Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (5): 421–427.doi: 10.3724/SP.J.1226.2018.00421

• • 上一篇    下一篇

  

  • 收稿日期:2018-04-17 接受日期:2018-06-13 出版日期:2018-11-19 发布日期:2018-11-21
  • 基金资助:
    This research was supported by China's National Natural Science Foundation (No. 41501043), by the "West Light" project of the Chinese Academy of Sciences, and by the project of 60th Chinese postdoctorate science fund (No. 2016M602904).

Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment

Yang Qiu,ZhongKui Xie*(),XinPing Wang,YaJun Wang,YuBao Zhang,YuHui He,WenMei Li,WenCong Lv   

  1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2018-04-17 Accepted:2018-06-13 Online:2018-11-19 Published:2018-11-21
  • Contact: ZhongKui Xie E-mail:wxhcas@lzb.ac.cn
  • Supported by:
    This research was supported by China's National Natural Science Foundation (No. 41501043), by the "West Light" project of the Chinese Academy of Sciences, and by the project of 60th Chinese postdoctorate science fund (No. 2016M602904).

Abstract:

Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effective work time of conventional iron fertilizers. In this study, a 2-year field experiment was conducted to evaluate the effects of two slow-release fertilizers on the suppression of iron deficiency chlorosis, soil chemical properties, and the yield and quality of L. davidii var. unicolor. Results show that both coated slow-release iron fertilizers and embedded slow-release iron fertilizer effectively controlled iron-deficiency chlorosis. The application of slow-release iron fertilizers significantly increased plant height and chlorophyll content of L. davidii var. unicolor at different growth stages. Furthermore, coated iron fertilizer application significantly increased starch, protein, soluble sugar and vitamin C content of L. davidii var. unicolor, and it also significantly improved total amino acid content, with increases in essential amino acids (Trp, Leu, Lys, Phe, Val, and Thr contents) and in nonessential amino acids (Asp, Glu, Cit, Ihs, Acc, Ala, Pro, and Cys contents). It was concluded that application of coated slow-release iron fertilizer could be a promising option for suppression of iron deficiency chlorosis and deserves further study.

Key words: slow-release fertilizer, iron-deficiency chlorosis, Lilium davidii var. unicolor, long-term

"

Soil properties Value
pH 8.3
Total carbon (g/kg) 9.4
Total nitrogen (g/kg) 0.77
Total phosphorus (g/kg) 0.77
Available phosphorus (mg/kg) 20.16
Sand (g/kg) 123.2
Silt (g/kg) 669.1
Clay (g/kg) 208.7
CaCO3(g/kg) 133.7
Fe (%) 2.92
Mn (%) 0.071
Zn (%) 0.012

"

Treatment pH TC (mg/kg) TN (mg/kg) TP (mg/kg) AP (mg/kg) Fe (%)
A 8.8a 9.2a 0.78a 1.04a 32.21a 3.31a
B 8.6a 9.2a 0.76a 0.98a 19.82b 3.24a
C 8.6a 9.0a 0.79a 0.99a 20.99b 3.10a
D 8.9a 8.9a 0.80a 0.95a 21.42b 3.11a

"

Time A (mg/kg) B (mg/kg) C (mg/kg) D (mg/kg)
Seeding stage 15.43a 32.62b 45.89c 8.75d
Budding stage 22.27a 19.89a 14.23b 10.17c
Flowering stage 24.87a 14.15b 12.19b 11.84b

"

"

"

Treatment Rate of iron-deficiency chlorosis in 2015 Rate of iron-deficiency chlorosis in 2016
A 6.81% 5.42%
B 2.91% 2.50%
C 12.25% 11.42%
D 15.83% 17.92%

"

Item Treatments
A B C D
Biennial lily yield (kg/hm2) 9,312.35±694.34 10,392.30±519.24 8,517.18±375.98 8,072.72±232.73
Increase over D (%) 15.36 28.73 5.51

"

Treatment Starch
(mg/g FW)
Fibre
(mg/g FW)
Protein
(mg/g FW)
Soluble sugar
(mg/g FW)
Reducing sugar
(mg/g FW)
Vc
(nmol/g FW)
A 149 a 485 a 151 a 159 a 55.54 a 309.7 a
B 145 a 518 a 158 a 180 b 55.68 a 350.6 b
C 135 b 500 a 139 c 161 a 55.12 a 302.2 a
D 130 b 502 a 134 c 150 c 56.22 a 300.1 a

"

Amino acid Treatments
A B C D
EAA Trp 42.52a 45.36a 35.59b 37.55b
Leu 1,440.23a 1,636.32b 1,482.31a 1,412.85a
Lys 688.63a 740.62b 665.72a 625.11c
Ile 168.36a 175.31b 162.62a 174.23b
Phe 560.49a 596.32b 564.38a 549.38a
Met 250.33a 285.96b 241.98a 280.63b
Val 535.22a 576.64b 532.42a 540.38a
TEAA Thr 641.43a 632.15a 602.39b 609.65b
4,327.21a 4,688.68b 4,287.41ac 4,229.78c
Asp 1,915.98a 1,735.68b 1,711.52b 1,700.63b
NEAA Glu 5,623.32a 6,302.41b 5,233.67a 4,681.19c
Cit 81.57a 101.39b 82.53a 80.43a
Ser 625.88a 795.56b 688.16a 779.17b
Gly 538.74a 689.92b 665.22b 667.54b
His 180.5a 250.16b 170.31a 170.57a
Can 18.77a 14.56b 15.27b 16.03c
Arg 537.81a 624.02b 558.13a 600.15b
Acc 684.39a 582.51b 410.09c 339.47d
Ala 412.05a 470.81b 422.36a 438.44a
TNEAA Pro 1,101.76a 1,873.12b 1,074.28a 1,056.99a
Tyr 208.45a 274.37b 259.24b 291.43c
Cys 76.68a 103.34b 75.73a 76.93a
16,342.9a 18,506.53b 15,645.92c 15,128.75c
1 AFNOR, 2004. Évaluation de la qualité des sols, volume 1: méthodes d'analyse chimique. La Plaine Saint-Denis Cedex: Association Française de Normalisation.
2 Broadley MR, White PJ, Hammond JP, et al. Zinc in plants. New Phytologist 2007; 173: 4 677- 702.
doi: 10.1111/j.1469-8137.2007.01996.x
3 Christin H, Petty P, Ouertani K, et al. Influence of iron, potassium, magnesium, and nitrogen deficiencies on the growth and development of sorghum (Sorghum bicolor L.) and sunflower (Helianthus annuus L.) seedlings . Journal of Biotech Research 2009; 1: 3 64- 71.
4 Goos RJ, Johnson B, Jackson G, et al. Greenhouse evaluation of controlled-release iron fertilizers for Soybean. Journal of Plant Nutrition 2004; 27: 1 43- 55.
doi: 10.1081/PLN-120027546
5 Jolley VD, Cook KA, Hansen NC, et al. Plant physiological responses for genotypic evaluation of iron efficiency in strategy I and strategy II plants-a review. Journal of Plant Nutrition 1996; 19: 8-9 1245- 1255.
doi: 10.1080/01904169609365195
6 Kong XW, 1958. Message of Lanzhou-plant. Lanzhou: Gansu Republic Press, pp. 220–221.
7 Li GX Pharmacological effect of Lily (Liliumlancifolium). Journal of Chinese Medicinal Material 1990; 3: 31.
8 Liu JC, Fu LJ, 1999. Lilium Davidii Var. Unicolor and Its Cultivation. Lanzhou: Gansu Science Press, pp. 2–9.
9 Liu WJ, Yu H, Ren LH, et al. Study on the relationship between nutritional ingredient and taste quality of sweetpotato varieties. Science and Technology of Food Industry 2014; 35: 12 91- 95.
doi: 10.13386/j.issn1002-0306.2014.12.010
10 Öborn I, Jansson G, Johnsson L A field study on the influence of soil pH on trace element levels in spring wheat (Triticum aestivum), potatoes (Solanum tuberosum) and carrots (Daucus carota) . Water, Air, and Soil Pollution 1995; 85: 2 835- 840.
doi: 10.1007/BF00476933
11 Tian CL, Jie XL, Liu Y, et al. Effects of Se-Zn and fulvic acid combined application on nutrient component and amino acids formation of alfalfa. Acta Prataculturae Sinica 2014; 23: 2 66- 75.
12 Walkley A, Black IA An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sciences 1934; 37: 1 29- 38.
doi: 10.1097/00010694-193401000-00003
13 Wang F, Qiao L, Zhang QQ, et al. Amino acid composition and nutritional evaluation of mulberry leaves. Food Science 2015; 36: 1 225- 228.
doi: 10.7506/spkx1002-6630-201501043
14 Yang H, Li YJ, Wang CL, et al. Correlation and regression analysis of taste evaluation and nutrient components in Squash. China Vegetables 2016; 11 25- 32.
15 Yu Q, Qi WH, Yu Y, et al. Study on the healthcare function of Vitamin C. Heilongjiang Medicine Journal 2008; 21: 24- 26.
doi: 10.3969/j.issn.1006-2882.2008.06.014
16 Zhou QQ Development present situation and the countermeasures of Lilium davidii var. unicolor industry . Gansu Agricultural Sciences and Technology 2016; 1 64- 66.
doi: 10.3969/j.issn.1001-1463.2016.01.021
17 Zhu GL, Bi J, Xia GL, et al. Effects of different slow-release fertilizers on cucumbers' yield, quality and nutrient use efficiency. Soil and Fertilizer Sciences in China 2013; 1 68- 73.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .