Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (1): 54-66.doi: 10.3724/SP.J.1226.2017.00054

• ARTICLES • Previous Articles    

Microcoring and dendrometer-detected intra-annual wood formation of Populus euphratica in the Ejina Oasis,northwestern China

XiaoMei Peng1, ShengChun Xiao1, GuoDong Cheng1, QuanYan Tian1,2, HongLang Xiao1   

  1. 1. Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-08-19 Revised:2016-10-17 Published:2018-11-23
  • Contact: ShengChun Xiao, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel:+86-931-4967126; E-mail:ShengChun Xiao, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel:+86-931-4967126;
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2016YFC0501001), National Natural Science Foun-dation of China (No. 91125026, No. 41471082) and the STS project of the Chinese Academy of Sciences (KFJ-EW-STS-00502).

Abstract: Seasonal stem radial growth and wood formation of trees have become research hotspots because of their significance for dendroclimatological and dendroecological studies. However, until recently, these studies concentrated on coniferous tree species in high-altitude and high-latitude regions, while detailed information on arid-zone riparian forests is scarce. The main focus of this study is to monitor the intra-annual dynamics of radial growth and tree ring formation in a deciduous species, Populus euphratica. In 2013, we combined the dendrometer and microcoring methods to study this species in the riparian forest of the Ejina Oasis, in arid northwestern China. Vessel enlargement began in early May, and the maximum rate of cell production occurred in early June. The cell division then ceased from early to mid-July. The dendrometer method failed to reliably detect the date of growth initiation and cessation, but succeeded to detect the time of maximum growth rate just like the microcoring method did. We found that weekly stem radial increment data described xylem growth more accurately than daily datasets. Based on correlation analysis among climatic and hydrologic variables, and weekly stem radial increment, weekly ring width increase dataset, the depth to groundwater was the main factor that limited tree ring growth. From a practical perspective, such studies of intra-annual wood formation can provide empirical guidance for seasonal water allocations within a river basin.

Key words: stem radial growth, xylem growth, climate, groundwater depth, riparian forest, Heihe River, northwestern China

