Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (4): 271–291.doi: 10.3724/SP.J.1226.2021.20049.

• •    下一篇

  

  • 收稿日期:2020-06-09 接受日期:2021-04-20 出版日期:2021-08-31 发布日期:2021-08-19

Progress, problems and prospects of palynology in reconstructing environmental change in inland arid areas of Asia

YongTao Zhao1,YunFa Miao1,2(),Yan Lei1,2,XianYong Cao2,3,MingXing Xiang1,2   

  1. 1.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2020-06-09 Accepted:2021-04-20 Online:2021-08-31 Published:2021-08-19
  • Contact: YunFa Miao E-mail:miaoyunfa@lzb.ac.cn
  • Supported by:
    the NSFC(41772181);the Strategic Priority Research Program of CAS(XDA20070200);Young Top Talents Project of the "Ten Thousand Youth Program" of the Organization Department of the Central Committee of the CPC;Youth Innovation Promotion Association, CAS(2014383);"Light of West China" Program, CAS;the NSF of Gansu Province(18JR3RA395)

Abstract:

Studying the climatic and environmental changes on different time scales in inland arid regions of Asia can greatly improve our understanding of climatic influences for the Qinghai-Tibet Plateau in the context of global change. Pollen, as a remnant of seed plants, is sensitive to environmental factors including precipitation, temperature and altitude, and is a classic proxy in environmental reconstruction. In the last two decades, great progress in the application of palynology to inland areas of Asia has highlighted the role of palynology in paleoclimatic and paleoenvironmental research. The main progress is as follows. (1) On the tectonic time scale of the late Cenozoic, the palaeoclimatological sequence has been established on the basis of pollen percentage, concentration and taxon. Pollen data have revealed a continuous enhancement of drought in the inland arid region of Asia, in contrast to evidence acquired based on other proxies. (2) In the late Quaternary, an increase in herbaceous plants further supports the intensification of drought associated with global cooling. In more detail, the palynological record shows a glacial-interglacial pattern consistent with changes in global ice volume. (3) The Holocene pollen record has been established at a high resolution and across a wide range of inland areas. In general, it presents an arid grassland environment in the early Holocene, followed by the development of woody plants in the mid- to late-Holocene climate optimum. This pattern is related to moisture changes in areas dominated by the westerlies. There are also significant regional differences in the pattern and amplitude of vegetation response to the Holocene environment. (4) Modern pollen studies based on vegetation surveys, meteorological data and statistics show that topsoil palynology can better reflect regional vegetation types (e.g., grassland, meadow, desert). Drier climates yield higher pollen contents of drought-tolerant plants such as Chenopodioideae, Ephedra, and Nitriaria, while contents of Artemisia and Poaceae are greater under humid climates. Besides these achievements, problems remain in palynological research: for example, pollen extraction, identification, interpretation, and quantitative reconstruction. In the future, we encourage strengthened interdisciplinary cooperation to improve experimental methods and innovation. Firstly, we should strengthen palynological classification and improve the skill of identification; secondly, laboratory experiments are needed to better constrain pollen transport dynamics in water and air; thirdly, more rigorous mathematical principles will improve the reliability of reconstructions and deepen the knowledge of plant geography; and finally, new areas and methods in palynology should be explored, for example DNA, UV-B and isotopic analysis. It is expected that palynology will continue to develop, and we hope it will continue to play an important role in the study of past climatic and environmental changes.

Key words: Palynology, inland arid areas, Late Cenozoic, Quaternary, Holocene, modern environmental processes

Akhmetyev M, Dodoniv A, Somikova M, et al., 2005. Kazakhstan and Central Asia (plains and foothills). Geological Society of America Special Papers, 382: 139-161. DOI: 10. 1130/0-8137-2382-5.139.
doi: 10. 1130/0-8137-2382-5.139
Alexeeva NV, Erbajeva MA, Sen S, 2001. Geology and fauna, and preliminary correlation of sediments of the main Late Cenozoic sites of the Transbaikal area. Quaternary International, 80-81: 93-100. DOI: 10.1016/S1040-6182(01)00021-0.
doi: 10.1016/S1040-6182(01)00021-0
Allen JR, Brandt U, Brauer A, et al., 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature, 400(6746): 740. DOI: 10.1016/j.quascirev. 2009.01.008.
doi: 10.1016/j.quascirev. 2009.01.008
Allen JRM, Huntley B, 2009. Last Interglacial palaeovegetation, palaeoenvironments and chronology: a new record from Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews, 28(15): 1521-1538. DOI: 10.1016/j.quascirev.2009.02.013.
doi: 10.1016/j.quascirev.2009.02.013
An ZS, Kutzbach JE, Prell WL, et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62-66. DOI: 10.1038/35075035.
doi: 10.1038/35075035
Anderson P, Bartlein P, Brubaker L, et al., 1989. Modern analogues of late-Quaternary pollen spectra from the western interior of North America. Journal of Biogeography, 16(6): 573-596. DOI: 10.2307/2845212.
doi: 10.2307/2845212
Arimoto R, 2001. Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth-Science Reviews, 54(1): 29-42. DOI: 10.1016/S0012-8252(01)00040-X.
doi: 10.1016/S0012-8252(01)00040-X
Ballato P, Mulch A, Landgraf A, et al., 2010. Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth and Planetary Science Letters, 300(1-2): 125-138. DOI: 10.1016/j.epsl.2010.09.043.
doi: 10.1016/j.epsl.2010.09.043
Benca JP, Duijnstee IAP, Looy CV, 2018. UV-B-induced forest sterility: Implications of ozone shield failure in Earth's largest extinction. Science Advances, 4(2): e1700617. DOI: 10. 1126/sciadv. 1700618.
doi: 10. 1126/sciadv. 1700618
Blokker P, Yeloff D, Boelen P, et al., 2005. Development of a proxy for past surface UV-B irradiation: a thermally assisted hydrolysis and methylation py-GC/MS method for the analysis of pollen and spores. Analytical Chemistry, 77(18): 6026-6031. DOI: 10.1021/ac050696k.
doi: 10.1021/ac050696k
Botsyun S, Sepulchre P, Risi C, et al., 2016. Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O. Clim. Past, 12(6): 1401-1420. DOI: 10. 5194/cp-12-1401-2016.
doi: 10. 5194/cp-12-1401-2016
Bowman DM, Balch JK, Artaxo P, et al., 2009. Fire in the Earth system. Science, 324(5926): 481-484. DOI: 10.1126/science.1163886.
doi: 10.1126/science.1163886
Brown AG, Carpenter RG, Walling DE, 2007. Monitoring fluvial pollen transport, its relationship to catchment vegetation and implications for palaeoenvironmental studies. Review of Palaeobotany & Palynology, 147(1-4): 60-76. DOI: 10.1016/j.revpalbo.2007.06.005.
doi: 10.1016/j.revpalbo.2007.06.005
Brown C, 2008. Palynological Techniques. AASP Special Publications.
Brush GS, Brush LM, 1972. Transport of pollen in a sediment-laden channel: a laboratory study. American Journal of Science, 272(4): 359-381. DOI: 10.2475/ajs.272.4.359.
doi: 10.2475/ajs.272.4.359
Cai M, Fang X, Wu F, et al., 2012. Pliocene-Pleistocene stepwise drying of Central Asia: evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau. Global and Planetary Change, 94: 72-81. DOI: 10.1016/j.gloplacha. 2012.07.002.
doi: 10.1016/j.gloplacha. 2012.07.002
Cao XY, Herzschuh U, Telford RJ, et al., 2014. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction. Review of Palaeobotany and Palynology, 211: 87-96. DOI: 10.1016/j.revpalbo. 2014.08.007.
doi: 10.1016/j.revpalbo. 2014.08.007
Cao XY, Tian F, Telford RJ, et al., 2017. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quaternary Science Reviews, 178: 37-53. DOI: 10. 1016/j.quascirev.2017.10.030.
doi: 10. 1016/j.quascirev.2017.10.030
Caves JK, Moragne DY, Ibarra DE, et al., 2016. The Neogene de-greening of Central Asia. Geology, 44(11): 887-890. DOI: 10.1130/G38267.1.
doi: 10.1130/G38267.1
Chang H, Li L, Qiang X, Garzione CN, et al., 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271-283. DOI: 10.1016/j.epsl.2015. 08.029.
doi: 10.1016/j.epsl.2015. 08.029
Chang J, Hui ZC, Geng HP, et al., 2017. Modern Pollen Transportation Process in the Middle Reach of the Heihe River. Scientia Geographica Sinica, 37(12): 144-151. DOI: 10. 13249/j.cnki.sgs.2017.12.017.
doi: 10. 13249/j.cnki.sgs.2017.12.017
Chen DX, Wang W, Liu LN, et al., 2019a. Lake central surface sediment-based pollen-vegetation cover transfer functions and its application in Inner Mongolia Plateau and adjacent area. Arid Land Geography, 42(5): 1011-1022. (in Chinese). DOI: 10.12118/j.issn.1000-6060.2019.05.06.
doi: 10.12118/j.issn.1000-6060.2019.05.06
Chen FH, Chen J, Huang W, et al., 2019b. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews, 192: 337-354. DOI: 10.1016/j.earscirev.2019.03.005.
doi: 10.1016/j.earscirev.2019.03.005
Chen FH, Jia J, Chen J, et al., 2016. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quaternary Science Reviews, 146: 134-146. DOI: 10.1016/j.quascirev.2016.06.002.
doi: 10.1016/j.quascirev.2016.06.002
Chen FH, Qiang M, Zhou A, et al., 2013. A 2000-year dust storm record from Lake Sugan in the dust source area of arid China. Journal of Geophysical Research: Atmospheres, 118(5): 2149-2160. DOI: 10.1002/jgrd.50140.
doi: 10.1002/jgrd.50140
Chen FH, Yu Z, Yang M, et al., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27(3): 351-364. DOI: 10.1016/j.quascirev.2007.10.017.
doi: 10.1016/j.quascirev.2007.10.017
Chen H, Lü XM, Li SC, 2004. A study on topsoil pollens in the east of Qaidam Basin. Geographical Research, 23(2): 201-210. DOI: 10.11821/yj2004020008. (in Chinese)
doi: 10.11821/yj2004020008.
Cheng B, Chen FH, 2010. Pollen analysis of topsoil samples from Shiyang River drainage, Northwest China. Journal of Desert Research, 30(2): 350-356. (in Chinese)
Chupina L, 1974. Paleogeograficheskie usloviya severo-zapada Tsentral'nogo Kazakhstana v pozdnem pleistotsene i golotsene. Unpublished PhD thesis, Kazakh State University, Alma-Ata.
Clark JS, 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research, 30(1): 67-80. DOI: 10.1016/0033-5894(88)90088-9.
doi: 10.1016/0033-5894(88)90088-9
Cour P, Zheng Z, Duzer D, et al., 1999. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Review of Palaeobotany and Palynology, 104(3-4): 183-204. DOI: 10.1016/S0034-6667(98)00062-1.
doi: 10.1016/S0034-6667(98)00062-1
Crawford AJ, Belcher CM, 2014. Charcoal morphometry for paleoecological analysis: the effects of fuel type and transportation on morphological parameters. Applications in Plant Sciences, 2(8): 1400004. DOI: 10.3732/apps.1400004.
doi: 10.3732/apps.1400004
Cui Q, Zhao Y, Qin F, et al., 2019. Characteristics of the modern pollen assemblages from different vegetation zones in Northeast China: Implications for pollen-based climate reconstruction. Science China (Earth Science), 62(10): 1564-1577. DOI: 10.1007/s11430-018-9386-9.
doi: 10.1007/s11430-018-9386-9
Daniau AL, Goñi MFS, Martinez P, et al., 2013. Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences, 110(13): 5069-5073. DOI: 10.1073/pnas.1214292110.
doi: 10.1073/pnas.1214292110
Davis MB, 1963. On the theory of pollen analysis. American Journal of Science, 261(10): 897-912. DOI: 10.2475/ajs. 261.10.897.
doi: 10.2475/ajs. 261.10.897
Ding ZL, Xiong SF, Sun JM, et al., 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1): 49-66. DOI: 10.1016/S0031-0182(99)00034-6.
doi: 10.1016/S0031-0182(99)00034-6
Doher I, 1980. Palynomorph preparation procedures currently used in the paleontology and stratigraphy laboratories, U.S. Geological Survey. Geological Survey Circular830. DOI: 10.1016/j.jnoncrysol.2004.12.014.
doi: 10.1016/j.jnoncrysol.2004.12.014
Dong GH, 2018. Understanding past human-environment interaction from an interdisciplinary perspective. Science Bulletin, 63(16): 1023-1024. DOI: 10.1016/j.scib.2018.07.013.
doi: 10.1016/j.scib.2018.07.013
Dong GH, Jia X, Elston R, et al., 2013. Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. Journal of Archaeological Science, 40(5): 2538-2546. DOI: 10.1016/j.jas.2012.10.002.
doi: 10.1016/j.jas.2012.10.002
Dong GH, Yang Y, Liu X, et al., 2017. Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China. The Holocene, 28(4): 621-628. DOI: 10.1177/0959683617735585.
doi: 10.1177/0959683617735585
Dong Z, Qinan G, Lu P, et al., 2009. Turbulence fields in the lee of two-dimensional transverse dunes simulated in a wind tunnel. Earth Surface Processes and Landforms, 34(2): 204-216. DOI: 10.1002/esp.1704.
doi: 10.1002/esp.1704
Dubrovo IA, 1960. Ancient elephants of the USSR: Proceedings of the Paleontological Institute, The USSR Academy of Science, LXXXV, PP. 246.
El-Moslimany AP, 1990. Ecological significance of common nonarboreal pollen: examples from drylands of the Middle East. Review of Palaeobotany and Palynology, 64(1): 343-350. DOI: 10.1016/0034-6667(90)90150-H.
doi: 10.1016/0034-6667(90)90150-H
El-Soughier MI, Mahmoud MS, Li J, 2010. Palynology and palynofacies of the Lower Cretaceous succession of the Matruh2-1X borehole, northwestern Egypt. Revista Española De Micropaleontología, 42(1): 37-58. DOI: 10. 1007/s12517-012-0805-1.
doi: 10. 1007/s12517-012-0805-1
Enache MD, Cumming BF, 2006. Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quaternary Research, 65(2): 282-292. DOI: 10.1016/j.yqres.2005.09.003.
doi: 10.1016/j.yqres.2005.09.003
Fang JY, Piao S, Zhou L, et al., 2005. Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters, 32(21). DOI: 10.1029/2005GL024231.
doi: 10.1029/2005GL024231
Fang JY, Yoda K, 1990. Climate and vegetation in China IV. Distribution of tree species along the thermal gradient. Ecological Research, 5(3): 291-302. DOI: 10.1007/BF02347005.
doi: 10.1007/BF02347005
Feng XH, Yan S, Ni J, 2011. Pollen-based and Quantitative Reconstruction of Holocene Palaeovegetation of Surface Soil of Xinjiang. Scientia Geographica Sinica, 31(6): 702-707. (in Chinese)
Fraser WT, Sephton MA, Watson JS, et al., 2011. UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change. Polar Research, 30(1): 8312. DOI: 10.3402/polar.v30i0.8312.
doi: 10.3402/polar.v30i0.8312
Ge Y, Li Y, Bunting MJ, et al., 2017. Relation between modern pollen rain, vegetation and climate in northern China: Implications for quantitative vegetation reconstruction in a steppe environment. Science of the Total Environment, 586: 25-41. DOI: 10.1016/j.scitotenv.2017.02.027.
doi: 10.1016/j.scitotenv.2017.02.027
Guiot J, 1990. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol, 80(1): 49-69. DOI: 10.1016/0031-0182(90)90033-4.
doi: 10.1016/0031-0182(90)90033-4
Guo C, Ma YZ, Li DD, et al., 2020. Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: Implications of palaeoclimatic and palaeocological reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 547: 109699. DOI: 10.1016/j.palaeo.2020.109699.
doi: 10.1016/j.palaeo.2020.109699
Han ST, Pan AD, Zhao QH, 1989. Bio-stratigraphy and palaeoclimate during Late Quaternary in Barkol Lake, Xinjiang. Chinese Science Bulletin, 15: 1168-1172. (in Chinese)
Hao H, Ferguson DK, Chang H, et al., 2012. Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Climatic Change, 113(2): 323-338. DOI: 10. 1007/s10584-011-0347-7.
doi: 10. 1007/s10584-011-0347-7
Harrison SP, Kohfeld KE, Roelandt C, et al., 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews, 54(1): 43-80. DOI: 10.1016/S0012-8252(01)00041-1.
doi: 10.1016/S0012-8252(01)00041-1
Herb C, Koutsodendris A, Zhang W, et al., 2015. Late Plio-Pleistocene humidity fluctuations in the western Qaidam Basin (NE Tibetan Plateau) revealed by an integrated magnetic-palynological record from lacustrine sediments. Quaternary Research, 84(3): 457-466. DOI: 10.1016/j.yqres. 2015.09.009.
doi: 10.1016/j.yqres. 2015.09.009
Herb C, Zhang W, Koutsodendris A, et al., 2013. Environmental implications of the magnetic record in Pleistocene lacustrine sediments of the Qaidam Basin, NE Tibetan Plateau. Quaternary International, 313: 218-229. DOI: 10.1016/j.quaint.2013.06.015.
doi: 10.1016/j.quaint.2013.06.015
Herring JR, 1985. Charcoal fluxes into sediments of the North Pacific Ocean: the Cenozoic record of burning. The Carbon cycle and Atmospheric CO2: Natural Variations Archean to Present, 32: 419-442. DOI: 10.1029/GM032
doi: 10.1029/GM032
Herzschuh U, 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews, 25(1-2): 163-178. DOI: 10.1016/j.quascirev.2005.02.006.
doi: 10.1016/j.quascirev.2005.02.006
Herzschuh U, 2007. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. Journal of Biogeography, 34(7): 1265-1273. DOI: 10.1111/j.1365-2699. 2006.01680.x.
doi: 10.1111/j.1365-2699. 2006.01680.x
Herzschuh U, Kürschner H, Yuzhen M, 2003. The surface pollen and relative pollen production of the desert vegetation of the Alashan Plateau, western Inner Mongolia. Chinese Science Bulletin, 48(14): 1488-1493. DOI: 10.1360/02wd0256.
doi: 10.1360/02wd0256
Herzschuh U, Tarasov P, Wünnemann B, et al., 2004. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(1-2): 1-17. DOI: 10.1016/j.palaeo.2004.04.001.
doi: 10.1016/j.palaeo.2004.04.001
Horowitz A, 1992. Palynology of arid lands. Elsevier.
Huang CC, Pang J, Chen SE, et al., 2006. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(1-2): 28-44. DOI: 10. 1016/j.palaeo.2006.01.004.
doi: 10. 1016/j.palaeo.2006.01.004
Huang X, Chen X, Du X, 2018. Modern pollen assemblages from human-influenced vegetation in northwestern China and their relationship with vegetation and climate. Vegetation History and Archaeobotany, 27(6): 767-780. DOI: 10.1007/s00334-018-0672-0.
doi: 10.1007/s00334-018-0672-0
Huang X, Zhang J, Storozum M, et al., 2020. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts. Review of Palaeobotany and Palynology, 275: 104171. DOI: 10.1016/j.revpalbo.2020.104171.
doi: 10.1016/j.revpalbo.2020.104171
Huang X, Zhou G, Ma Y, et al., 2010. Pollen distribution in large freshwater lake of arid region: A case study on the surface sediments from Bosten Lake, Xinjiang, China. Frontiers of Earth Science in China, 4(2): 174-180. DOI: 10.1007/s11707-009-0060-2.
doi: 10.1007/s11707-009-0060-2
Hui Z, Li J, Xu Q, et al., 2011. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3-4): 373-382. DOI: 10.1016/j.palaeo.2011.05.043.
doi: 10.1016/j.palaeo.2011.05.043
Huxman TE, Smith MD, Fay PA, et al., 2004. Convergence across biomes to a common rain-use efficiency. Nature, 429(6992): 651-654. DOI: 10.1038/nature02561.
doi: 10.1038/nature02561
Jiang D, Tian Z, Lang X, 2013. Mid-Holocene net precipitation changes over China: model-data comparison. Quaternary Science Reviews, 82: 104-120. DOI: 10.1016/j.quascirev. 2013.10.017.
doi: 10.1016/j.quascirev. 2013.10.017
Jiang H, Ding Z, 2008. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1): 30-38. DOI: 10.1016/j.palaeo.2008.04.016.
doi: 10.1016/j.palaeo.2008.04.016
Jiang Q, Ji J, Shen J, et al., 2012. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. Science China Earth Sciences, 56(3): 339-353. DOI: 10.1007/s11430-012-4550-9.
doi: 10.1007/s11430-012-4550-9
Jickells TD, An ZS, Andersen KK, et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718): 67-71. DOI: 10.1126/science.1105959.
doi: 10.1126/science.1105959
Kataoka H, Miyoshi N, Hase Y, et al., 2002. Pollen analysis of a sediment core (BDP 96-1) from lake baikal. Acta Palaeontologica Sinica, 41(4): 534-538.
Kitaba I, Nakagawa T, 2017. Black ceramic spheres as marker grains for microfossil analyses, with improved chemical, physical, and optical properties. Quaternary International, 455: 166-169. DOI: 10.1016/j.quaint.2017.08.052.
doi: 10.1016/j.quaint.2017.08.052
Körner C, 2012. Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media. DOI: 10.1659/mrd.mm124.
doi: 10.1659/mrd.mm124
Koutsodendris A, Allstädt FJ, Kern OA, et al., 2019. Late Pliocene vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by early Northern Hemisphere glaciation. Global and Planetary Change, 180: 117-125. DOI: 10. 1016/j.gloplacha.2019.06.001.
doi: 10. 1016/j.gloplacha.2019.06.001
Koutsodendris A, Sachse D, Appel E, et al., 2018. Prolonged monsoonal moisture availability preconditioned glaciation of the Tibetan Plateau during the Mid-Pleistocene Transition. Geophysical Research Letters, 45(23): 13020-13030. DOI: 10.1029/2018GL079303.
doi: 10.1029/2018GL079303
Li CH, He CJ, 2004. Preparation technique of HF treatment for extracting pollen and spores from loess sediments. Acta Micropalaeontologica Sinica, 21(3): 346-348. (in Chinese)
Li D, Wei L, Cai Y, et al., 2003. The present facts and the future tendency of the climate change in northwest China. Journal of Glaciology and Geocryology, 25(02): 135-142. (in Chinese)
Li F, Gaillard MJ, Cao X, et al., 2020a. Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth-Science Reviews, 203: 103119. DOI: 10.1016/j.earscirev.2020.103119.
doi: 10.1016/j.earscirev.2020.103119
Li GY, Qian ZS, Hu Y, 1995. Pollen Analysis Technical Manual. Beijing: Geological Publishing House. (in Chinese)
Li H, An C, Fan W, et al., 2015a. Population history and its relationship with climate change on the Chinese Loess Plateau during the past 10,000 years. The Holocene, 25(7): 1144-1152. DOI: 10.1177/0959683615580200.
doi: 10.1177/0959683615580200
Li J, Batten DJ, 2005. Palynofacies principles and methods. Acta Botanica Sinica, 44(1): 138-156. (in Chinese)
Li J, Yue L, Roberts A, et al., 2018. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nature Communications, 9(1): 3026. DOI: 10.1038/s41467-018-05415-x.
doi: 10.1038/s41467-018-05415-x
Li JF, Xie G, Yang J, et al., 2020b. Asian Summer Monsoon changes the pollen flow on the Tibetan Plateau. Earth-Science Reviews, 202: 103114. DOI: 10.1016/j.earscirev.2020. 103114.
doi: 10.1016/j.earscirev.2020. 103114
Li WY, 1991. On dispersal efficiency of Picea pollen. Acta Botanica Sinica, 33(10): 792-800. (in Chinese)
Li XQ, Zhou J, Ashraf A, et al., 1999. A new way of sporo-pollen analysis in loess deposits: sieving-analysis method. Journal of Desert Research, 19(4): 399-402. (in Chinese)
Li Y, Wang NA, Xu QH, et al., 2007. Investigation of Quarternary pollen and spores extraction methods in north China. Acta Sedimentologica Sinica, 25(1): 124-130. (in Chinese)
Li Y, Xu Q, Zhao Y, et al., 2005a. Pollen indication to source plants in the eastern desert of China. Chinese Science Bulletin, 50(15): 1632-1641. DOI: 10.1360/04wd0170.
doi: 10.1360/04wd0170
Li Y, Zhang Y, Wang J, et al., 2019a. Preliminary study on pollen, charcoal records and environmental evolution of Alahake Saline Lake in Xinjiang since 4,700 cal yr BP. Quaternary International, 513: 8-17. DOI: 10.1016/j.quaint.2019. 01.014.
doi: 10.1016/j.quaint.2019. 01.014
Li YC, Ge YW, Xu QH, et al., 2015b. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China. Atmospheric Environment, 106: 92-99. DOI: 10.1016/j.atmosenv.2015.01.066.
doi: 10.1016/j.atmosenv.2015.01.066
Li YC, Xu QH, Cao XY, et al., 2008. Pollen influx and surface pollen assemblage on the northern slope of Taibai Mountain. Geographical Research, 27(3): 536-546. (in Chinese). DOI: 10.11821/yj2008030007.
doi: 10.11821/yj2008030007
Li YC, Xu QH, Xiao JL, et al., 2005b. Indication of some major pollen taxa in surface samples to their parent plants of forest in northern China. Quaternary Sciences, 25(5): 598-608. (in Chinese)
Li YC, Xu QH, Yang XL, et al., 2005c. Pollen-vegetation relationship and pollen preservation on the Northeastern Qinghai-Tibetan Plateau. Grana, 44(3): 160-171. DOI: 10.1080/00173130500230608.
doi: 10.1080/00173130500230608
Li YY, Zhang Y, Ni J, et al., 2019b. The correlation between airborne Betula pollen content and meteorological factors in the Tianshan Mountains, Xinjiang, China. Chinese Science Bulletin, 64(18): 1909-1921. (in Chinese)
Lisiecki LE, Raymo ME, 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). DOI: 10.1029/2004PA001071.
doi: 10.1029/2004PA001071
Liu H, Cui H, Pott R, et al., 1999. The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China. Review of Palaeobotany & Palynology, 105(3): 237-250. DOI: 10.1016/S0034-6667(98)00074-8.
doi: 10.1016/S0034-6667(98)00074-8
Liu H, Yi W, Tian Y, et al., 2006. Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes. Review of Palaeobotany & Palynology, 138(3-4): 281-289. DOI: 10.1016/j.revpalbo.2006.01.008.
doi: 10.1016/j.revpalbo.2006.01.008
Liu J, Li JJ, Song CH, et al., 2016. Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau. Climate of the Past, 12(7): 1473-1484. DOI: 10.5194/cp-12-1473-2016.
doi: 10.5194/cp-12-1473-2016
Liu L, Wang W, Chen D, et al., 2020. Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 543. DOI: 10.1016/j.palaeo. 2020.109600.
doi: 10.1016/j.palaeo. 2020.109600
Liu TS, 1985. Loess and the Environment, Beijing: China Ocean Press, pp. 1-251. (in Chinese)
Lomax BH, Fraser WT, Sephton MA, et al., 2008. Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience, 1: 592. DOI: 10.1038/ngeo278.
doi: 10.1038/ngeo278
Lu H, Guo Z, 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review. Science China Earth Sciences, 57(1): 70-79. DOI: 10.1007/s11430-013-4790-3.
doi: 10.1007/s11430-013-4790-3
Lu H, Wang X, Wang X, et al., 2019. Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Science Reviews, 194: 251-263. DOI: 10.1016/j.earscirev.2019. 04.014.
doi: 10.1016/j.earscirev.2019. 04.014
Lu KQ, Qin F, Li Y, et al., 2020. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert. Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109762. DOI: 10. 1016/j.palaeo.2020.109762.
doi: 10. 1016/j.palaeo.2020.109762
Luly JG, 1997. Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia. Review of Palaeobotany and Palynology, 97(3): 301-318. DOI: 10.1016/S0034-6667(97)81533-3.
doi: 10.1016/S0034-6667(97)81533-3
Luo C, Zheng Z, Tarasov P, et al., 2009. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Review of Palaeobotany and Palynology, 153(3-4): 282-295. DOI: 10.1016/j.revpalbo.2008.08.007.
doi: 10.1016/j.revpalbo.2008.08.007
Luo C, Zheng Z, Tarasov P, et al., 2010. A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China. Review of Palaeobotany and Palynology, 160(3-4): 111-125. DOI: 10.1016/j.revpalbo.2010.01.003.
doi: 10.1016/j.revpalbo.2010.01.003
Luo CX, Zheng Z, Pan AD, et al., 2007. Distribution of surface soil spore-pollen and its relationship with vegetation in Xinjiang, China. Arid Land Geography, 30(4): 536-543. (in Chinese)
Luo CX, Zheng Z, Pan AD, et al., 2008. Spatial distribution of modern pollen in Xinjiang region. Scientia Geographica Sinica, 28(2): 272-275. (in Chinese)
Lü HY, Wang SY, Shen CM, et al., 2004a. Spatial pattern of modern Abies and Picea pollen in the Qinghai-Xizang Plateau. Quaternary Sciences, 24(1): 39-49. (in Chinese)
Lü HY, Wu NQ, Liu K, et al., 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quaternary Science Reviews, 30(7-8): 947-966. DOI: 10.1016/j.quascirev.2011.01.008.
doi: 10.1016/j.quascirev.2011.01.008
Lü XM, Chen H, Li SC, et al., 2004b. Surface pollen assemblages and quantitative characteristics in Eastern Qilian Mountains. Journal of Mountain Science, 22(2): 199-206. (in Chinese)
Lü XM, Paudayal KN, Uhl D, et al., 2020. Phenology and climatic regime inferred from airborne pollen on the northern slope of the Qomolangma (Everest) region. Journal of Geophysical Research: Atmospheres, 125: e2020JD033405. DOI: 10.1029/2020JD033405.
doi: 10.1029/2020JD033405
Lü XM, Wu SH, Chen H, et al., 2004c. Modern pollen precipitation in the southern slope of the Eastern Qilian Mountains and its relationship to vegetation. Journal of Beijing Forestry University, 26(5): 57-62. (in Chinese)
Ma Y, Fang X, Li J, et al., 2005. The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China. Science in China Series D: Earth Sciences, 48(5): 676. DOI: 10.1360/03yd0110.
doi: 10.1360/03yd0110
Ma Y, Li J, Fang X, 1998. A record of polynoflora and climatic evolution of Red Bed between 30.6 to5.0 Ma BP, Linxia Basin. Chinese Science Bulletin, 43(3): 301-304. (in Chinese)
Ma YZ, Liu KB, Feng ZD, et al., 2008. A survey of modern pollen and vegetation along a south-north transect in Mongolia. Journal of Biogeography, 35(8): 1512-1532. DOI: 10.1111/j.1365-2699.2007.01871.x.
doi: 10.1111/j.1365-2699.2007.01871.x
Malgina EA, 1961. Results of pollen analysis of the Quaternary and upper Pliocene sediments from the Balkhan region of western Turkmenistan. In: Shatser EV(ed.). Proceeding of the All-Union Conference on Quaternary Studies: Moscow. USSR Academy of Science Press. Pt. 1. P. 296-303.
Miao YF, Fang XM, Herrmann M, et al., 2011a. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1-2): 30-38.
Miao YF, Fang XM, Liu YSC, et al., 2016a. Late Cenozoic pollen concentration in the western Qaidam Basin, northern Tibetan Plateau, and its significance for paleoclimate and tectonics. Review of Palaeobotany and Palynology, 231: 14-22. DOI: 10.1016/j.revpalbo.2016.04.008.
doi: 10.1016/j.revpalbo.2016.04.008
Miao YF, Fang XM, Song C, et al., 2016b. Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records. Quaternary Science Reviews, 139: 53-66. DOI: 10.1016/j.quascirev.2016.02.030.
doi: 10.1016/j.quascirev.2016.02.030
Miao YF, Fang XM, Wu F, et al., 2013a. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records. Climate of the Past, 9(4): 1863-1877. DOI: 10.5194/cpd-9-1485-2013.
doi: 10.5194/cpd-9-1485-2013
Miao YF, Jin H, Cui J, 2016c. Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China. Scientific Reports, 6: 23003. DOI: 10.1038/srep23003.
doi: 10.1038/srep23003
Miao YF, Jin H, Liu B, et al., 2015. Holocene climate change on the northeastern Tibetan Plateau inferred from mountain-slope pollen and non-pollen palynomorphs. Review of Palaeobotany and Palynology, 221: 22-31. DOI: 10.1016/j.revpalbo.2015.05.006.
doi: 10.1016/j.revpalbo.2015.05.006
Miao YF, Meng Q, Fang X, et al., 2011c. Origin and development of Artemisia (Asteraceae) in Asia and its implications for the uplift history of the Tibetan Plateau: a review. Quaternary International, 236(1-2): 3-12. DOI: 3-12. 10.1016/j.quaint.2010.08.014.
doi: 3-12. 10.1016/j.quaint.2010.08.014
Miao YF, Song C, Fang X, et al., 2016d. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon evolution. Gondwana Research, 29(1): 320-333. DOI: 10.1016/j.gr.2014.12.007.
doi: 10.1016/j.gr.2014.12.007
Miao YF, Song Y, Li Y, et al., 2020. Late Pleistocene fire in the Ili Basin, Central Asia, and its potential links to paleoclimate change and human activities. Palaeogeography, Palaeoclimatology, Palaeoecology, 547: 109700. DOI: 10.1016/j.palaeo.2020.109700.
doi: 10.1016/j.palaeo.2020.109700
Miao YF, Warny S, Clift PD, et al., 2018a. Climatic or tectonic control on organic matter deposition in the South China Sea?A lesson learned from a comprehensive Neogene palynological study of IODP Site U1433. International Journal of Coal Geology, 190: 166-177. DOI: 10.1016/j.coal. 2017.10.003.
doi: 10.1016/j.coal. 2017.10.003
Miao YF, Warny S, Liu C, et al., 2017a. Neogene fungal record from IODP Site U1433, South China Sea: Implications for paleoenvironmental change and the onset of the Mekong River. Marine Geology, 394: 69-81. DOI: 10.1016/j.margeo.2017.05.007.
doi: 10.1016/j.margeo.2017.05.007
Miao YF, Wu F, Fang X, et al., 2018b. Preliminary exploration of the fungal spores in Qaidam Basin, north Tibetan Plateau during the Miocene period. Quaternary Science, 38(1): 67-75. DOI: 10.11928/j.issn.1001-7410. 2018.01.05. (in Chinese)
doi: 10.11928/j.issn.1001-7410. 2018.01.05.
Miao YF, Yan X, Shao Y, et al., 2011b. Cenozoic Ephedraceae adaptation to global cooling in northwestern China. Sciences in Cold and Arid Regions, 3(0375): e0380.
Miao YF, Zhang D, Cai X, et al., 2017b. Holocene fire on the northeast Tibetan Plateau in relation to climate change and human activity. Quaternary International, 443: 124-131. DOI: 10.1016/j.quaint.2016.05.029.
doi: 10.1016/j.quaint.2016.05.029
Miao YF, Shao YJ, Wu FL, et al., 2013b. Automatic water-changing device for pollen and spore extraction. Patent, ZL201320091591.9. (in Chinese)
Miao YF, Shao YJ, Wu FL, et al., 2013c. Automatic water changing device for micro-paleontology extraction. Patent, ZL201310063374.3. (in Chinese)
Miao YF, Wang YP, Sun AJ, et al., 2014. A device for improving reaction efficiency of HF and silicate sample in sporopollen extraction process. Patent No. ZL201420059466.4. (in Chinese)
Miao YF, Wu FL, Warny S, et al., 2019. Miocene fire intensification linked to continuous aridification on the Tibetan Plateau. Geology, 47(4): 303-307. DOI: 10.1130/G45720.1.
doi: 10.1130/G45720.1
Moore PD, Webb JA, Collinson ME, 1991. Pollen Analysis. Journal of Ecology, 80(4): 216. DOI: 10.2307/2260877.
doi: 10.2307/2260877
Nelson DM, 2012. Carbon isotopic composition of Ambrosia and Artemisia pollen: assessment of a C3‐plant paleophysiological indicator. New Phytologist, 195(4): 787-793. DOI: 10.1111/j.1469-8137.2012.04219.x.
doi: 10.1111/j.1469-8137.2012.04219.x
Nelson DM, Hu FS, Michener RH, 2006. Stable-carbon isotope composition of Poaceae pollen: an assessment for reconstructing C3 and C4 grass abundance. The Holocene, 16(6): 819-825. DOI: 10.1191/0959683606hol974rp.
doi: 10.1191/0959683606hol974rp
Nelson DM, Hu FS, Mikucki JA, et al., 2007. Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface. Geochimica et Cosmochimica Acta, 71(16): 4005-4014. DOI: 10.1016/j.gca.2007.06.002.
doi: 10.1016/j.gca.2007.06.002
Nelson DM, Hu FS, Scholes DR, et al., 2008. Using SPIRAL (Single Pollen Isotope Ratio AnaLysis) to estimate C3- and C4-grass abundance in the paleorecord. Earth and Planetary Science Letters, 269(1-2): 11-16. DOI: 10.1016/j.epsl. 2008.03.001.
doi: 10.1016/j.epsl. 2008.03.001
Nelson DM, Urban MA, Kershaw AP, et al., 2016. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire. Quaternary Science Reviews, 139: 67-76. DOI: 10.1016/j.quascirev.2016.03.006.
doi: 10.1016/j.quascirev.2016.03.006
Nie J, Pullen A, Garzione CN, et al., 2018. Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates. Science Advances, 4(2): eaao6977. DOI: 10. 1126/sciadv.aao6977.
doi: 10. 1126/sciadv.aao6977
Pan A, 1999. Study on Paleo-environment evolution of loess section in Yandonggou, Lanzhou. Journal of Arid Land Resources and Environment, 13(3): 44-53. (in Chinese)
Pan AD, 1993. Research on spore-pollen assemblages in surface soil of various vegetation in northern slope of the Tianshan Mountain. Scientia Geographica Sinica, 13(3): 227-233. (in Chinese)
Pan YF, Yan S, Behling H, et al., 2013. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction. Aerobiologia, 29(2): 161-173. DOI: 10.1007/s10453-012-9270-2.
doi: 10.1007/s10453-012-9270-2
Patterson III WA, Edwards KJ, Maguire DJ, 1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6(1): 3-23. DOI: 10.1016/0277-3791(87)90012-6.
doi: 10.1016/0277-3791(87)90012-6
Powell AJ, Dodge JD, Lewis J, 1990. Late Neogene to Pleistocene Palynological Facies of the Peruvian Continental Margin Upwelling, Leg 112. Proceedings of the Ocean Drilling Program Scientific Results, 112: 297-321. DOI: 10.2973/odp.proc.sr.112.196.1990.
doi: 10.2973/odp.proc.sr.112.196.1990
Qin F, Zhao Y, Li Q, et al., 2015. Modern pollen assemblages from surface lake sediments in northwestern China and their importance as indicators of vegetation and climate. Science China Earth Sciences, 58(9): 1643-1655. DOI: 10.1007/s11430-015-5111-9.
doi: 10.1007/s11430-015-5111-9
Rea DK, Leinen M, Janecek TR, 1985. Geologic approach to the long-term history of atmospheric circulation. Science, 227(4688): 721. DOI: 10.1016/0031-0182(90)90108-J.
doi: 10.1016/0031-0182(90)90108-J
Rhodes TE, Gasse F, Lin R, et al., 1996. A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeography Palaeoclimatology Palaeoecology, 120(1-2): 105-121. DOI: 10.1016/0031-0182(95)00037-2.
doi: 10.1016/0031-0182(95)00037-2
Roij L, Sluijs A, Laks JJ, et al., 2017. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 31(1): 47-58. DOI: 10. 1002/rcm.7769.
doi: 10. 1002/rcm.7769
Routson CC, McKay NP, Kaufman DS, et al., 2019. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature, 568(7750): 83-87. DOI: 10. 1038/s41586-019-1060-3.
doi: 10. 1038/s41586-019-1060-3
Rozema J, Broekman RA, Blokker P, et al., 2001. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. Journal of Photochemistry and Photobiology B: Biology, 62(1-2): 108-117. DOI: 10.1016/S1011-1344(01)00155-5.
doi: 10.1016/S1011-1344(01)00155-5
Schieber J, 2011. Reverse engineering mother nature-Shale sedimentology from an experimental perspective. Sedimentary Geology, 238(1-2): 1-22. DOI: 10.1016/j.sedgeo.2011. 04.002.
doi: 10.1016/j.sedgeo.2011. 04.002
Shang X, Li XQ, An ZS, et al., 2009. Modern pollen rain in the Lake Qinghai basin, China. Science in China Series D: Earth Sciences, 52(10): 1510-1519. DOI: 10.1007/s11430-009-0150-8.
doi: 10.1007/s11430-009-0150-8
Shen C, Liu K, Tang L, et al., 2008. Numerical analysis of modern and fossil pollen data from the Tibetan Plateau. Annals of the Association of American Geographers, 98(4): 755-772.
