Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 355-370.doi: 10.3724/SP.J.1226.2020.00355

Previous Articles     Next Articles

Cryosphere evapotranspiration in the Tibetan Plateau: A review

KunXin Wang1,2,YinSheng Zhang1,3,6(),Ning Ma4,5,YanHong Guo1,YaoHui Qiang1,2   

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100101, China
    3.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
    4.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    5.State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    6.China -Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
  • Received:2020-07-01 Accepted:2020-12-15 Online:2020-12-31 Published:2021-01-14
  • Contact: YinSheng Zhang
  • Supported by:
    the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDA2006020102);the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201);National Natural Science Foundation of China(41801047);the China Postdoctoral Science Foundation funded project(2018M631589);the Open Research Fund Program of State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, CAS(SKLCS-OP-2020-11)


Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system. Meanwhile, the cryosphere's hydrological process is receiving extensive attention, and its water problem needs to be understood from multiple perspectives. As the main part of the Chinese cryosphere, the Tibetan Plateau faces significant climate and environmental change. There are active interaction and pronounced feedback between the environment and ETa in the cryosphere. This article mainly focuses on the research progress of ETa in the Tibetan Plateau. It first reviews the ETa process, characteristics, and impact factors of typical underlying surfaces in the Tibetan Plateau (alpine meadows, alpine steppes, alpine wetlands, alpine forests, lakes). Then it compares the temporal and spatial variations of ETa at different scales. In addition, considering the current greening of cryosphere vegetation due to climate change, it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget.

Key words: cryosphere evapotranspiration, Tibetan Plateau, transpiration, evaporation

Figure 1

Main methods for observations and estimations of ETa"

Figure 2

Distribution map of ETa observation sites on the Tibetan Plateau. The land use data was based on Xu (2019)"

Table 1

Summary of multi-year average precipitation (P) and ETa data of typical underlays in the Tibetan Plateau"

No.StationUnderlayLatitudeLongitudeAltitude (m)PeriodP (mm)ETa (mm)MethodReference
1Selin CoLake31.57°N-31.95°N88.55°E-89.35°E4,5431961-2015-1,066.9Single-layer modelGuo et al., 2019
2003-2012333.31074P-M equationZhou et al., 2016
2Zigetng CoLake32.00°N-32.15°N90.73°E-90.95°E4,5601958-1998-925.1P-M equationLi et al., 2001
3Nam CoLake30.50°N-30.95°N90.20°E-91.05°E4,7101980-2014-832.0Flake modelLazhu et al., 2016
1979-2012-635.0CRLE modelMa et al., 2016
2006-2008415.0658.0HBE equationHaginoya et al., 2009
4Yandrok YumcoLake28.27°N-29.18°N90.35°E-91.08°E4,4421961-2005358.71,252.5HBE equationYu et al., 2011
5NgoringLake34.77°N-35.08°N97.53°E-97.90°E4,2742011-2012-436.0 (Jun.-Nov.)ECLi et al., 2015
6QinghaiLake36.53°N-37.25°N99.60°E-100.78°E3,1942013.5-2015.5367.0828.1ECLi et al., 2016
7WayanAlpine wetland37.73°N100.08°E3,7532015420.9362.1ECCao et al., 2019
8ZoigeAlpine wetland33.90°N102.80°E3,400-3,8002018.6-2018.8248.6270.0ECChen et al., 2020
9LongbaoAlpine wetland33.20°N96.50°E4,2082012.5-2012.10167.4337.4BREBQuan et al., 2016
10JiuzhaigouConifer and broadleaf mixed forest33.16°N103.88°E2,47820141003.0700.0ECYan et al., 2017
11GonggaConiferous forest29.57°N102.00°E3,06020052042366BREBZhou et al., 2010
12GuantanSub-alpine spruce forest38.53°N100.25°E2,700-3,4002011428.0417.0ECZhu et al., 2013
13KMdAlpine meadow37.58°N100.04°E3,5302012.7-2013.6580.2493.2BREBZhang et al., 2016

Figure 3

Variation of annual ETa during 1982-2017 in the Tibetan Plateau (data is from Ma et al. (2019))"

Table 2

Multi-year average ETa results at the Tibetan Plateau scale"