Allan JD, Erickson DL, Fay J, 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37(1):149-161. DOI:10.1046/j. 1365-2427.1997.d01-546.x.
Bai Y, Xu HL, Zhang QQ, et al., 2015. Evaluation on ecological water requirement in the lower reaches of Tarim River based on groundwater restoration. Acta Ecologica Sinica, 35(3):630-640.
Begum S, Nakaba S, Yamagishi Y, et al., 2013. Regulation of cambial activity in relation to environmental conditions:understanding the role of temperature in wood formation of trees. Physiologia Plantarum, 147(1):46-54. DOI:10.1111/j.1399-3054.2012.01663.x
Cao SK, Feng Q, Si JH, et al., 2012. Relationships of photosynthesis and transpiration of Populus euphratica with their affecting factors. Journal of Arid Land Resources and Environment, 26(4):155-159. (in Chinese)
Chan T, Hölttä T, Berninger F, et al., 2016. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell & Environment, 39(2):233-244. DOI:10.1111/pce.12541.
Cheng GD, Xiao HL, Zhao WZ, et al., 2009. Study on the Integrated Management of the Water-Ecology-Economy System of Heihe River Basin. Beijing, China:Science Press.
De Schepper V, van Dusschoten D, Copini P, et al., 2012. MRI links stem water content to stem diameter variations in transpiring trees. Journal of Experimental Botany, 63(7):2645-2653. DOI:10.1093/jxb/err445.
Deslauriers A, Morin H, Urbinati C, et al., 2003a. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17(6):477-484. DOI:10.1007/s00468-003-0260-4.
Deslauriers A, Morin H, Begin Y, 2003b. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Canadian Journal of Forest Research, 33(2):190-200. DOI:10.1139/X02-178.
Deslauriers A, Rossi S, Anfodillo T, et al., 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28(6):863-871. DOI:10.1093/treephys/28.6.863.
Deslauriers A, Rossi S, Turcotte A, et al., 2011. A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia, 29(3):151-161. DOI:10.1016/j.dendro.2011.01.008.
Downes G, Beadle C, Worledge D, 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 14(2):102-111. DOI:10.1007/PL00009752.
Drew DM, Downes GM, 2009. The use of precision dendrometers in research on daily stem size and wood property variation:a review. Dendrochronologia, 27(2):159-172. DOI:10.1016/j.dendro.2009.06.008.
Duchesne L, Houle D, D'Orangeville L, 2012. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agricultural and Forest Meteorology, 162-163:108-114. DOI:10.1016/j.agrformet.2012.04.016.
Edmondson J, Friedman J, Meko D, et al., 2014. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA. Tree-Ring Research, 70(1):21-30. DOI:
Ferreira S, Hjernö K, Larsen M, et al., 2006. Proteome profiling of Populus euphratica Oliv. upon heat stress. Annals of Botany, 98(2):361-377. DOI:10.1093/aob/mcl106.
Fritts HC, 1976. Growth and structure. In:Fritts HC (ed). Tree Rings and Climate. London, UK:Academic Press Inc., pp. 70-112.
González-González BD, García-González L, Vázquez-Ruiz RA, 2013. Comparative cambial dynamics and phenology of Quercus robur L. and Q. pyrenaica Willd. in an Atlantic forest of the northwestern Iberian Peninsula. Trees, 27:1571-1585. DOI:10.1007/s00468-013-0905-x.
Gričar J, Zupančič M, Čufar K, et al., 2006. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany, 97(6):943-951. DOI:10.1093/aob/mcl050.
Jiang Y, Wang BQ, Dong MY, et al., 2014. Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees, 29(1):87-96. DOI:10.1007/s00468-014-1089-8.
Kattge J, Knorr W, 2007. Temperature acclimation in a biochemical model of photosynthesis:a reanalysis of data from 36 species. Plant, Cell & Environment, 30(9):1176-1190. DOI:10.1111/j.1365-3040.2007.01690.x.
Klingenberg CP, 1998. Heterochrony and allometry:the analysis of evolutionary change in ontogeny. Biological Reviews of the Cambridge Philosophical Society, 73(01):79-123.
Lite SJ, Stromberg JC, 2005. Surface water and ground-water thresholds for maintaining Populus-Salix forests, San Pedro River, Arizona. Biological Conservation, 125(2):153-167. DOI:10.1016/j.biocon.2005.01.020.
Liu PX, Chen FH, Jin LY, et al., 2007b. About 100-year reconstruction of spring stream flow based on tree ring in the lower reaches of Heihe River. Arid Land Geography, 30(5):696-700. (in Chinese)
Liu PX, Peng JF, Chen FH, 2007a. Hydrological response of Populus euphratica Olve:radial growth in Ejinaa Banner, Inner Mongolia. Journal of Integrative Plant Biology, 49(1):150-156. DOI:10.1111/j.1672-9072.2007.00425.x
Maekinen H, Noejd P, Sanarpaeae P, 2003. Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology, 23:959-968. DOI:10.1093/treephys/23.14.959.
Maekinen H, Seo JW, Noejd P, et al., 2008. Seasonal dynamics of wood formation:a comparison between pinning, microcoring and dendrometer measurements. European Journal of Forest Research, 127(3):235-245. DOI:10.1007/s10342-007-0199-x.
Meko DM, Friedman JM, Touchan R, et al., 2015. Alternative standardization approaches to improving streamflow reconstructions with ring-width indices of riparian trees. The Holocene, 25(7):1093-1101. DOI:10.1177/0959683615580181.
Nilsson C, Berggren K, 2000. Alterations of riparian ecosystems caused by river regulation. BioScience, 50(9):783-792. DOI:10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO.
Offenthaler I, Hietz P, Richter H, 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15(4):215-221. DOI:10.1007/s004680100090.
Peng XM, Xiao SC, Cheng GD, et al., 2015. Human activity impacts on the stem radial growth of Populus euphratica riparian forests in China's Ejina Oasis, using tree-ring analysis. Trees. DOI:10.1007/s00468-015-1287-z.
Ren P, Rossi S, Gricar J, et al., 2015. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115(4):629-639. DOI:10.1093/aob/mcu259.
Rossi S, Deslauriers A, Anfodillo T, 2006a. Assessment of cambial activity and xylogenesis by microsampling tree species:an example at the alpine timberline. IAWA Journal, 27(4):383-394. DOI:10.1163/22941932-90000161.
Rossi S, Anfodillo T, Menardi R, 2006b. Trephor:a new tool for sampling microcores from tree stems. IAWA Journal, 27(1):89-97. DOI:10.1163/22941932-90000139.
Rossi S, Deslauriers A, Anfodillo T, et al., 2006c. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170(2):301-310. DOI:10.1111/j.1469-8137.2006.01660.x.
Rossi S, Deslauriers A, Anfodillo T, et al., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152(1):1-12. DOI:10.1007/s00442-006-0625-7.
Rossi S, Deslauriers A, Griçar J, et al., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17(6):696-707. DOI:10.1111/j.1466-8238.2008.00417.x.
Schmitt U, Jalkanen R, Eckstein D, 2004. Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fennica, 38(2):167-178. DOI:10.14214/sf.426.
Scott ML, Shafroth PB, Auble GT, 1999. Responses of riparian cottonwoods to alluvial water table declines. Environmental Management, 23(3):347-358. DOI:10.1007/s002679900191.
Scott RL, James Shuttleworth W, Goodrich DC, et al., 2000. The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agricultural and Forest Meteorology, 105(1-3):241-256. DOI:10.1016/S0168-1923 (00)00181-7.
Scott St. G, 2014. An overview of tree-ring width records across the Northern Hemisphere. Quaternary Science Reviews, 95:132-150. DOI:10.1016/j.quascirev.2014.04.029
Sevanto S, HoeLttae T, Holbrook NM, 2011. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant, Cell & Environment, 34(4):690-703. DOI:10.1111/j.1365-3040.2011.02275.x.
Si JH, Feng Q, Cao SK, et al., 2014. Water use sources of desert riparian Populus euphratica forests. Environmental Monitoring and Assessment, 186(9):5469-5477. DOI:10.1007/s10661-014-3796-4.
Si JH, Feng Q, Xi HY, et al., 2013. Determination of critical period and requirement of ecological water demanded in the Ejina Oasis in lower reaches of Heihe River. Journal of Desert Reseach, 33(2):560-567. (in Chinese)
Si JH, Feng Q, Zhang XY, et al., 2007. Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season. Journal of Integrative Plant Biology, 49(4):425-436. DOI:10.1111/j.1744-7909. 2007.00388.x.
Singer MB, Sargeant CI, Piegay H, et al., 2014. Floodplain ecohydrology:climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resources Research, 50(5):4490-4513. DOI:10.1002/2014WR015581.
Singer MB, Stella JC, Dufour S, et al., 2013. Contrasting water-uptake and growth responses to drought in co-occurring riparian tree species. Ecohydrology, 6(3):402-412. DOI:10.1002/eco.1283.
Smith SD, Devitt DA, Sala A, et al., 1998. Water relations of riparian plants from warm desert regions. Wetlands, 18(4):687-696. DOI:10.1007/BF03161683.
Speer JH, 2010. Frontiers in dendrochronology. In:Speer JH (ed). Fundamentals of Tree-ring Research. Tucson:The University of Arizona Press, pp. 252-253.
Stella JC, Rodríguez-González PM, Dufour S, et al., 2013. Riparian vegetation research in Mediterranean-climate regions:common patterns, ecological processes, and considerations for management. Hydrobiologia, 719(1):291-315. DOI:10.007/s10750-012-1304-9.
Stromberg JC, 2001. Influence of stream flow regime and temperature on growth rate of the riparian tree, Platanus wrightii, in Arizona. Freshwater Biology, 46(2):227-239. DOI:10.1046/j.1365-2427.2001.00651.x.
Su YH, Zhu G, Feng Q, et al., 2009. Environmental isotopic and hydrochemical study of groundwater in the Ejina Basin, northwest China. Environmental Geology, 58(3):601-614. DOI:10.1007/s00254-008-1534-3.
Sun JY, Liu Y, Cai QF, et al., 2006. Climatic and hydrological changes of Ejin, Inner Mongolia, China, during the past 233 years record in tree-rings of Populus euphratica. Quaternary Sciences, 26(5):799-809. (in Chinese)
Wang HZ, Han L, Xu YL, et al., 2011. Response of chlorophyll fluorescence characteristics of Populus euphratica heteromorphic leaves to high temperature. Acta Ecologica Sinica, 31(9):2444-2453. (in Chinese)
Wang P, Yu JJ, Zhang YC, et al., 2013. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. Journal of Hydrology, 476:72-86. DOI:10.1016/j.jhydrol.2012.10.049.
Wang ZY, Yang B, Deslauriers A, et al., 2015. Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees, 29(1):25-34. DOI:10.1007/s00468-014-1037-7.
Ward JV, Tockner K, Arscott DB, et al., 2002. Riverine landscape diversity. Freshwater Biology, 47(4):517-539. DOI:10.1046/j.1365-2427.2002.00893.x.
Xi HY, 2009. Study on the groundwater dynamics variation and numerical simulation in Ejina Basin. Ph.D. thesis, Cold and Arid Regons of Environmental and Eengineering Research Institute. (in Chinese)
Xi HY, Feng Q, Si JH, et al., 2010. Impacts of river recharge on groundwater level and hydrochemistry in the lower reaches of Heihe River Watershed, northwestern China. Hydrogeology Journal, 18:791-801. DOI:110.1007/s10040-009-0562-8.
Xiao SC, Xiao HL, Peng XM, 2012. Study of seasonal stem radial growth of Populus euphratica in the lower reaches of the Heihe River. Journal of Glaciology and Geocryology, 34(3):706-712. (in Chinese)
Xiao SC, Xiao HL, Peng XM, et al., 2014a. Daily and seasonal stem radial activity of Populus euphratica and its association with hydroclimatic factors in the lower reaches of China's Heihe River Basin. Environmental Earth Sciences, 72:609-621. DOI:10.1007/s12665-013-2982-y.
Xiao SC, Xiao HL, Peng XM, et al., 2014b. Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China's Heihe River. Journal of Arid Land, 6(4):498-510. DOI:10.1007/s40333-013.
Yang B, Qin C, Wang JL, et al., 2014. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 111(8):2903-2908. DOI:10.1073/pnas.1319238111.
Ye ZX, Chen YN, Li W, 2007. Ecological water demand of vegetation based on eco-hydrological Process in the lower reaches of Tarim River. Acta Geoscientica Sinica, 62(6):451-461. (in Chinese)
Yin L, Zhao LJ, Ruan YF, et al., 2012. Study of the replenishment sources of typical ecosystems water and dominant plant water in the lower reaches of the Heihe, China. Journal of Glaciology and Geocryology, 34(6):1478-1486. (in Chinese)
Zhang JZ, Gou XH, Zhao ZQ, et al., 2013. Improved method of obtaining micro-core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 37(10):972-977. DOI:10.3724/SP.J.1258.2013.00100. (in Chinese)
Zhang QB, Li ZS, Liu PX, et al., 2012. On the vulnerability of oasis forest to changing environmental conditions:perspectives from tree rings. Landscape Ecology, 27:343-353. DOI:10.1007/s10980-011-9685-0.
Zhao LJ, Xiao HL, Cheng GD, et al., 2008. A preliminary study of water sources of riparian plants in the lower reaches of the Heihe Basin. Acta Geoscientica Sinica, 29(6):709-718. (in Chinese)
Zhou HH, Chen YN, Li WH, et al., 2010. Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, northwest China. Photosynthetica, 48(2):257-268. DOI:10.1007/s11099-010-0032-5.
Zhu GF, Li X, Su YH, et al., 2011. Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. Tree Physiology, 31(2):178-195. DOI:10.1093/treephys/tpr005.
Zweifel R, Item H, Häsler R, 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15(1):50-57. DOI:10.1007/s004680000072.
Zweifel R, Item H, Häsler R, 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21(12-13):869-877. DOI:10.1093/treephys/21.12-13.869.
[1] FangLei Zhong,AiJun Guo,XiaoJuan Yin,JinFeng Cui,Xiao Yang,YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436-446.
[2] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369-378.
[3] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[4] JiZu Chen, ShiChang Kang, Xiang Qin, WenTao Du, WeiJun Sun, YuShuo Liu. The mass-balance characteristics and sensitivities to climate variables of Laohugou Glacier No. 12, western Qilian Mountains, China [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 543-553.
[5] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[6] Qiang Zhu, Shuang Dai, YongBo Huang, JunWei Liu. Palynological assemblage in the late Early Cretaceous from Sikouzi Section, Liupanshan Group, Central China and its implication to paleoenvironment change [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 488-494.
[7] TengFei Yu, Qi Feng, JianHua Si, XiaoYou Zhang, ChunYan Zhao. Evapotranspiration of a Populuseuphratica Oliv. forest and its controlling factors in the lowerHeihe RiverBasin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 175-182.
Full text



No Suggested Reading articles found!