Shen C-M, Liu K, Tang LY, et al., 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Review of Palaeobotany and Palynology, 140(1-2): 61-77. DOI: 10.1016/j.revpalbo.2006.03.001.
doi: 10.1016/j.revpalbo.2006.03.001
Shen X, Wan S, Colin C, et al., 2018. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary. Earth and Planetary Science Letters, 502: 74-83. DOI: 10.1016/j.epsl.2018. 08.056.
doi: 10.1016/j.epsl.2018. 08.056
Song L, Zhang C, 2003. Changing features of precipitation over Nothwest China during the 20th century. Journal of Glaciology and Geocryology, 25(02): 143-148. (in Chinese)
Song Z, 1999. Fossil spores and pollen of China(Vol.1), the Late Cretaceous and Tertianry spores and Pollen. Beijing: Science Press.
Stockmarr J, 1971. Tablets with spores used in absolute pollen analysis. Pollen and Spores, 13(13): 615-621.
Sugita S, 2007. Theory of quantitative reconstruction of vegetation. I. Pollen from large sites REVEALS regional vegetation composition. The Holocene, 17. DOI: 10.1177/0959683607075837.
doi: 10.1177/0959683607075837
Sun J, Zhang Z, 2008. Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Global and Planetary Change, 64(1): 53-68. DOI: 10.1016/j.gloplacha. 2008.09.001.
doi: 10.1016/j.gloplacha. 2008.09.001
Sun X, Wang P, 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3): 181-222. DOI: 10.1016/j.palaeo.2005.03.005.
doi: 10.1016/j.palaeo.2005.03.005
Sun XJ, Du N, Weng CY, et al., 1994. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, N. W. China during the last 14000 years. Quaternary Science, (3): 239-248. (in Chinese)
Tang Z, Ding Z, White PD, et al., 2011. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth and Planetary Science Letters, 302(3): 439-447. DOI: 10.1016/j.epsl.2010.12.042.
doi: 10.1016/j.epsl.2010.12.042
Thevenon F, Anselmetti FS, 2007. Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications. Quaternary Science Reviews, 26(19-21): 2631-2643. DOI: 10.1016/j.quascirev. 2007.05.007.
doi: 10.1016/j.quascirev. 2007.05.007
Thilakanayaka V, Chuanxiu L, Xiang R, et al., 2019. Sediment provenance of the Nansha Trough since 40 ka B.P. in the South China Sea: evidence from δ13Corg, TOC and pollen composition. Frontiers in Earth Science, 7(110). DOI: 10. 3389/feart.2019.00110.
doi: 10. 3389/feart.2019.00110
Tkach NV, Hoffmann MH, Röser M, et al., 2008. Temporal patterns of evolution in the Arctic explored in Artemisia L. (Asteraceae) lineages of different age. Plant Ecology & Diversity, 1(2): 161-169. DOI: 10.1080/17550870802331912.
doi: 10.1080/17550870802331912
Traverse A, 2007. Paleopalynology. Springer: The Netherlands. 816 PP.
Tzedakis P, 2005. Towards an understanding of the response of southern European vegetation to orbital and suborbital climate variability. Quaternary Science Reviews, 24(14-15): 1585-1599. DOI: 10.1016/j.quascirev.2004.11.012.
doi: 10.1016/j.quascirev.2004.11.012
Tzedakis P, Roucoux K, De Abreu L, et al., 2004. The duration of forest stages in southern Europe and interglacial climate variability. Science, 306(5705): 2231-2235. DOI: 10.1126/science.1102398.
doi: 10.1126/science.1102398
Uematsu M, Duce RA, Prospero JM, et al., 1983. Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research: Oceans, 88(C9): 5343-5352. DOI: 10.1029/JC088iC09p05343.
doi: 10.1029/JC088iC09p05343
Umbanhowar Jr CE, Mcgrath MJ, 1998. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene, 8(3): 341-346. DOI: 10.1191/095968398666496051.
doi: 10.1191/095968398666496051
Urban MA, Dm N, Fa SP, et al., 2015. A late-Quaternary perspective, on atmospheric pCO2, climate, and fire as drivers of C4-grass abundance. Ecology, 96(3): 642-653. DOI: 10. 1890/14-0209.1.
doi: 10. 1890/14-0209.1
Urban MA, Nelson DM, Jiménez-Moreno G, et al., 2010. Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene. Geology, 38(12): 1091-1094. DOI: 10.1130/G31117.1.
doi: 10.1130/G31117.1
Urban MA, Nelson DM, Kelly R, et al., 2013. A hierarchical Bayesian approach to the classification of C3 and C4 grass pollen based on SPIRAL δ13C data. Geochimica et Cosmochimica Acta, 121: 168-176. DOI: 10.1016/j.gca.2013. 07.019.
doi: 10.1016/j.gca.2013. 07.019
Voigt S, Weber Y, Frisch K, et al., 2017. Climatically forced moisture supply, sediment flux and pedogenesis in Miocene mudflat deposits of south-east Kazakhstan, Central Asia. The Depositional Record, 3(2): 209-232. DOI: 10. 1002/dep2.34.
doi: 10. 1002/dep2.34
Wang FY, Song CQ, Sun XJ, 1996. Study on surface pollen in middle Inner Mongolia, China. Acta Botanica Sinica, 38(11): 902-909. (in Chinese)
Wang L, Lü HY, Wu NQ, et al., 2006. Palynological evidence for Late Miocene-Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 118-128. DOI: 10.1016/j.palaeo.2006.06.012.
doi: 10.1016/j.palaeo.2006.06.012
Wang S, Yan S, 1987. Cenozoic evolution of geographical environment in north and south sides of the Tianshan mountains. Acta Geographica Sinica, 54(3): 211-220. DOI: 10. 11821/xb198703003. (in Chinese)
doi: 10. 11821/xb198703003.
Wang W, 1990. Sporo-pollen assemblage from the Miocene Tongguer Formation of inner Mongolia and its climate. Acta Botanica Sinica, 32(11): 901-904. (in Chinese)
Wang W, 2004. On the origin and development of Artemisia (Asteraceae) in the geological past. Botanical Journal of the Linnean Society, 145(3): 331-336. DOI: 10.1111/j. 1095-8339.2004.00287.x.
doi: 10.1111/j. 1095-8339.2004.00287.x
Wang W, Feng Z, 2013. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records. Earth-Science Reviews, 122: 38-57. DOI: 10.1016/j.earscirev.2013.03.005.
doi: 10.1016/j.earscirev.2013.03.005
Wang W, Ma Y, Feng Z, et al., 2009. Vegetation and climate changes during the last 8660 cal. a BP in central Mongolia, based on a high-resolution pollen record from Lake Ugii Nuur. Chinese Science Bulletin, 54(9): 1579-1589. DOI: 10.1007/s11434-009-0023-8.
doi: 10.1007/s11434-009-0023-8
Wang X, Hua T, Lang L, et al., 2017. Spatial differences of aeolian desertification responses to climate in arid Asia. Global and Planetary Change, 148: 22-28. DOI: 10.1016/j.gloplacha.2016.11.008.
doi: 10.1016/j.gloplacha.2016.11.008
Wang X, Xiao J, Cui L, et al., 2013. Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity. Quaternary Science Reviews, 59: 18-29. DOI: 10.1016/j.quascirev.2012.10.033.
doi: 10.1016/j.quascirev.2012.10.033
Wang Y, Wang W, Liu L, et al., 2020. Reliability of the Artemisia/Chenopodiaceae pollen ratio in differentiating vegetation and reflecting moisture in arid and semi-arid China. The Holocene, 30(6): 858-864. DOI: 10.1177/0959683620902219.
doi: 10.1177/0959683620902219
Watson JS, Sephton MA, Sephton SV, et al., 2007. Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Photochemical & Photobiological Sciences, 6(6): 689-694. DOI: 10.1039/b617794h.
doi: 10.1039/b617794h
Webb S, 2013. Corridors to extinction and the Australian megafauna. Newnes.
Wei H, Zhao Y, 2016. Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China. Vegetation History and Archaeobotany, 25(1): 19-27. DOI: 10.1007/s00334-015-0530-2.
doi: 10.1007/s00334-015-0530-2
Wei HC, Ma HZ, Zheng Z, et al., 2010. Characteristics of pollen assemblages of surface samples from the North-Eastern Tibetan Plateau and their implications for vegetation and climate. Marine Geology & Quaternary Geology, 30(4): 187-192. DOI: 10.3724/SP.J.1140.2010. 04187. (in Chinese)
doi: 10.3724/SP.J.1140.2010. 04187.
Wei HC, Ma HZ, Zheng Z, et al., 2011. Modern pollen assemblages of surface samples and their relationships to vegetation and climate in the northeastern Qinghai-Tibetan Plateau, China. Review of Palaeobotany and Palynology, 163(3-4): 237-246. DOI: 10.1016/j.revpalbo.2010.10.011.
doi: 10.1016/j.revpalbo.2010.10.011
Wei HC, Zheng Z, Ma HZ, et al., 2009. Pollen distribution patterns of surface soil sample in Qinghai of China and their relationship with vegetation. Arid Land Geography, 32(6): 932-940. (in Chinese)
Wen Q, Zheng H, 1988. Climate-environment changes in North Xinjiang since Late Pleistocene. Chinese Science Bulletin, 33(10): 771-774. (in Chinese)
Weng CY, Sun XJ, Chen YS, 1993. Numerical characteristics of pollen assemblages of surface samples from the west Kunlun Mountains. Acta Botanica Sinica, 35(1): 69-79. (in Chinese)
Whitlock C, Anderson RS, 2003. Fire history reconstructions based on sediment records from lakes and wetlands, Fire and climatic change in temperate ecosystems of the western Americas. Springer, pp. 3-31.
Willis KJ, Rudner E, Sümegi P, 2000. The Full-Glacial Forests of Central and Southeastern Europe. Quaternary Research, 53(2): 203-213. DOI: 10.1006/qres.1999.2119.
doi: 10.1006/qres.1999.2119
Wohlfarth B, Veres D, Ampel L, et al., 2008. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40-16 ka. Geology, 36(5): 407-410. DOI: 10.1130/G24600A.1.
doi: 10.1130/G24600A.1
Wu FL, Fang X, An C, et al., 2013a. Over-representation of Picea pollen induced by water transport in arid regions. Quaternary International, 298: 134-140. DOI: 10.1016/j.quaint. 2012.11.026.
doi: 10.1016/j.quaint. 2012.11.026
Wu FL, Fang XM, Ma YF, et al., 2007. Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth and Planetary Science Letters, 257(1): 160-169. DOI: 10.1016/j.epsl.2007.02.029.
doi: 10.1016/j.epsl.2007.02.029
Wu FL, Fang XM, Miao YF, 2020. Aridification history of the West Kunlun Mountains since the mid-Pleistocene based on sporopollen and microcharcoal records. Palaeogeography, Palaeoclimatology, Palaeoecology, 109680. DOI: 10. 1016/j.palaeo.2020.109680.
doi: 10. 1016/j.palaeo.2020.109680
Wu J, Ma YZ, Sang YL, et al., 2013b. Quantitative reconstruction of palaeovegetation and development of the R-value model: an application of R-value and ERV model in Xinglong Mountain natural protection region. Quaternary Sciences, 33(3): 554-564. (in Chinese)
Wu J, Ma YZ, Sang YL, et al., 2013c. Representation of major pollen taxa from surface samples of Daluoshan Mountain, Ningxia. Acta Palaeontologica Sinica, 52(1): 57-67. (in Chinese)
Xu H, Lan J, Zhang G, et al., 2019. Arid Central Asia saw mid-Holocene drought. Geology, 47(3): 255-258. DOI: 10. 1130/G45686.1.
doi: 10. 1130/G45686.1
Xu QH, Li MY, Zhang SR, et al., 2015. Modern pollen processes of China: Progress and Problems. Scientia Sinica Terrae, 45(11): 1661-1682. (in Chinese)
Xu QH, Li YC, Li Y, et al., 2006. A discuss about modern pollen and study of quaternary environment. Progress in Nature Science, 16(6): 647-656. (in Chinese)
Xu QH, Li YC, Tian F, et al., 2009. Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Review of Palaeobotany and Palynology, 153(1-2): 86-101. DOI: 10.1016/j.revpalbo.2008.07.003.
doi: 10.1016/j.revpalbo.2008.07.003
Xu QH, Li YC, Yan XL, 2005. Surface pollen assemblages of some major forest communities in North of China. Quaternary Sciences, 25(5): 585-597.
Xu QH, Li YC, Yang XL, et al., 2007. Quantitative relationship between pollen and vegetation in northern China. Science in China Series D: Earth Sciences, 50(4): 582-599. DOI: 10.1007/s11430-007-2044-y.
doi: 10.1007/s11430-007-2044-y
Xu QH, Tian F, Bunting MJ, et al., 2012. Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China. Quaternary Science Reviews, 37: 81-91. DOI: 10.1016/j.quascirev.2012.01.019.
doi: 10.1016/j.quascirev.2012.01.019
Xu YQ, Yan S, Jia BQ, et al., 1996. Numerical relationship between the surface spore-pollen and surrounding vegetation on the southern slope of Tianshan Mountains. Arid Land Geography, 19(3): 24-30. (in Chinese)
Xue J, Zhong W, Li Q, et al., 2018. Holocene fire history in eastern monsoonal region of China and its controls. Palaeogeography, Palaeoclimatology, Palaeoecology, 496: 136-145. DOI: 10.1016/j.palaeo.2018.01.029.
doi: 10.1016/j.palaeo.2018.01.029
Xue J, Zhong W, Li Q, et al., 2018. Holocene fire history in eastern monsoonal region of China and its controls. Palaeogeography, Palaeoclimatology, Palaeoecology, 496: 136-145. DOI: 10.1016/j.palaeo.2018.01.029.
doi: 10.1016/j.palaeo.2018.01.029
Yan S, 1991. The characteristics of Quaternary sporo-pollen assemblage and the vegetation succesion in Xinjiang. Arid Land Geography, 14(2): 1-9. (in Chinese)
Yan S, 1993. The discussion on the pollen of pine family in surface soil in Xinjiang. Arid Land Geography, 16(3): 1-9. (in Chinese)
Yan S, Jia BQ, Xu YQ, et al., 1996. The surface sampleing of vegetation and pollen in the source area of the Urumqi River. Journal of Glaciology and Geocryology, 18(s1): 264-273. (in Chinese)
Yan S, Xu YQ, 1989. Spore-pollen association in surface-soil in Altay, Xinjiang. Arid Zone Research, (1): 26-33. (in Chinese)
Yang D, Peng Z, Luo C, et al., 2013. High-resolution pollen sequence from Lop Nur, Xinjiang, China: Implications on environmental changes during the late Pleistocene to the early Holocene. Review of Palaeobotany and Palynology, 192: 32-41. DOI: 10.1016/j.revpalbo.2012.12.002.
doi: 10.1016/j.revpalbo.2012.12.002
Yang Z, Zhang Y, Ren H, et al., 2016. Altitudinal changes of surface pollen and vegetation on the north slope of the Middle Tianshan Mountains, China. Journal of Arid Land, 8(5): 799-810. DOI: 10.1007/s40333-016-0085-9.
doi: 10.1007/s40333-016-0085-9
Yang ZJ, Zhang Y, Bi ZW, et al., 2011. Surface pollen distribution in the southern slope of Tianshan Mountains, Xinjiang. Arid Land Geography, 34(6): 880-889. (in Chinese)
Zhang D, Chen X, Li Y, et al., 2020. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quaternary Science Reviews, 229: 106138. DOI: 10.1016/j.quascirev.2019.106138.
doi: 10.1016/j.quascirev.2019.106138
Zhang D, Feng Z, 2018. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records. Earth-Science Reviews, 185: 847-869. DOI: 10.1016/j.earscirev.2018.08.007.