PeriodMulti-year average ETa (mm)MethodReference
1982-2009345.0RS-PM modelLi et al., 2014
1982-2008350.0MTEJung et al., 2010; Song et al., 2017
2001-2010320.0Modified Priestley-Taylor modelYao et al., 2013; Song et al., 2017
2001-2014389.7MOD16 productZhan et al., 2017
2000-2010350.3Modified PM-Mu (2011) modelSong et al., 2017
1981-2010255.8LPJ modelYin et al., 2013a
1982-2012378.1PML modelWang et al., 2018
1982-2017377.9CR modelMa et al., 2019

Figure 4

Ten-days soil evaporation, vegetation transpiration, and contribution to the total evapotranspiration (Sep. 2013 to Oct. 2014, Shuanghu Station) (data is from Zhou (2015))"

An TT, Xu MJ, Zhang T, et al., 2019. Grazing alters environmental control mechanisms of evapotranspiration in an alpine meadow of the Tibetan Plateau. Journal of Plant Ecology, 12(5): 834-845. DOI: 10.1093/jpe/rtz021.
doi: 10.1093/jpe/rtz021
Bai JH, Ouyang H, Xu HF, 2004. Advances in studies of wetlands in Qinghai-Tibet Plateau. Progress in Geography, 23(4): 1-9. DOI: 10.1007/BF02873091.
doi: 10.1007/BF02873091
Baldocchi DD, Falge E, Gu LH, et al., 2001. FLUXNETa: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. DOI: 10.1175/1520-0477(2001)08260.
doi: 10.1175/1520-0477(2001)08260
Bouchet RJ, 1963. Evapotranspiration réelle et potentielle, signification climatique. International Association of Scientific Hydrology, 62: 134-142.
Bowen RH, 1926. Studies on the Golgi Apparatus in Gland-Cells. III. Lachrymal Glands and Glands of the male Reproductive System. 395-418.
Cao SK, Cao GC, Chen KL, et al., 2019. Characteristics of CO2, water vapor, and energy exchanges at a headwater wetland ecosystem of the Qinghai Lake. Canadian Journal of Soil Science, 99(3): 227-243. DOI: 10.1139/cjss-2018-0104.
doi: 10.1139/cjss-2018-0104
Chen JL, Wen J, Kang SC, et al., 2020. Assessments of the factors controlling latent heat flux and the coupling degree between an alpine wetland and the atmosphere on the Qinghai-Tibetan Plateau in summer. Atmospheric Research, 240: 104937. DOI: 104937.
doi: 10.1016/j.atmosres.2020. 104937
Coenders-Gerrits AMJ, Van der Ent RJ, Bogaard TA, et al., 2014. Uncertainties in transpiration estimates. Nature, 506(7487): E1-2. DOI: 10.1038/nature12925.
doi: 10.1038/nature12925
Coners H, Babel W, Willinghofer S, et al., 2016. Evapotranspiration and water balance of high-elevation grassland on the Tibetan Plateau. Journal of Hydrology, 533: 557-566. DOI: 10.1016/j.jhydrol.2015.12.021.
doi: 10.1016/j.jhydrol.2015.12.021
Cong N, Shen MG, Yang W, et al., 2017. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 61(8): 1433-1444. DOI: 10.1007/s00484-017-1321-5.
doi: 10.1007/s00484-017-1321-5
Cui XF, Graf HF, Langmann B, et al., 2007. Hydrological impacts of deforestation on the southeast Tibetan plateau. Earth Interactions, 11(15): 219-219. DOI: 10.1175/EI223.1.
doi: 10.1175/EI223.1
Ding YJ, Zhang SQ, Wu JK, et al., 2020. Recent progress on studies on cryospheric hydrological processes changes in China. Advances in Water Science, 31(05):690-702. DOI: 10.14042/j.cnki.32.1309.2020.05.006. (in Chinese)
doi: 10.14042/j.cnki.32.1309.2020.05.006.
Fan XM, Liu GS, Wan YB, et al., 2010. Influence of vegetation coverage on evapotranspiration of alpine meadow in headwaters of the Yangtze River. Bulletin of Soil & Water Conservation, 30(06): 17-21. DOI: 10.13961/j.cnki.stbctb. 2010.06.045. (in Chinese)
doi: 10.13961/j.cnki.stbctb. 2010.06.045.
Flerchinger GN, 2012. Simultaneous Heat and Water (SHAW) Model: Model use, calibration, and validation. Transactions of the Asabe, 55(4): 1395-1411. DOI: 10.13031/2013.42250.
doi: 10.13031/2013.42250
Gao B, Qin Y, Wang YH, et al., 2016. Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China. Forests, 7(1): 10. DOI: 10.3390/f7010010.
doi: 10.3390/f7010010
Granger RJ, 1989. A complementary relationship approach for evaporation from nonsaturated surfaces. Journal of Hydrology, 111(1): 31-38. DOI: 10.1016/0022-1694(89)90250-3.
doi: 10.1016/0022-1694(89)90250-3
Gu S, Tang YH, Cui XY, et al., 2008. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 113(D8): 693-702. DOI: 10.1029/2007JD009173.
doi: 10.1029/2007JD009173
Guo DL, Yang MX, Wang HJ, 2011. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrological Processes, 25(16): 2531-2541. DOI: 10.1002/hyp.8025.
doi: 10.1002/hyp.8025
Guo YH, Zhang YS, Ma N, et al., 2019. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmospheric Research, 216: 141-150. DOI: 10.1016/j.atmosres.2018. 10.006.
doi: 10.1016/j.atmosres.2018. 10.006
Haginoya S, Fujii H, Kuwagata T, et al., 2009. Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau. Sola, 5: 172-175. DOI: 10.2151/sola.2009-044.
doi: 10.2151/sola.2009-044
Halley E, 1687. An Estimate of the Quantity of vapour raised out of the sea by the warmth of the sun: derived from an experiment shown before the royal society. Philosophical Transactions (1683-1775), 16: 366-370. DOI: 10.1098/rstl. 1686.0067.
doi: 10.1098/rstl. 1686.0067
He SY, Richards K, 2017. Kobresia meadow degradation and its impact on water status. Ecohydrology, 10(6): e1844. DOI: 10.1002/eco.1844.
doi: 10.1002/eco.1844
Holzman B, 1941. The heat balance method for the determination of evaporation from water surfaces. Transactions-American Geophysical Union, 22: 655-660. DOI: 10.1029/tr022i003p00655.
doi: 10.1029/tr022i003p00655
Howell T, Schneider AD, Jensen M, 1991. History of lysimeter design and use for evapotranspiration measurements. Lysimeters for Evapotranspiration and Environmental Measurements, 1-9.
Hu ZM, Yu GR, Zhou YL, et al., 2009. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agricultural & Forest Meteorology, 149(9): 1410-1420. DOI: 10.1016/j.agrformet. 2009.03.014.
doi: 10.1016/j.agrformet. 2009.03.014
Jasechko S, Sharp ZD, Gibson JJ, et al., 2013. Terrestrial water fluxes dominated by transpiration. Nature, 496(7445): 347-350. DOI: 10.1038/nature11983.
doi: 10.1038/nature11983
Jung M, Reichstein M, Ciais P, et al., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318): 951-954. DOI: 10. 1038/nature09396.
doi: 10. 1038/nature09396
Lazhu, Yang K, Wang J, et al., 2016. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 121(13): 7578-7591. DOI: 10.1002/2015JD024523.
doi: 10.1002/2015JD024523
Lei YB, Yao TD, Bird BW, et al., 2013. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. Journal of Hydrology, 483: 61-67. DOI: 10.1016/j.jhydrol.2013.01.003.
doi: 10.1016/j.jhydrol.2013.01.003
Lewis JM, 1995. The story behind the Bowen ratio. Bulletin of the American Meteorological Society, 76(12): 2433-2443. DOI: 10.1175/1520-0477(1995)0762.0.CO;2.
doi: 10.1175/1520-0477(1995)0762.0.CO;2
Li HQ, Zhang FW, Wang WY, et al., 2018. The strongest EI Nino event stimulated ecosystem respiration, not evapotranspiration, over a humid alpine meadow on the Qinghai-Tibetan Plateau. Ecological Indicators, 91: 562-569. DOI: 10.1016/j.ecolind.2018.04.039.
doi: 10.1016/j.ecolind.2018.04.039
Li HQ, Zhu JB, Zhang FW, et al., 2019. Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 268: 55-62. DOI: 10.1016/j.agrformet.2019.01.013.
doi: 10.1016/j.agrformet.2019.01.013
Li J, Jiang S, Wang B, et al., 2013. Evapotranspiration and its energy exchange in Alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Integrative Agriculture, 12(8): 1396-1401. DOI: 10.1016/S2095-3119(13)60546-8.
doi: 10.1016/S2095-3119(13)60546-8
Li T, Yan CH, Wang B, et al., 2018. Characteristics of energy balance in a mixed forest in Jiuzhaigou Valley. Acta Ecologica Sinica, 38(22): 8098-8106. DOI: 10.5846/stxb 201712182270.
doi: 10.5846/stxb 201712182270
Li WC, Li SJ, Pu PM, 2001. Estimates of plateau lake evaporation: A case study of Zige Tangco. Journal of Lake Sciences, 13(3): 227-232. DOI: 10.18307/20010305. (in Chinese)
doi: 10.18307/20010305.
Li XL, Liang SL, Yuan WP, et al., 2014. Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology, 7(1): 139-149. DOI: 10.1002/eco.1341.
doi: 10.1002/eco.1341
Li XP, Wang L, Chen DL, et al., 2014. Seasonal evapotranspiration changes (1983-2006) of four large basins on the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 119(23): 13079-13095. DOI: 10.1002/2014JD022380.
doi: 10.1002/2014JD022380
Li XY, Long D, Han ZY, et al., 2019. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resources Research, 55(11): 8608-8630. DOI: 10.1029/2019WR025196.
doi: 10.1029/2019WR025196
Li XY, Ma YJ, Huang YM, et al., 2016. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research-Atmospheres, 121(18): 10470-10485. DOI: 10.1002/2016JD025027.
doi: 10.1002/2016JD025027
Li ZG, Lyu SH, Ao YH, et al., 2015. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmospheric Research, 155: 13-25. DOI: 10.1016/j.atmosres.2014.11.019.
doi: 10.1016/j.atmosres.2014.11.019
Liu D, Li Y, Wang T, et al., 2018. Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agricultural and Forest Meteorology, 249: 163-175. DOI: 10.1016/j.agrformet.2017.11.034.
doi: 10.1016/j.agrformet.2017.11.034
Liu D, Wang T, Yang T, et al., 2019. Deciphering impacts of climate extremes on Tibetan grasslands in the last fifteen years. Science Bulletin, 64(7): 446-454. DOI: CNKI:SUN:JXTW.0.2019-07-008.
doi: CNKI:SUN:JXTW.0.2019-07-008
Liu SM, Li X, Xu ZW, et al., 2018. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone Journal, 17(1): 180072. DOI: 10.2136/vzj2018.04.0072.
doi: 10.2136/vzj2018.04.0072
Ma N, Szilagyi J, Niu GY, et al., 2016. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. Journal of Hydrology, 537: 27-35. DOI: 10.1016/j.jhydrol.2016.03.030.
doi: 10.1016/j.jhydrol.2016.03.030
Ma N, Zhang YS, Guo YH, et al., 2015a. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. Journal of Hydrology, 529: 980-992. DOI: 10.1016/j.jhydrol.2015.09.013.
doi: 10.1016/j.jhydrol.2015.09.013
Ma N, Zhang YS, Szilagyi J, et al., 2015b. Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau. Water Resources Research, 51(2): 1069-1083. DOI: 10.1002/2014WR015493.
doi: 10.1002/2014WR015493
Ma N, Szilagyi J, Zhang YS, et al., 2019. Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982-2012: Validations and spatiotemporal analyses. Journal of Geophysical Research: Atmospheres, 124: 4326-4351. DOI: 10.1029/2018JD029580.
doi: 10.1029/2018JD029580
Ma RH, Yang GS, Duan HT, et al., 2011. China's lakes at present: Number, area and spatial distribution. Science China (Earth Sciences), 54(02): 283-289. (in Chinese)
Ma YM, Kang SC, Zhu LP, et al., 2008. Roof of the World: Tibetan observation and research platform. Bulletin of the American Meteorological Society, 89(10): 1487. DOI: 10. 1175/2008BAMS2545.1.
doi: 10. 1175/2008BAMS2545.1
Ma YM, Yao TD, Wang JM, 2006. Experimental study of energy and water cycle in Tibetan Plateau—The progress introduction on the study of GAME/Tibet and CAMP/Tibet. Plateau Meteorology, 25(2): 344-351. DOI: 10.3321/j.issn:1000-0534.2006.02.023. (in Chinese)
doi: 10.3321/j.issn:1000-0534.2006.02.023.
Ma YM, Zhu ZY, Zhong L, et al., 2014. Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau. Atmospheric Chemistry and Physics, 14(3): 1507-1515. DOI: 10.5194/acp-14-1507-2014.
