Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (1): 43-52.doi: 10.3724/SP.J.1226.2021.20030
Previous Articles Next Articles
Guang Song1,2,BingYao Wang1,JingYao Sun1,3,YanLi Wang1,3,XinRong Li1,2()
Barriopedro D, Gouveia CM, Trigo RM, et al., 2012. The 2009/10 Drought in China: Possible Causes and Impacts on Vegetation. Journal of Hydrometeorology, 13(4): 1251-1267. DOI: 10.1175/JHM-D-11-074.1.
doi: 10.1175/JHM-D-11-074.1 |
|
Boschetti M, Nutini F, Brivio PA, et al., 2013. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS Journal of Photogrammetry and Remote Sensing, 78: 26-40. DOI: 10.1016/j.isprsjprs.2013.01.003.
doi: 10.1016/j.isprsjprs.2013.01.003 |
|
Buermann W, Parida B, Jung M, et al., 2014. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophysical Research Letters, 41(6): 1995-2002. DOI: 10.1002/2014GL059450.
doi: 10.1002/2014GL059450 |
|
Chen N, Ratajczak Z, Yu K, 2019. A dryland re-vegetation in northern China: Success or failure? Quick transitions or long lags? Ecosphere, 10(4): e02678. DOI: 10.1002/ecs2. 2678.
doi: 10.1002/ecs2. 2678 |
|
De Jong R, Verbesselt J, Schaepman ME, et al., 2012. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology, 18(2): 642-655. DOI: 10.1111/j.1365-2486.2011. 02578.x.
doi: 10.1111/j.1365-2486.2011. 02578.x |
|
Evans SE, Byrne KM, Lauenroth WK, et al., 2011. Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. Journal of Ecology, 99(6): 1500-1507. DOI: 10.1111/j.1365-2745.2011.01864.x.
doi: 10.1111/j.1365-2745.2011.01864.x |
|
Fensholt R, Langanke T, Rasmussen K, et al., 2012. Greenness in semi-arid areas across the globe 1981-2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 121: 144-158. DOI: 10. 1016/j.rse.2012.01.017.
doi: 10. 1016/j.rse.2012.01.017 |
|
Fensholt R, Proud SR, 2012. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote sensing of Environment, 119: 131-147. DOI: 10.1016/j.rse. 2011.12.015.
doi: 10.1016/j.rse. 2011.12.015 |
|
Gessner U, Naeimi V, Klein I, et al., 2013. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global and Planetary Change, 110: 74-87. DOI: 10.1016/j.gloplacha.2012.09.007.
doi: 10.1016/j.gloplacha.2012.09.007 |
|
Holmgren M, Stapp P, Dickman CR, et al., 2006. Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment, 4(2): 87-95. DOI: 10. 1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2.
doi: 10. 1890/1540-9295(2006)004 |
|
Huang L, He B, Chen A, et al., 2016. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6: 24639. DOI: 10.1038/srep35126.
doi: 10.1038/srep35126 |
|
Hughes TP, Linares C, Dakos V, et al., 2013. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology and Evolution, 28(3): 149-155. DOI: 10.1016/j.tree.2012.08.022.
doi: 10.1016/j.tree.2012.08.022 |
|
Killick R, Fearnhead P, Eckley IA, 2012. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500): 1590-1598. DOI: 10.1080/01621459.2012.737745.
doi: 10.1080/01621459.2012.737745 |
|
Kim JY, Rastogi G, Do Y, et al., 2015. Trends in a satellite-derived vegetation index and environmental variables in a restored brackish lagoon. Global Ecology and Conservation, 4: 614-624. DOI: 10.1016/j.gecco.2015.10.010.
doi: 10.1016/j.gecco.2015.10.010 |
|
Krishnan P, Black TA, Grant NJ, et al., 2006. Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agricultural and Forest Meteorology, 139(3-4): 208-223. DOI: 10.1016/j.agrformet.2006.07.002.
doi: 10.1016/j.agrformet.2006.07.002 |
|
Li XR, Jia XH, Long LQ, et al., 2005. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant and Soil, 277(1-2): 375-385. DOI: 10.1007/s11104-005-8162-4.
doi: 10.1007/s11104-005-8162-4 |
|
Li X, Gao Y, Su J, et al., 2014. Ants mediate soil water in arid desert ecosystems: Mitigating rainfall interception induced by biological soil crusts? Applied Soil Ecology, 78: 57-64. DOI: 10.1016/j.apsoil.2014.02.009.
doi: 10.1016/j.apsoil.2014.02.009 |
|
Li X, Tian F, Jia R, et al., 2010. Do biological soil crusts determine vegetation changes in sandy deserts? Implications for managing artificial vegetation. Hydrological Processes, 24(25): 3621-3630. DOI: 10.1002/hyp.7791.
doi: 10.1002/hyp.7791 |
|
Li X, Zhang Z, Huang L, et al., 2013. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chinese Science Bulletin, 58(13): 1483-1496. DOI: 10.1007/s11434-012-5662-5.
doi: 10.1007/s11434-012-5662-5 |
|
Lloret F, Siscart D, Dalmases C, 2004. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biology, 10(12): 2092-2099. DOI: 10.1111/j.1365-2486.2004.00870.x.
doi: 10.1111/j.1365-2486.2004.00870.x |
|
Mohammat A, Wang X, Xu X, et al., 2013. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 178: 21-30. DOI: 10.1016/j.agrformet.2012.09.014.
doi: 10.1016/j.agrformet.2012.09.014 |
|
Piao S, Ciais P, Huang Y, et al., 2010. The impacts of climate change on water resources and agriculture in China. Nature, 467(7311): 43. DOI: 10.1038/nature09364.
doi: 10.1038/nature09364 |
|
Piao S, Cui M, Chen A, et al., 2011. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151(12): 1599-1608. DOI: 10.1016/j.agrformet.2011.06.016.
doi: 10.1016/j.agrformet.2011.06.016 |
|
Poulter B, Frank D, Ciais P, et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502): 600. DOI: 10.1038/nature13376.
doi: 10.1038/nature13376 |
|
Qu L, Chen J, Dong G, et al., 2016. Heat waves reduce ecosystem carbon sink strength in a Eurasian meadow steppe. Environmental Research, 144: 39-48. DOI: 10.1016/j.envres. 2015.09.004.
doi: 10.1016/j.envres. 2015.09.004 |
|
Song G, Li X, Hui R, 2017. Effect of biological soil crusts on seed germination and growth of an exotic and two native plant species in an arid ecosystem. PloS One, 12(10): e0185839. DOI: 10.1371/journal.pone.0185839.
doi: 10.1371/journal.pone.0185839 |
|
Thiet RK, Doshas A, Smith SM, 2014. Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant and Soil, 377(1-2): 235-244. DOI: 10. 1007/s11104-013-2002-8.
doi: 10. 1007/s11104-013-2002-8 |
|
Tian H, Cao C, Chen W, et al., 2015. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecological Engineering, 82: 276-289. DOI: 10.1016/j.ecoleng. 2015.04.098.
doi: 10.1016/j.ecoleng. 2015.04.098 |
|
Wang T, 2003. Desert and Desertification in China. Shijiazhuang: Hebei Science and Technology Publishing House, 641-648. | |
Wen Z, Wu S, Chen J, et al., 2017. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Science of Total Environment, 574: 947-959. DOI: 10.1016/j.scitotenv.2016.09.049.
doi: 10.1016/j.scitotenv.2016.09.049 |
|
Xia Q, Qin CZ, Li H, et al., 2018. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sensing, 10: 1343. DOI: 10.3390/rs10091343.
doi: 10.3390/rs10091343 |
|
Xu HJ, Wang XP, Yang TB, 2017. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013. Science of Total Environment, 579: 1658-1674. DOI: 10. 1016/j.scitotenv.2016.11.182.
doi: 10. 1016/j.scitotenv.2016.11.182 |
|
Xu HJ, Wang XP, Zhang XX, 2016. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. International Journal of Applied Earth Observation and Geoinformation, 52: 390-402. DOI: 10. 1016/j.jag.2016.07.010.
doi: 10. 1016/j.jag.2016.07.010 |
|
Yaffee RA, McGee M, 2000. An introduction to time series analysis and forecasting: with applications of SAS® and SPSS®: Elsevier. | |
Zhang DH, Li XR, Zhang F, et al., 2016. Effects of rainfall intensity and intermittency on woody vegetation cover and deep soil moisture in dryland ecosystems. Journal of Hydrology, 543: 270-282. DOI: 10.1016/j.jhydrol.2016. 10.003.
doi: 10.1016/j.jhydrol.2016. 10.003 |
|
Zhang J, Zhang L, Xu C, et al., 2014. Vegetation variation of mid-subtropical forest based on MODIS NDVI data—A case study of Jinggangshan City, Jiangxi Province. Acta Ecologica Sinica, 34(1): 7-12. | |
Zhang ZS, Zhao Y, Li XR, et al., 2016. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Scientific Reports, 6: 26030. DOI: 10.1038/srep26030.
doi: 10.1038/srep26030 |
[1] | ShiYin Liu,TongHua Wu,Xin Wang,XiaoDong Wu,XiaoJun Yao,Qiao Liu,Yong Zhang,JunFeng Wei,XiaoFan Zhu. Changes in the global cryosphere and their impacts: A review and new perspective [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 343-354. |
[2] | ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388. |
[3] | SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502. |
[4] | LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326. |
[5] | Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217. |
[6] | HongWei Wang,Yuan Qi,ChunLin Huang,XiaoYing Li,XiaoHong Deng,JinLong Zhang. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 150-158. |
[7] | RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492. |
[8] | Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206. |
[9] | ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487. |
[10] | Sanjaya Gurung, Bikas C. Bhattarai, Rijan B. Kayastha, Dorothea Stumm, Sharad P. Joshi, Pradeep K. Mool. Study of annual mass balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang,Nepal [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 311-318. |
[11] | Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226. |
[12] | Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94. |
[13] | ZhiWen Xiong, YongPeng Yang, ZhaoRong Zhu, XiangQing Zhao, HanCheng Cai. Effect of climate change and railway embankment on the degradation of underlain permafrost [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 554-559. |
[14] | Xi Chen, JianKun Liu, Nan Xie, HuiJing Sun. Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 354-364. |
[15] | YanWei Zhang, QuanSheng Ge, FengQing Jiang, JingYun Zheng, WenShou Wei. Assessing changes in extreme precipitation over Xinjiang using regional climate model of PRECIS [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 170-179. |
|