doi: 10.1016/j.earscirev.2018.08.007
Zhang J, 2004. Study on modern surface pollen-climatic factors transfer function in partial region of the Northwest China. Lanzhou university. (in Chinese)
Zhang K, Zhao Y, Yu Z, et al., 2010. A 2700-year high resolution pollen record of climate change from varved Sugan Lake in the Qaidam Basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2): 290-298. DOI: 10.1016/j.palaeo.2010.08.008.
doi: 10.1016/j.palaeo.2010.08.008
Zhang P, Miao Y, Zhang Z, et al., 2013. Late Cenozoic sporopollen records in the Yangtze River Delta, East China and implications for East Asian summer monsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 153-165. DOI: 10.1016/j.palaeo.2013.08.014.
doi: 10.1016/j.palaeo.2013.08.014
Zhang R, Jiang D, Zhang Z, et al., 2019. Modeling the late Pliocene global monsoon response to individual boundary conditions. Climate Dynamics, 53(7): 4871-4886. DOI: 10.1007/s00382-019-04834-w.
doi: 10.1007/s00382-019-04834-w
Zhang S, Lu Y, Wei W, et al., 2020. Human activities have altered fire-climate relations in arid Central Asia since ~1000 a BP: evidence from a 4200-year-old sedimentary archive. Science Bulletin. DOI: 10.1016/j.scib.2020.12.004.
doi: 10.1016/j.scib.2020.12.004
Zhang X, Jin L, Chen J, et al., 2017. Detecting the relationship between moisture changes in arid central Asia and East Asia during the Holocene by model-proxy comparison. Quaternary Science Reviews, 176(): 36-50. DOI: 10.1016/j.quascirev.2017.09.012.
doi: 10.1016/j.quascirev.2017.09.012
Zhang XY, Gong SL, Zhao TL, et al., 2003. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophysical Research Letters, 30(24). DOI: 10.1029/2003GL018206.
doi: 10.1029/2003GL018206
Zhang Y, Kong Z, Ni J, et al., 2008. Pollen record and environmental evolution of Caotanhu wetland in Xinjiang since 4550 cal. a BP. Science Bulletin, 53(7): 1049-1061. DOI: 10.1007/s11434-008-0067-1.
doi: 10.1007/s11434-008-0067-1
Zhang Y, Kong Z, Yang Z, et al., 2017. Surface pollen distribution from alpine vegetation in Eastern Tibet, China. Scientific Reports, 7(1): 586. DOI: 10.1038/s41598-017-00625-7.
doi: 10.1038/s41598-017-00625-7
Zhang Z, Sun J, 2011. Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Global and Planetary Change, 75(1): 56-66. DOI: 10.1016/j.gloplacha.2010.10.006.
doi: 10.1016/j.gloplacha.2010.10.006
Zhao KL, Li XQ, 2013. Modern pollen and vegetation relationships in the Yili Basin, Xinjiang, NW China. Chin Sci Bull, 58(33): 4133-4142. DOI: 10.1007/s11434-013-5896-x.
doi: 10.1007/s11434-013-5896-x
Zhao Y, Chen F, Zhou A, et al., 2010a. Vegetation history, climate change and human activities over the last 6200years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1-2): 197-205. DOI: 10.1016/j.palaeo. 2010.05.020.
doi: 10.1016/j.palaeo. 2010.05.020
Zhao Y, Herzschuh U, 2009. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Vegetation History and Archaeobotany, 18(3): 245-260. DOI: 10.1007/s00334-008-0201-7.
doi: 10.1007/s00334-008-0201-7
Zhao Y, Li F, Hou Y, et al., 2012a. Surface pollen and its relationships with modern vegetation and climate on the Loess Plateau and surrounding deserts in China. Review of Palaeobotany and Palynology, 181: 47-53. DOI: 10.1016/j.revpalbo.2012.05.007.
doi: 10.1016/j.revpalbo.2012.05.007
Zhao Y, Liu H, Li F, et al., 2012b. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. The Holocene, 22(12): 1385-1392. DOI: 10.1177/0959683612449762. DOI: 10.1177/0959683612449762.
doi: 10.1177/0959683612449762. DOI: 10.1177/0959683612449762
Zhao Y, Nelson DM, Clegg BF, et al., 2017. Isotopic analysis on nanogram quantities of carbon from dissolved insect cuticle: a method for paleoenvironmental inferences. Rapid Commun Mass Spectrom, 31(21): 1825-1834. DOI: 10. 1002/rcm.7965.
doi: 10. 1002/rcm.7965
Zhao Y, Sun QF, 2010. Reliability of pollen concentration as the indicator of effective moisture in arid and semi-arid regions of China. Journal of Arid Environments, 74(3): 423-427. DOI: 10.1016/j.jaridenv.2009.09.012.
doi: 10.1016/j.jaridenv.2009.09.012
Zhao Y, Tzedakis PC, Li Q, et al., 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past1.74 million years. Science Advances, 6(19): 6193. DOI: 10.1126/sciadv.aay6193.
doi: 10.1126/sciadv.aay6193
Zhao Y, Yu Z, Chen F, et al., 2007. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology, 145(3-4): 275-288. DOI: 10.1016/j.revpalbo.2006.12.002.
doi: 10.1016/j.revpalbo.2006.12.002
Zhao Y, Yu Z, Chen F, et al., 2008. Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China. Global and Planetary Change, 62(1-2): 107-114. DOI: 10.1016/j.gloplacha.2007.12.003.
doi: 10.1016/j.gloplacha.2007.12.003
Zhao Y, Yu Z, Liu X, et al., 2010b. Late Holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau. Quaternary Research, 73(1): 59-69. DOI: 10.1016/j.yqres.2008.11.007.
doi: 10.1016/j.yqres.2008.11.007
Zhao Y, Yu Z, Zhao W, 2011. Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?Quaternary Science Reviews, 30(9-10): 1173-1184. DOI: 10.1016/j.quascirev.2011.02.006.
doi: 10.1016/j.quascirev.2011.02.006
Zheng H, 2016. Asia dust production ramped up since latest Oligocene driven by Tibetan Plateau uplift. National Science Review, 3(3): 271-274. DOI: 10.1093/nsr/nww028.
doi: 10.1093/nsr/nww028
Zheng Z, Huang K, Xu Q, et al., 2008a. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China Series D-Earth Sciences, 51(8): 1107-1120. DOI: 10.1007/s11430-008-0080-x.
doi: 10.1007/s11430-008-0080-x
Zheng Z, Huang K, Xu Q, et al., 2008b. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China Series D: Earth Sciences, 51(8): 1107-1120. DOI: 10.1007/s11430-008-0080-x.
doi: 10.1007/s11430-008-0080-x
Zheng Z, Wei J, Huang K, et al., 2014. East Asian pollen database: Modern pollen distribution and its quantitative relationship with vegetation and climate. Journal of Biogeography, 41(10): 1819-1832. DOI: 10.1111/jbi.12361.
doi: 10.1111/jbi.12361
Zheng Z, Zheng YW, Huang KY, et al., 2009. Satellite MODIS-and modern pollen-based quantitative vegetation cover simulation in China. Acta Palaeontologica Sinica, 48(2): 228-239. (in Chinese)
Zhou X, Li X, John D, et al., 2012. Land degradation during the Bronze Age in Hexi Corridor (Gansu, China). Quaternary International, 254: 42-48. DOI: 10.1016/j.quaint.2011. 06.046.
doi: 10.1016/j.quaint.2011. 06.046
Zhou X, Li X, John D, et al., 2016. Rapid agricultural transformation in the prehistoric Hexi corridor, China. Quaternary International, 426: 33-41. DOI: 10.1016/j.quaint.2016. 04.021.
doi: 10.1016/j.quaint.2016. 04.021
Zhou X, Li X, Zhao K, et al., 2011. Early agricultural development and environmental effects in the Neolithic Longdong basin (eastern Gansu). Chinese Science Bulletin, 56(8): 762-771. DOI: 10.1007/s11434-010-4286-x.
doi: 10.1007/s11434-010-4286-x
Zhu Y, Chen F, Zhang J, et al., 2001. Effects of depositional environment on pollen assemblages —A case study in the Shiyang River Basin. Acta Sedimentologica Sinica, 19(2): 186-191. (in Chinese)
Zhu Y, Cheng B, Chen FH, et al., 2004. Study on the spread of modern sporopollen in Shiyang River Basin. Chinese Science Bulletin, 49(1): 15-21. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!