Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (1): 53-61.doi: 10.3724/SP.J.1226.2021.20072
Previous Articles Next Articles
JinLei Chen1,Jun Wen2,4(),ShiChang Kang1,3,XianHong Meng2,XianYu Yang4
Chen JL, Wen J, Kang SC, et al., 2020. Assessments of the factors controlling latent heat flux and the coupling degree between an alpine wetland and the atmosphere on the Qinghai-Tibetan Plateau in summer. Atmospheric Research, 240: 104937. DOI: 10.1016/j.atmosres.2020.104937.
doi: 10.1016/j.atmosres.2020.104937 |
|
Chen JL, Wen J, Tian H, 2016. Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements. Journal of Hydrology, 533: 62-73. DOI: 10.1016/j.jhydrol.2015.11.032.
doi: 10.1016/j.jhydrol.2015.11.032 |
|
Chen Y, Xia JZ, Liang SL, et al., 2014. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment, 140: 279-293. DOI: 10.1016/j.rse.2013.08.045.
doi: 10.1016/j.rse.2013.08.045 |
|
Donatelli M, Bellocchi G, Carlini L, 2006. Sharing knowledge via software components: models on reference evapotranspiration. European Journal of Agronomy, 24: 186-192. DOI: 10.1016/j.eja.2005.07.005.
doi: 10.1016/j.eja.2005.07.005 |
|
Ding RS, Kang SZ, Vargas R, et al., 2013. Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region. Agricultural Water Management, 130: 79-89. DOI: 10.1016/j.agwat.2013. 08.019.
doi: 10.1016/j.agwat.2013. 08.019 |
|
Gu S, Tang Y, Cui X, et al., 2008. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai‐Tibetan Plateau. Journal of Geophysical Research: Atmosphere, 113: D08118. DOI: 10.1029/2007JD009173.
doi: 10.1029/2007JD009173 |
|
Immerzeel WW, Van Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian water towers. Science, 328: 1382-1385. DOI: 10.1126/science.1183188.
doi: 10.1126/science.1183188 |
|
Jarvis PG, Mcnon-aughton KG, 1986. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 15: 1-49. DOI: 10.1016/s0065-2504(08)60119-1.
doi: 10.1016/s0065-2504(08)60119-1 |
|
Jia X, Zha TS, Gong Jnon, et al., 2016. Energy partitioning over a semi‐arid shrubland in northern China. Hydrological Processes, 30: 972-985. DOI: 10.1002/hyp.10685.
doi: 10.1002/hyp.10685 |
|
Jung M, Reichstein M, Ciais P, et al., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951-954. DOI: 10.1038/nature09396.
doi: 10.1038/nature09396 |
|
Karam F, Lahoud R, Masaad R, et al., 2007. Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Agricultural Water Management, 90(3): 213-223. DOI: 10. 1016/j.agwat.2007.03.009.
doi: 10. 1016/j.agwat.2007.03.009 |
|
Li SG, Eugster W, Asanuma J, et al., 2006. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agricultural and Forest Meteorology, 137: 89-106. DOI: 10.1016/j.agrformet.2006.03.010.
doi: 10.1016/j.agrformet.2006.03.010 |
|
Liu XD, Chen BD, 2000. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20: 1729-1742. DOI: 10.1002/1097-0088(20001130)20:14<1729::aid-joc556>3.0.co;2-y.
doi: 10.1002/1097-0088(20001130)20:14<1729::aid-joc556>3.0.co;2-y |
|
Ma N, Zhang YS, Guo YH, et al., 2015. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. Journal of Hydrology, 529: 980-992. DOI: 10.1016/j.jhydrol.2015.09.013.
doi: 10.1016/j.jhydrol.2015.09.013 |
|
Mcnon-aughton KG, Spriggs TW, 1986. A mixed-layer model for regional evaporation. Boundary-layer Meteorology, 34: 243-262. DOI: 10.1007/BF00122381.
doi: 10.1007/BF00122381 |
|
Monteith JL, 1965. Evaporation and environment. Symposia of the Society for Experimental Biology, 19: 205-234. | |
Monteith JL, Unsworth MH, 2013. Principles of Environmental Physics: Plants, Animals, and the Atmosphere. Academic Press, Amsterdam. | |
Pan SF, Pan NQ, Tian HQ, et al., 2020. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 24: 1485-1509. DOI: 10.5194/hess-24-1485-2020.
doi: 10.5194/hess-24-1485-2020 |
|
Sutherlin CE, Brunsell NA, de Oliveira G, et al., 2019. Contrasting physiological and environmental controls of evapotranspiration over kernza perennial crop, annual crops, and C4 and mixed C3/C4 grasslands. Sustainability, 11: 1640. DOI: 10.3390/su11061640.
doi: 10.3390/su11061640 |
|
Takanashi S, Kosugi Y, Ohkubo S, et al., 2010. Water and heat fluxes above a lowland dipterocarp forest in Peninsular Malaysia. Hydrological Processes, 24: 472-480. DOI: 10. 1002/hyp.7499.
doi: 10. 1002/hyp.7499 |
|
Tong XJ, Zhang JS, Meng P, et al., 2017. Environmental controls of evapotranspiration in a mixed plantation in north China. International Journal of Biometeorology, 61: 227-238. DOI: 10.1007/s00484-016-1205-0.
doi: 10.1007/s00484-016-1205-0 |
|
Wever LA, Flanagan LB, Carlson PJ, 2002. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 112: 31-49. DOI: 10. 1016/s0168-1923(02)00041-2.
doi: 10. 1016/s0168-1923(02)00041-2 |
|
You QL, Min JZ, Kang SC, 2016. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. International Journal of Climatology, 36: 2660-2670. DOI: 10.1002/joc.4520.
doi: 10.1002/joc.4520 |
|
Yu SM, Liu JS, Xu JQ, et al., 2011. Evaporation and energy balance estimates over a large inland lake in the Tibet-Himalaya. Environmental Earth Sciences, 64: 1169-1176. DOI: 10.1007/s12665-011-0933-z.
doi: 10.1007/s12665-011-0933-z |
|
Yue P, Zhang Q, Yang Y, et al., 2018. Seasonal and inter-annual variability of the Bowen smith ratio over a semi-arid grassland in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 252: 99-108. DOI: 10.1016/j.agrformet. 2018.01.006.
doi: 10.1016/j.agrformet. 2018.01.006 |
|
Zhang X, Liu XQ, Zhang LF, et al., 2019. Comparison of energy partitioning between artificial pasture and degraded meadow in three-river source region on the Qinghai-Tibetan Plateau: A case study. Agricultural and Forest Meteorology, 271: 251-263. DOI: 10.1016/j.agrformet.2019.02.046.
doi: 10.1016/j.agrformet.2019.02.046 |
|
Zhu GF, Lu L, Su YH, et al., 2014. Energy flux partitioning and evapotranspiration in a sub‐alpine spruce forest ecosystem. Hydrological Processes, 28: 5093-5104. DOI: se/10. 1002/hyp.9995.
doi: se/10. 1002/hyp.9995 |
[1] | KunXin Wang,YinSheng Zhang,Ning Ma,YanHong Guo,YaoHui Qiang. Cryosphere evapotranspiration in the Tibetan Plateau: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370. |
[2] | YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579. |
[3] | LunYu Shang, Yu Zhang, ShiHua Lyu, ShaoYing Wang, YinHuan Ao, SiQiong Luo, ShiQiang Chen. Winter estimation of surface roughness length over eastern Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 151-157. |
[4] | TengFei Yu, Qi Feng, JianHua Si, XiaoYou Zhang, ChunYan Zhao. Evapotranspiration of a Populuseuphratica Oliv. forest and its controlling factors in the lowerHeihe RiverBasin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 175-182. |
|