oludare Oladipo Agboola3, Sefiu Adekilekun Saheed1   

  1. 1. Department of Botany, Obafemi Awolowo University, Ile-Ife, Nigeria 220005;
    2. Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, Auckland Park, South Africa 2006;
    3. Department of Botany, University of Lagos, Akoka, Nigeria 101017
  • Received:2017-01-12 Online:2017-12-01 Published:2018-11-23
  • Contact: Abdulwakeel Ayokun-nun Ajao, Department of Botany, Obafemi Awolowo University, Ile-Ife 220005, Nigeria. E-mail:ajwak880@gmail.com E-mail:ajwak880@gmail.com
  • Supported by:
    The authors thank Dr. Sabiu Saheed for encouraging us to write this review; also, the support of Mr. Alayande Kazeem and Dr. Balogun Fatai Oladunni is greatly appreciated.

摘要: Despite the enormous applications of photosynthesis in global carbon budget and food security, photosynthesis research has not been adequately explored as a research focus in Nigeria. Previous works on C3 and C4 plants in Nigeria were mainly on the use of anatomical characteristics to delimit plant species into their respective pathways, with no attention being paid to its applications. In this review, past and present knowledge gaps in this area of study are elucidated. Information used in this review were sourced from referred research articles and books in reputable journals. The results revealed that C3 and C4 plants are distributed among 21 genera and 11 families in Nigeria. In addition there is dearth of informatio such that only three genera have been classified based on diverse photosynthetic pathways with no information found on the physiological and biochemical characterization of these genera. Moreover, further research is also suggested for tackling new challenges in the area of food productivity and climate change.

Abstract: Despite the enormous applications of photosynthesis in global carbon budget and food security, photosynthesis research has not been adequately explored as a research focus in Nigeria. Previous works on C3 and C4 plants in Nigeria were mainly on the use of anatomical characteristics to delimit plant species into their respective pathways, with no attention being paid to its applications. In this review, past and present knowledge gaps in this area of study are elucidated. Information used in this review were sourced from referred research articles and books in reputable journals. The results revealed that C3 and C4 plants are distributed among 21 genera and 11 families in Nigeria. In addition there is dearth of informatio such that only three genera have been classified based on diverse photosynthetic pathways with no information found on the physiological and biochemical characterization of these genera. Moreover, further research is also suggested for tackling new challenges in the area of food productivity and climate change.

Ajao AA, Jimoh MA, Saheed SA, 2017. Studies on anatomical characters indicating C3 and C4 photosynthetic metabolism in the genus Boerhavia L. (Nyctaginaceae). Taiwania, 62(3): 265-271, DOI:10.6165/tai.2017.62.265.
Ajao AA, Jimoh MA, Saheed SA, 2016. Studies on anatomical characters indicating C3 and C4 photosynthetic metabolism in the genus Boerhavia L. in Nigeria. South African Journal of Botany, 103: 305-306, DOI:10.1016/J.SAJB.2016.02.011.
Andrews TJ, Whitney SM, 2003. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Archives of Biochemistry and Biophysics, 414(2): 159-169, DOI:10.1016/S0003-9861(03)00100-0.
Ayeni OB, Jimoh MA, Saheed SA, 2015a. Leaf anatomical characters in relation to the C3 and C4 photosynthetic pathway in Cyperus (Cyperaceae). Nordic Journal of Botany, 33(3): 318-323, DOI:10.1111/njb.00710.
Aranibara JN, Andersonb IC, Epsteina HE, et al., 2008. Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa. Journal of Arid Environments, 72: 326-337, DOI:10.1016/j.jaridenv.2007.06.007.
Ayeni OB, Jimoh MA, Saheed SA, 2015b. Inflorescence and floral characters indicating C3 and C4 photosynthesis in some species of the genus Cyperus L. (Cyperaceae). International Journal of Biological and Chemical Sciences, 9(4): 1844-1850, DOI:10.4314/ijbcs.v9i4.10.
Badger MR, Whitney SM, Ludwig W, et al., 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany, 76(6): 1052-1071, DOI:10.1139/b98-074.
Bender MM, 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 10(6): 1239-1244, DOI:10.1016/S0031-9422(00)84324-1.
Berner RA, Canfield DE, 1989. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science, 289(4): 333-361, DOI:10.2475/ajs.289.4.333.
Bisalputra T, Downton WJS, Tregunna EB, 1969. The distribution and ultrastructure of chloroplasts in leaves differing in photosynthetic carbon metabolism. I. Wheat, Sorghum, and Aristida (Gramineae). Canadian Journal of Botany, 47(1): 15-21, DOI:10.1139/b69-003.
Björkman O, 1976. Adaptive and genetic aspects of C4 photosynthesis. In: Burris RH, Black CC (eds.). Proceedings of the Fifth Annual Harry Steenbock Symposium, Madison, Wisconsin. Baltimore, MD, USA: University Park Press, pp. 287-309.
Black CC, 1971. Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. Advances in Ecological Research, 7: 87-114, DOI:10.1016/S0065-2504(08)60203-2.
Black E, Vidale PL, Verhoef A, et al., 2012. Cultivating C4 crops in a changing climate: sugarcane in Ghana. Enviromental Research Letters, 7: 1-10, DOI:10.1088/1748-9326/7/4/044027.
Blankenship RE, 1992. Origin and early evolution of photosynthesis. Photosynthesis Research, 33(2): 91-111, DOI:10.1007/BF00039173.
Blankenship RE, 2010. Early evolution of photosynthesis. Plant Physiology, 154(2): 434-438, DOI:10.1104/pp.110.161687.
Boom A, 2004. A geochemical study of lacustrine sediments: towards palaeo-climatic reconstructions of high Andean biomes in Colombia. Amsterdam: University of Amsterdam, pp. 125.
Botha CEJ, 1992. Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta, 187(3): 348-358, DOI:10.1007/BF00195658.
Bowes G, Ogren WL, 1972. Oxygen inhibition and other properties of soybean ribulose 1, 5-diphosphate carboxylase. Journal of Biological and Chemical, 247(7): 2171-2176.
Brown HA, 1999. Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK (eds.). C4 Plant Biology. San Diego, CA: Academic Press, pp. 473-508.
Bruhl JJ, Wilson KL, 2007. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso: A Journal of Systematic and Evolutionary Botany, 23(1): 99-148, DOI:10.5642/aliso.20072301.11.
Carolin RC, Jacobs SWL, Vesk M, 1973. The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Botanical Journal of the Linnean Society, 66(4): 259-275, DOI:10.1111/j.1095-8339.1973.tb02174.x.
Chollet R, 1976. C4 Control of photorespiration: studies with isolated mesophyll cells and bundle sheath strands. In: Burris RH, Black CC (eds.). CO2 Metabolism and Plant Productivity. Baltimore, Md: University Park Press, pp. 327-341.
Cornet D, Bonhomme JSR, 2007. Characterization of the photosynthetic pathway of some tropical food yams (Dioscorea spp.) using leaf natural 13C abundance. Photosynthetica, 45(2): 303-305, DOI:10.1007/s11099-007-0050-0.
Crookston RK, Moss DN, 1974. Interveinal distance for carbohydrate transport in leaves of C3 and C4 grasses. Crop Sciences, 14(1): 123-125, DOI:10.2135/cropsci1974.0011183X001400010038x.
Dengler NG, Dengler RE, Donnelly PM, et al., 1994. Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Annals of Botany, 73(3): 241-255, DOI:10.1006/anbo.1994.1029.
Dengler NG, Nelson T, 1999. Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds.). C4 Plant Biology. San Diego: Academic Press, pp. 133-172.
Dohleman FG, Long SP, 2009. More productive than maize in the Midwest: how does Miscanthus do it?. Plant Physiology, 150(4): 2104-2115, DOI:10.1104/pp.109.139162.
Downes RW, Hesketh JD, 1968. Enhanced photosynthesis at low oxygen concentrations: differential response of temperate and tropical grasses. Planta, 78(1): 79-84, DOI:10.1007/BF00384860.
Downton WJS, Tregunna EB, 1968. Carbon dioxide compensation-its relation to photosynthetic Carboxylation reactions, systematics of the Gramineae, and leaf anatomy. Canadian Journal of Botany, 46(3): 207-215, DOI:10.1139/b68-035.
Ehleringer JR, Cerling TE, Helliker BR, 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3): 285-299, DOI:10.1007/s004420050311.
Faniyan MM, Olatunde DO, Ayeni MA, et al., 2013. Functional leaf anatomical characters in relation to C3 and C4 photosynthetic pathways in four species of Euphorbia L. in Southwestern Nigeria. Nigerian Journal of Botany, 26(1): 19-28.
Fisher DD, Schenk HJ, Thorsch JA, et al., 1997. Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America. American Journal of Botany, 84(9): 1198-1210.
Flexas J, Bota J, Loreto F, et al., 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3): 269-279, DOI:10.1055/s-2004-820867.
Furbank RT, Taylor WC, 1995. Regulation of photosynthesis in C3 and C4 plants: a molecular approach. The Plant Cell, 7(7): 797-807, DOI:10.1105/tpc.7.7.797.
Furbank RT, 2009. Photosynthesis research and its application to yield potential. In: Proceedings of a Workshop Held at the Australian National University, Canberra, Australian Capital Territory, Australia. Canberra: ACIAR, pp. 14-19.
Gallaher RN, Ashley DA, Brown RH, 1975. 14C-photosynthate translocation in C3 and C4 plants as related to leaf anatomy. Crop Science, 15(1): 55-59, DOI:10.2135/cropsci1975.0011183X001500010016x.
Gentry AH, 1993. A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador and Peru): with supplementary notes on herbaceous taxa. Washington D.C.: Conservation International.
Ghannoum O, 2009. C4 photosynthesis and water stress. Annals of Botany, 103(4): 635-644, DOI:10.1093/aob/mcn093.
Hatch MD, Slack CR, Johnson HS, 1967. Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochemical Journal, 102(2): 417-422, DOI:10.1042/bj1020417.
Hatch MD, 1987. C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 895(2): 81-106, DOI:10.1016/S0304-4173(87)80009-5.
Hattersley PW, Watson L, Johnston CR, et al., 1982. Remarkable leaf anatomical variations in Neurachne and its allies (Poaceae) in relation to C3 and C4 photosynthesis. Botanical Journal of the Linnean Society, 84(4): 265-272, DOI:10.1111/j.1095-8339.1982.tb00364.x.
Hibberd JM, Quick WP, 2002. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, 415(6870): 451-454, DOI:10.1038/415451a.
Hibberd JM, Sheehy JE, Langdale JA, 2008. Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Current Opinion in Plant Biology, 11(2): 228-231, DOI:10.1016/j.pbi.2007.11.002.
Huxman TE, Monson RK, 2003. Stomatal responses of C3, C3-C4 and C4 Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour. Plant, Cell and Environment, 26(2): 313-322, DOI:10.1046/j.1365-3040.2003.00964.x.
Jørgensen PM, Ulloa UC, 1994. Seed plants of the high Andes of Ecuador-a checklist. AAU Reports, 34: 336-355.
Kanai R, Edward GE, 1999. The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds.). C4 Plant Biology. San Diego: Santiago Academic Press, pp. 49-87.
Kim CY, 2012. Stomatal responses of C3 and C4 Cyprus species (Cyperaceae) in Korea to Elevated CO2 concentration. Seoul, Korea: Sungshin Women's University, pp. 203.
Krapp A, Hofman B, Schäfer C, et al., 1993. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’ of photosynthesis?. The Plant Journal, 3(6): 817-828, DOI:10.1111/j.1365-313X.1993.00817.x.
Kruger EL, Volin JC, 2006. Reexamining the empirical relation between plant growth and leaf photosynthesis. Functional Plant Biology, 33(5): 421-429, DOI:10.1071/FP05310.
Lal A, Edwards GE, 1996. Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity. Functional Plant Biology, 23(4): 403-412.
Langdale JA, 2011. C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell, 23(11): 3879-3892, DOI:10.1105/tpc.111.092098.
Larcher W, 1995. Physiological Plant Ecology. New York: Springer-Verlag, pp. 506.
Larridon I, Huygh W, Reynders M, et al., 2011. Nomenclature and typification of names of genera and subdivisions of genera in Cypereae (Cyperaceae): 2. Names of subdivisions of Cyperus. Taxon, 60(3): 868-884.
Leonardos ED, Grodzinski B, 2000. Photosynthesis, immediate export and carbon partitioning in source leaves of C3, C3-C4 intermediate, and C4 Panicum and Flaveria species at ambient and elevated CO2 levels. Plant, Cell and Environment, 23(8): 839-851, DOI:10.1046/j.1365-3040.2000.00604.x.
Liu F, Stützel H, 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1): 15-27, DOI:10.1016/j.scienta.2003.11.014.
Lloyd J, Farquhar GD, 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia, 99(3-4): 201-215, DOI:10.1007/BF00627732.
Lush WM, 1976. Leaf structure and translocation of dry matter in a C3 and a C4 grass. Planta, 130(3): 235-244, DOI:10.1007/BF00387827.
Marshall DM, Muhaidat M, Brown NJ, et al., 2007. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. The Plant Journal, 51(5): 886-896, DOI:10.1111/j.1365-313X.2007.03188.x.
Martins S, Alves M, 2009. Anatomical features of species of Cyperaceae from Northeastern Brazil. Brittonia, 61(2): 189-200, DOI:10.1007/s12228-009-9073-0.
McKown AD, Cochard H, Sack L, 2010. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. The American Naturalist, 175(4): 447-460, DOI:10.1086/650721.
Monsi M, Saeki T, 2005. On the factor light in plant communities and its importance for matter production. Annals of Botany, 95(3): 549-567, DOI:10.1093/aob/mci052.
Muasya AM, Vrijdaghs A, Simpson DA, et al., 2009. What is a genus in Cypereae: phylogeny, character homology assessment and generic circumscription in Cypereae. The Botanical Review, 75(1): 52-66, DOI:10.1007/s12229-008-9018-4.
Muhaidat R, Sage RF, Dengler NG, 2007. Diversity of Kranz anatomy and biochemistry in C4 eudicots. American Journal of Botany, 94(3): 362-381, DOI:10.3732/ajb.94.3.362.
Nelson EA, Sage TL, Sage RF, 2005. Functional leaf anatomy of plants with crassulacean acid metabolism. Functional Plant Biology, 32(5): 409-419, DOI:10.1071/FP04195.
Nelson T, Dengler N, 1997. Leaf vascular pattern formation. The Plant Cell, 9(7): 1121-1135, DOI:10.1105/tpc.9.7.1121.
Ogren WL, 1976. Search for higher plants with modifications of the reductive pentose phosphate pathway of CO2 assimilation. In: Burris RH, Black CC (eds.). CO2 Metabolism and Plant Productivity. Baltimore, Md.: University Park Press, pp. 19-29.
Oguro HO, Hinata K, Tsunoda S, 1985. Comparative anatomy and morphology of leaves between C3 and C4 species in panicum. Annals of Botany, 55(6): 859-867, DOI:10.1093/oxfordjournals.aob.a086967.
Ortiz-Lopez A, Ort DR, Boyer JS, 1991. Photophosphorylation in attached leaves of Helianthus annuus at low water potentials. Plant Physiology, 96(4): 1018-1025, DOI:10.1104/pp.96.4.1018.
Osborne CP, Freckleton RP, 2009. Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of Royal Society, 276(1663): 1753-1760, DOI:10.1098/rspb.2008.1762.
Park R, Epstein S, 1960. Carbon isotope fractionation during photosynthesis. Geochimica et Cosmochimica Acta, 21(1-2): 110-126, DOI:10.1016/S0016-7037(60)80006-3.
Parry MAJ, Madgwick PJ, Carvalho JFC, et al., 2007. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. Journal of Agricultural Sciences, 145(1): 31-43, DOI:10.1017/S0021859606006666.
Pingali PI, 2001. CIMMYT 1999-2000 world maize facts and trends. Meeting the World Maize Needs: Technological Opportunities and Priorities for the Public Sector. Mexico City: CIMMYT.
Raines CA, 2006. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant, Cell and Environment, 29(3): 331-339, DOI:10.1111/j.1365-3040.2005.01488.x.
Renvoize SA, 1987. A survey of leaf-blade anatomy in grasses XI. Paniceae. Kew Bulletin, 42(3): 739-768, DOI:10.2307/4110087.
Ripley BS, Gilbert ME, Ibrahim DG, et al., 2007. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany, 58: 1351-1363, DOI:10.1093/jxb/erl302.
Sack L, Holbrook NM, 2006. Leaf hydraulics. Annual Review of Plant Biology, 57: 361-381, DOI:10.1146/annurev.arplant.56.032604.144141.
Sage RF, 2004. The evolution of C4 photosynthesis. New Phytologist, 161(2): 341-370, DOI:10.1111/j.1469-8137.2004.00974.x.
Sage RF, Christin PA, Edwards EJ, 2011. The C4 plant lineages of planet earth. Journal of Experimental Botany, 62(9): 3155-3169, DOI:10.1093/jxb/err048.
Saiz G, Bird M, Wurster C, et al., 2015. The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 12: 5041-5059, DOI:10.5194/bg-12-5041-2015.
Smith BN, Epstein S, 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47(3): 380-384, DOI:10.1104/pp.47.3.380.
Somerville C, Youngs H, Taylor C, et al., 2010. Feedstocks for lignocellulosic biofuels. Science, 329: 790-792, DOI:10.1126/science.1189268.
Soros CL, Dengler NG, 1998. Quantitative leaf anatomy of C3 and C4 Cyperaceae and comparisons with the Poaceae. International Journal of Plant Science, 159(3): 480-491, DOI:10.1086/297565.
Stock WD, Chuba D, Verboom GA, 2004. Distribution of South African C3 and C4 species of Cyperaceae in relation to climate and phylogeny. Austral Ecology, 29(3): 313-319, DOI:10.1111/j.1442-9993.2004.01368.x.
Swap RJ, Aranibar JN, Dowty PR, et al., 2004. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology (2004). 10: 350-358. DOI: 10.1111/j.1365-2486.2003.00702.x.
Taylor SH, Hulme SP, Rees M, 2010. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytologist, 185(3): 780-791, DOI:10.1111/j.1469-8137.2009.03102.x.
Troughton JH, Card KA, Hendy CH, 1974. Photosynthetic pathways and carbon isotope discrimination by plants. In: McGough SA (ed.). Carnegie Institute of Washington, Yearbook 73. Baltimore, Md.: Lucas Printing Co., pp. 768-780.
Ueno O, Sentoku N, 2006. Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies. Plant, Cell and Environment, 29(2): 257-268, DOI:10.1111/j.1365-3040.2005.01418.x.
Ueno O, Kawano Y, Wakayama M, et al., 2006. Leaf vascular systems in C3 and C4 grasses: a two-dimensional analysis. Annals of Botany, 97(4): 611-621, DOI:10.1093/aob/mcl010.
Vogel JC, Fuls A, Ellis RP, 1978. The geographical distribution of Kranz grasses in South Africa. South African Journal of Science, 74: 209-217.
Voznesenskaya EV, Franceschi VR, Kiirats O, et al., 2001. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature, 414(6863): 543-546, DOI:10.1038/35107073.
Voznesenskaya EV, Franceschi VR, Kiirats O, et al., 2002. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). The Plant Journal, 31(5): 649-662, DOI:10.1046/j.1365-313X.2002.01385.x.
Waller SS, Lewis JK, 1979. Occurrence of C3 and C4 photosynthetic pathways in North American grasses. Journal of Range Management, 32(1): 12-28, DOI:10.2307/3897378.
Wang DF, Portis AR, Moose SP, et al., 2008. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus giganteus. Plant Physiology, 148: 557-567, DOI:10.1104/pp.108.120709.
Welkie GW, Caldwell M, 1970. Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. Canadian Journal of Botany, 48(12): 2135-2146, DOI:10.1139/b70-309.
Whelan T, Sackett WM, Benedict CR, 1973. Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants. Plant Physiology, 51(6): 1051-1054, DOI:10.1104/pp.51.6.1051.
Winter K, Troughton JH, Evenari M, et al., 1976. Mineral ion Composition and occurrence of CAM-like diurnal malate flunctuation in plants of coastal and desert habitats of Isreal and the Sinai. Flora, 167: 1-34.
Xoconstle-Cazáres B, Ramírez-Ortega FA, Flores-Elenes L, et al., 2010. Drought tolerance in crop plants. American Journal of Plant Physiology, 5(5): 214-256, DOI:10.3923/ajpp.2010.241.256.
Yoshimura Y, Kubota F, Ueno O, 2004. Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase. Planta, 220(2): 307-317, DOI:10.1007/s00425-004-1335-1.
Zhang JX, Kirkham MB, 1995. Water relations of water-stressed, split-root C4 (Sorghum bicolor; Poaceae) and C3 (Helianthus annuus; Asteraceae) plants. American Journal of Botany, 82(10): 1220-1229, DOI:10.2307/2446244.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .