Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (6): 482-492.doi: 10.3724/SP.J.1226.2018.00482
Previous Articles Next Articles
RuiQing Li1,2,YanHong Gao1,*(),DeLiang Chen3,4,YongXin Zhang5,SuoSuo Li1
1 |
Bao Y, Gao YH, Lü SH, et al. Evaluation of CMIP5 earth system models in reproducing leaf area index and vegetation cover over the Tibetan Plateau. Journal of Meteorological Research 2014; 28: 6 1041- 1060.
doi: 10.1007/s13351-014-4023-5 |
2 |
Baret F, Weiss M, Lacaze R, et al. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment 2013; 137: 299- 309.
doi: 10.1016/j.rse.2012.12.027 |
3 |
Brovkin V Climate-vegetation interaction. Journal De Physique IV 2002; 12: 10 57- 72.
doi: 10.1051/jp4:20020452 |
4 |
Che ML, Chen BZ, Innes JL, et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agricultural and Forest Meteorology 2014; 189–190: 81- 90.
doi: 10.1016/j.agrformet.2014.01.004 |
5 |
Cui QH, Jiang ZG, Liu JK, et al. A review of the cause of rangeland degradation on Qinghai-Tibet Plateau. Pratacultural Science 2007; 24: 5 20- 26.
doi: 10.3969/j.issn.1001-0629.2007.05.004 |
6 | Dong ZB, Hu GY, Yan CZ, et al., 2012. Aeolian Desertification in the Source Regions of Yangtze River and Yellow River. Beijing: Scientific Press, pp. 343. |
7 | Editorial Board of Vegetation Map of China, Chinese Academy of Sciences. 2001. Vegetation Atlas of China (1:1,000,000). Beijing: Science Press. |
8 |
Gao YH, Cuo L, Zhang YX Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. Journal of Climate 2014; 27: 5 1876- 1893.
doi: 10.1175/jcli-d-13-00321.1 |
9 |
Gao YH, Li K, Chen F, et al. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres 2015a; 120: 18 9258- 9278.
doi: 10.1002/2015jd023404 |
10 |
Gao YH, Li X, Leung LR, et al. Aridity changes in the Tibetan Plateau in a warming climate. Environmental Research Letters 2015b; 10: 3 034013.
doi: 10.1088/1748-9326/10/3/034013 |
11 |
Goetz SJ, Bunn AG, Fiske GJ, et al. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 38 13521- 13525.
doi: 10.1073/pnas.0506179102 |
12 |
Jeong JH, Kug JS, Kim BM, et al. Greening in the circumpolar high-latitude may amplify warming in the growing season. Climate Dynamics 2012; 38: 7–8 1421- 1431.
doi: 10.1007/s00382-011-1142-x |
13 |
Jeong JH, Kug JS, Linderholm HW, et al. Intensified Arctic warming under greenhouse warming by vegetation-atmosphere-sea ice interaction. Environmental Research Letters 2014; 9: 9 094007.
doi: 10.1088/1748-9326/9/9/094007 |
14 |
Kang HS, Xue YK, Collatz GJ Impact assessment of satellite-derived leaf area index datasets using a general circulation model. Journal of Climate 2007; 20: 6 993- 1015.
doi: 10.1175/jcli4054.1 |
15 |
Li SS, Lü SH, Gao YH, et al. The change of climate and terrestrial carbon cycle over Tibetan Plateau in CMIP5 models. International Journal of Climatology 2015; 35: 14 4359- 4369.
doi: 10.1002/joc.4293 |
16 |
Liang SL, Zhao X, Liu SH, et al. A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies. International Journal of Digital Earth 2013; 6: S1 5- 33.
doi: 10.1080/17538947.2013.805262 |
17 |
Lin HL, Wang ZQ, Shang ZH Features on fractal dimension of barren patch and mouse hole among different degenerated succession stages on alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China. Acta Agrestia Sinica 2010; 18: 4 477- 484.
doi: 10.11733/j.issn.1007-0435.2010.04.001 |
18 |
Liu XD, Chen BD Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 2000; 20: 14 1729- 1742.
doi: 10.1002/1097-0088(20001130)20:14<1729::aid-joc556>3.0.co;2-y |
19 |
Muschitiello F, Zhang Q, Sundqvist HS, et al. Arctic climate response to the termination of the African Humid Period. Quaternary Science Reviews 2015; 125: 91- 97.
doi: 10.1016/j.quascirev.2015.08.012 |
20 |
Parmesan C, Yohe G A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003; 421: 6918 37- 42.
doi: 10.1038/nature01286 |
21 |
Piao SL, Fang JY, He JS Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change 2006; 74: 1–3 253- 267.
doi: 10.1007/s10584-005-6339-8 |
22 |
Piao SL, Cui MD, Chen AP, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 2011; 151: 12 1599- 1608.
doi: 10.1016/j.agrformet.2011.06.016 |
23 |
Shen MG, Piao SL, Jeong SJ, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America 2015; 112: 30 9299- 9304.
doi: 10.1073/pnas.1504418112 |
24 |
Shen Y, Feng MN, Zhang HZ, et al. Interpolation methods of China daily precipitation data. Journal of Applied Meteorological Science 2010; 21: 3 279- 286.
doi: 10.3969/j.issn.1001-7313.2010.03.003 |
25 |
Shen ZX, Fu G, Yu CQ, et al. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau. Remote Sensing 2014; 6: 8 6765- 6789.
doi: 10.3390/rs6086765 |
26 |
Song CQ, You SC, Ke LH, et al. Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology 2011; 35: 8 853- 863.
doi: 10.3724/sp.j.1258.2011.00853 |
27 | National Meteorological Information Center Assessment Report of China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0). Beijing: National Meteorological Information Center 2012. |
28 |
Wang B, Bao Q, Hoskins B, et al. Tibetan plateau warming and precipitation changes in East Asia. Geophysical Research Letters 2008; 35: 14
doi: 10.1029/2008gl034330 |
29 |
Wu GX, Duan AM, Zhang XQ, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau. Chinese Journal of Nature 2013; 35: 3 167- 171.
doi: 10.3969/j.issn.0253-9608.2013.03.002 |
30 |
Xiao ZQ, Liang SL, Wang JD, et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Transactions on Geoscience and Remote Sensing 2014; 52: 1 209- 223.
doi: 10.1109/tgrs.2013.2237780 |
31 |
Xu WX, Gu S, Zhao XQ, et al. High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation 2011; 13: 4 528- 535.
doi: 10.1016/j.jag.2011.02.001 |
32 | Yang JP, Ding YJ, Chen RS, et al., 2006. Changes of the Ecological System in the Source Regions of the Yangtze and Yellow River Basins. Beijing: Meteorological Press, pp. 181. (in Chinese) |
33 |
Yang K, Ye BS, Zhou DG, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change 2011; 109: 3–4 517- 534.
doi: 10.1007/s10584-011-0099-4 |
34 |
Yang MX, Wang SL, Yao TD, et al. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology 2004; 39: 1 47- 53.
doi: 10.1016/j.coldregions.2004.01.002 |
35 |
Zhang L, Guo HD, Ji L, et al. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau. Journal of Applied Remote Sensing 2013b; 7: 073572.
doi: 10.1117/1.jrs.7.073572 |
36 |
Zhang L, Guo HD, Wang CZ, et al. The long-term trends (1982–2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau. Environmental Earth Sciences 2014; 72: 6 1827- 1841.
doi: 10.1007/s12665-014-3092-1 |
37 |
Zhong L, Ma YM, Salama MS, et al. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Climatic Change 2010; 103: 3–4 519- 535.
doi: 10.1007/s10584-009-9787-8 |
38 |
Zhou HJ, Van Rompaey A, Wang JA Detecting the impact of the "Grain for Green" program on the mean annual vegetation cover in the Shaanxi province, China using SPOT-VGT NDVI data. Land Use Policy 2009; 26: 4 954- 960.
doi: 10.1016/j.landusepol.2008.11.006 |
[1] | ShuLin Liu,Tao Wang,WenPing Kang,ZiChen Guo,XueQin Zhang. Vegetation change and its response to drought in Inner Mongolia of northern China from 1998 to 2013 [J]. Sciences in Cold and Arid Regions, 2019, 11(6): 448-460. |
[2] | ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339. |
[3] | LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326. |
[4] | Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217. |
[5] | Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115. |
[6] | HaiYang Xi,JingTian Zhang,Qi Feng,Lu Zhang,JianHua Si,TengFei Yu. How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 62-80. |
[7] | YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391. |
[8] | Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206. |
[9] | HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218. |
[10] | ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125. |
[11] | BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144. |
[12] | SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94. |
[13] | YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579. |
[14] | ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487. |
[15] | ShaoYing Wang, Yu Zhang, ShiHua Lyu, LunYu Shang, YouQi Su, HanHui Zhu. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 142-157. |
|