doi: 10.5194/acp-14-1507-2014
Mao YN, Wang KC, Liu XM, et al., 2016. Water storage in reservoirs built from 1997 to 2014 significantly altered the calculated ETa trends over China. Journal of Geophysical Research-Atmospheres, 121(17): 10097-10112.
Monteith JL, 1965. Evaporation and the environment. Symposia of the Society for Experimental Biology, 19: 205-234.
Morton FI, 1983. Operational estimates of areal ETa and their significance to the science and practice of hydrology. Journal of Hydrology, 66(1): 1-76. DOI: 10.1016/0022-1694(83)90177-4.
doi: 10.1016/0022-1694(83)90177-4
Oki T, Kanae S, 2006. Global hydrological cycles and world water resources. Science, 313(5790): 1068. DOI: 10.1126/science.1128845.
doi: 10.1126/science.1128845
Oleson K, Lawrence DM, Bonan G, et al., 2013. Technical Description of version4.5 of the Community Land Model (CLM). NCAR/TN-503+STR NCAR Technical Note. DOI: 10.5065/D6RR1W7M.
doi: 10.5065/D6RR1W7M
Pearson RG, Phillips SJ, Loranty MM, et al., 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3(7): 673-677. DOI: 10. 1038/nclimate1858.
doi: 10. 1038/nclimate1858
Penman HL, 1948. Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London, 193(1032): 120-145. DOI: 10.1098/rspa.1948.0037.
doi: 10.1098/rspa.1948.0037
Philip J, 1966. Plant water relations: Some physical aspects. Annual Review of Plant Physiology, 17: 245-268. DOI: 10.1146/annurev.pp.17.060166.001333.
doi: 10.1146/annurev.pp.17.060166.001333
Puetz T, Fank J, Flury M, 2018. Lysimeters in vadose zone research. Vadose Zone Journal, 17(1): 180035. DOI: 10.2136/vzj2018.02.0035.
doi: 10.2136/vzj2018.02.0035
Quan C, Zhou BR, Han YX, et al., 2016. A study of evapotranspiration on the degraded alpine wetland surface in the Yangtze River source area. Journal of Glaciology & Geocryology, 38(5): 1249-1257. (in Chinese)
Rodell M, Beaudoing HK, L'Ecuyer TS, et al., 2015. The Observed State of the Water Cycle in the Early Twenty-First Century. Journal of Climate, 28(21): 8289-8318. DOI: 10. 1175/jcli-d-14-00555.1.
doi: 10. 1175/jcli-d-14-00555.1
Shang LY, Zhang Y, Lu SH, et al., 2015. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau. Science Bulletin, 60(4): 435-446. DOI: 10.1007/s11434-014-0685-8.
doi: 10.1007/s11434-014-0685-8
Shen H, Dong SK, Li S, et al., 2019. Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai-Tibetan plateau. Agriculture Ecosystems & Environment, 280: 161-168. DOI: 10.1016/j.agee.2019.04.029.
doi: 10.1016/j.agee.2019.04.029
Shen MG, Piao SL, Jeong SJ, et al., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 112(30): 9299-9304. DOI: 10.1073/pnas.1504418112.
doi: 10.1073/pnas.1504418112
Shi X, Li S, An D, et al., 2010. A study of the change of Qinghai Lake evaporation. Climate and Environment Research, 15(6): 787-796. (in Chinese)
Song C, Pei T, Zhou CH, 2014. The role of changing multiscale temperature variability in extreme temperature events on the eastern and central Tibetan Plateau during 1960-2008. International Journal of Climatology, 34: 3683-3701. DOI: 10.1002/joc.3935.
doi: 10.1002/joc.3935
Song LL, Zhuang QL, Yin YH, et al., 2017. Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environmental Research Letters, 12(1): 014011. DOI: 10.1088/1748-9326/aa527d.
doi: 10.1088/1748-9326/aa527d
Sun S, Chen B, Shao Q, et al., 2017. Modeling evapotranspiration over China's landmass from 1979 to 2012 using multiple land surface models: Evaluations and analyses. Journal of Hydrometeorology, 18(4): 1185-1203. DOI: 10.1175/JHM-D-16-0212.1.
doi: 10.1175/JHM-D-16-0212.1
Sun SB, Che T, Li HY, et al., 2019. Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited. Agricultural and Forest Meteorology, 275: 283-295. DOI: 10.1016/j.agrformet. 2019.06.003.
doi: 10.1016/j.agrformet. 2019.06.003
Swinbank WC, 1951. A sensitive vapour pressure recorder. Journal of Scientific Instruments, 28(3): 86-89. DOI: 10. 1088/0950-7671/28/3/307.
doi: 10. 1088/0950-7671/28/3/307
Trenberth KE, Fasullo JT, Kiehl J, 2009. Earth's global energy budget. Bulletin of the American Meteorological Society, 90(3). DOI: 10.1175/2008BAMS2634.1.
doi: 10.1175/2008BAMS2634.1
Venturim V, Islam S, Rodrigue ZL, 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112(1): 132-141. DOI: 10.1016/j.rse. 2007.04.014.
doi: 10.1016/j.rse. 2007.04.014
Wang LH, He XB, Ding YJ, 2019. Characteristics and influence factors of the evapotranspiration from alpine meadow in central Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 41(4): 801-808. (in Chinese)
Wang L, Liu HZ, Shao YP, et al., 2018. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau. Theoretical and Applied Climatology, 131(1-2): 547-556. DOI: 10.1007/s00704-016-1997-1.
doi: 10.1007/s00704-016-1997-1
Wang R, He M, Niu ZG, 2020. Responses of Alpine Wetlands to Climate Changes on the Qinghai-Tibetan Plateau Based on Remote Sensing. Chinese Geographical Science, 30(2): 189-201. DOI: CNKI:SUN:ZDKX.0.2020-02-001.
doi: CNKI:SUN:ZDKX.0.2020-02-001
Wang WG, Li JX, Yu ZB, et al., 2018. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. Journal of Hydrology, 559: 471-485. DOI: 10. 1016/j.jhydrol.2018.02.065.
doi: 10. 1016/j.jhydrol.2018.02.065
Wang YJ, Xu XD, Liu HZ, et al., 2016. Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region. Journal of Geophysical Research-Atmospheres, 121(16): 9540-9560. DOI: 10. 1002/2016JD025401.
doi: 10. 1002/2016JD025401
Wigmosta M S, Vail L W, Lettenmaier DP, 1994. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6): 1665-1679. DOI: 10.1029/94WR00436.
doi: 10.1029/94WR00436
Wu JK, Chen JW, Wu H, et al., 2013. Comparative study of evapotranspiration in an Alpine Meadow in the Upper Reach of Shulehe River Basin. Scientia Geographica Sinica, 33(1): 97-103. (in Chinese)
Xu E, 2019. Land use of the Tibet Plateau in 2015 (Version1.0). National Tibetan Plateau Data Center.
Xu JQ, Yu SM, Liu JS, et al., 2009. The implication of heat and water balance changes in a lake basin on the Tibetan Plateau. Hydrological Research Letters, 3: 1-5. DOI: 10. 3178/hrl.3.1.
doi: 10. 3178/hrl.3.1
Yan CH, Zhao WL, Wang Y, et al., 2017. Effects of forest evapotranspiration on soil water budget and energy flux partitioning in a subalpine valley of China. Agricultural and Forest Meteorology, 246: 207-217. DOI: 10.1016/j.agrformet.2017.07.002.
doi: 10.1016/j.agrformet.2017.07.002
Yang K, Wu H, Qin J, et al., 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global & Planetary Change, 112(1): 79-91. DOI: 10.1016/j.gloplacha.2013.12.001.
doi: 10.1016/j.gloplacha.2013.12.001
Yao JM, Zhao L, Ding YJ, et al., 2008. The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau. Cold Regions Science and Technology, 52(3): 326-340. DOI: 10.1016/j.coldregions.2007.04.001.
doi: 10.1016/j.coldregions.2007.04.001
Yao TD, Masson-Delmotte V, Gao J, et al., 2013. A review of climatic controls on delta O-18 in precipitation over the Tibetan Plateau: observations and simulations. Reviews of Geophysics, 51(4): 525-548. DOI: 10.1002/rog.20023.
doi: 10.1002/rog.20023
Yao TD, Piao SH, Shen MG, et al., 2017. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 32(09): 976-984. DOI: 10.16418/j.issn.1000-3045.2017.09.007. (in Chinese)
doi: 10.16418/j.issn.1000-3045.2017.09.007.
Yao TD, Thompson LG, Mosbrugger V, et al., 2012. Third Pole Environment (TPE). Environmental Development, 3: 52-64. DOI: 10.1016/j.envdev.2012.04.002.
doi: 10.1016/j.envdev.2012.04.002
Yao Y, Liang, SL, Zhou, GY, et al., 2013. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm. Agricultural & Forest Meteorology, 171-172(3): 187-202. DOI: 10.1016/j.agrformet.2012.11.016.
doi: 10.1016/j.agrformet.2012.11.016
Yao YJ, Zhao SH, Wan HW, et al., 2016. Satellite evidence for no change in terrestrial latent heat flux in the Three-River Headwaters region of China over the past three decades. Journal of Earth System Science, 125(6): 1245-1253. DOI: 10.1007/s12040-016-0732-8.
doi: 10.1007/s12040-016-0732-8
Yao ZJ, Liu ZF, Huang HQ, et al., 2014. Statistical estimation of the impacts of glaciers and climate change on river runoff in the headwaters of the Yangtze River. Quaternary International, 336: 89-97. DOI: 10.1016/j.quaint.2013.04.026.
doi: 10.1016/j.quaint.2013.04.026
Yin Z, Ouyang H, Xu X, et al., 2010. Estimation of evapotranspiration from faber fir forest ecosystem in the eastern Tibetan Plateau of China using SHAW model. Journal of Water Resource and Protection, 2: 143-153. DOI: 10.4236/jwarp. 2010.22017.
doi: 10.4236/jwarp. 2010.22017
Yin YH, Wu SH, Zhao DS, et al., 2013a. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. Journal of Geographical Sciences, 23(2): 195-207. DOI: 10.1007/s11442-013-1003-0.
doi: 10.1007/s11442-013-1003-0
Yin YH, Wu SH, Zhao DS, 2013b. Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau. Journal of Geophysical Research Atmospheres, 118(19): 10850-10860. DOI: 10.1002/jgrd.50858.
doi: 10.1002/jgrd.50858
You QL, Kang SC, Aguilar E, et al., 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005. Journal of Geophysical Research Atmospheres, 113(D7): D07101. DOI: 10.1029/2007jd009389.
doi: 10.1029/2007jd009389
Yu GR, Fu YL, Sun XM, et al., 2006a. Recent progress and future directions of China FLUX. Science in China, 49(S2): 1-23. DOI: 10.1007/s11430-006-8001-3. (in Chinese)
doi: 10.1007/s11430-006-8001-3.
Yu GR, Wen XF, Sun XM, et al., 2006b. Overview of China FLUX and evaluation of its eddy covariance measurement. Agricultural & Forest Meteorology, 137(3-4): 125-137. DOI: 10.1016/j.agrformet.2006.02.011.
doi: 10.1016/j.agrformet.2006.02.011
Yu SM, Liu SJ, Xu JQ, et al., 2011. Evaporation and energy balance estimates over a large inland lake in the Tibet-Himalaya. Environmental Earth Sciences, 64(4): 1169-1176. DOI: 10.1007/s12665-011-0933-z.
doi: 10.1007/s12665-011-0933-z
Zhang SY, Li XY, Zhao GQ, et al., 2016. Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Ecohydrology, 9(2): 267-279. DOI: 10.1002/eco.1633.
doi: 10.1002/eco.1633
Zhang T, Xu MJ, Zhang YJ, et al., 2019. Grazing-induced increases in soil moisture maintain higher productivity during droughts in alpine meadows on the Tibetan Plateau. Agricultural and Forest Meteorology, 269: 249-256. DOI: 10. 1016/j.agrformet.2019.02.022.
doi: 10. 1016/j.agrformet.2019.02.022
Zhang YS, Ohata T, Ersi K, et al., 2003. Observation and estimation of evaporation from the ground surface of the cryosphere in eastern Asia. Hydrological Processes, 17(6): 1135-1147. DOI: 10.1002/hyp.1183.
doi: 10.1002/hyp.1183
Zhan QQ, 2017. The temporal and spatial characteristics of Qinghai-Tibet Plateau from 2001 to 2014. Science & Technology Information, (35): 218-219. DOI: 10.16661/j.cnki. 1672-3791.2017.35.218. (in Chinese)
doi: 10.16661/j.cnki. 1672-3791.2017.35.218.
Zhao LJ, Liu XH, Wang NL, et al., 2019. Contribution of recycled moisture to local precipitation in the inland Heihe River Basin. Agricultural and Forest Meteorology, 271: 316-335. DOI: 10.1016/j.agrformet.2019.03.014.
doi: 10.1016/j.agrformet.2019.03.014
Zhao L, Sheng Y, Nan ZT, et al., 2015. Permafrost Survey Manual. Science Press. (in Chinese)
Zhao P, Xu X, Chen F, et al., 2018. The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bulletin of the American Meteorological Society, 99(4): 757-776. DOI: 10.1175/BAMS-D-16-0050.1.
doi: 10.1175/BAMS-D-16-0050.1
Zheng D, Zhang Q, Wu WS, 2000. Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic Publishers, Springer Netherlands. DOI: 10.1007/978-94-010-0965-2.
doi: 10.1007/978-94-010-0965-2
Zheng JY, Bian JJ, Ge QS, et al., 2013. The climate regionalization in China for 1981-2010. Chinese Scientific Bulletin, 58: 3088-3099. (in Chinese)
Zhong L, Ma YM, Xue YK, et al., 2019. Climate change trends and impacts on vegetation greening over the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 124(14): 7540-7552. DOI: 10.1029/2019JD030481.
doi: 10.1029/2019JD030481
Zhou CP, Zhang F, Shao B, et al., 2010. Estimation of evapotranspiration from faber fir forest ecosystem in the Eastern Tibetan Plateau of China using SHAW Model. Journal of Water Resource and Protection, 2(2): 143-153. DOI: 10. 4236/jwarp.2010.22017.
doi: 10. 4236/jwarp.2010.22017
Zhou J, Wang L, Zhang YS, et al., 2016. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co and surrounding small lakes (Tibetan Plateau) during 2003-2012. Science China-Earth Sciences, 59(12): 2441-2453. DOI: 10.1007/s11430-016-0023-6.
doi: 10.1007/s11430-016-0023-6
Zhou T, 2015. Impact of vegetation variability on evapotranspiration on alpine steppe of the Qiangtang Plateau. University of Chinese Academy of Sciences.
Zhu GF, Lu L, Su YH, et al., 2013. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrological Processes, 28(19): 5093-5104. DOI: 10. 1002/hyp.9995.
doi: 10. 1002/hyp.9995
Zhu ZC, Piao SL, Myneni RB, et al., 2016. Greening of the Earth and its drivers. Nature Climate Change, 6: 791-795. DOI: 10.1038/nclimate3004.
doi: 10.1038/nclimate3004
[1] JinLei Chen,Jun Wen,ShiChang Kang,XianHong Meng,XianYu Yang. The evapotranspiration and environmental controls of typical underlying surfaces on the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 53-61.
[2] ShiQiao Zhou. A note on the lake level variations of Nam Co, south-central Tibetan Plateau from 2005 to 2019 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 430-435.
[3] YanRan Lü,Tong Jiang,YanJun Wang,BuDa Su,JinLong Huang,Hui Tao. Simulation and projection of climate change using CMIP6 Muti-models in the Belt and Road Region [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 389-403.
[4] PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283.
[5] TingTing Wang,JianGuo Li,ZongXing Li. Variation characteristics of evaporation in the Gulang River Basin during 1959-2013 [J]. Sciences in Cold and Arid Regions, 2020, 12(4): 252-260.
[6] Wei Wen,YuanMing Lai,ZheMin You. A modified numerical model for moisture-salt transport in unsaturated sandy soil under evaporation [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 125-133.
[7] TanGuang Gao,Jie Liu,TingJun Zhang,ShiChang Kang,ChuanKun Liu,ShuFa Wang,Mika Sillanpää,YuLan Zhang. Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 71-82.
[8] ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339.
[9] Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115.
[10] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[11] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391.
[12] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[13] ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125.
[14] BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144.
[15] SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94.
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .