Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (1): 62-80.doi: 10.3724/SP.J.1226.2019.00062
Previous Articles Next Articles
HaiYang Xi1,2,*(),JingTian Zhang1,4,Qi Feng1,2,Lu Zhang3,JianHua Si1,2,TengFei Yu1,2
Ayars JE , Christen EW , Soppe RW , et al. , 2006. The resource potential of in-situ shallow ground water use in irrigated agriculture: a review. Irrigation Science, 24(3): 147−160. DOI: 10.1007/s00271-005-0003-y.
doi: 10.1007/s00271-005-0003-y. |
|
Chambel A , 2006. Groundwater in semi-arid mediterranean areas: desertification, soil salinization and ecosystems.In: Baba A, Howard KWF, Gunduz Oeds. Groundwater and Ecosystems. (eds.). Dordrecht: Springer, pp.47-58.DOI: 10.1007/1-4020-4738-X_4.
doi: 10.1007/1-4020-4738-X_4. |
|
Chen YN , Wang Q , Li WH , et al. , 2006. Rational groundwater table indicated by the eco-physiological parameters of the vegetation: a case study of ecological restoration in the lower reaches of the Tarim River. Chinese Science Bulletin, 51(S1): 8−15. DOI: 10.1007/s11434-006-8202-3.
doi: 10.1007/s11434-006-8202-3. |
|
Chen YN , Li WH , Xu CC , et al. , 2015. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River Basin. Environmental Earth Sciences, 73(2): 547−558. DOI: 10.1007/s12665-013-3002-y.
doi: 10.1007/s12665-013-3002-y. |
|
Cheng L , Zhang L , Wang YP , et al. , 2014a. Quantifying the effects of elevated CO2 on water budgets by combining FACE data with an ecohydrological model. Ecohydrology, 7(6): 1574−1588. DOI: 10.1002/eco.1478.
doi: 10.1002/eco.1478. |
|
Cheng L , Zhang L , Wang YP , et al. , 2014b. Impacts of elevated CO2, climate change and their interactions on water budgets in four different catchments in Australia. Journal of Hydrology, 519: 1350−1361. DOI: 10.1016/j.jhydrol. 2014.09.020.
doi: 10.1016/j.jhydrol. 2014.09.020. |
|
Crowley GM, 1994. Groundwater rise, soil salinization and the decline of Casuarina in southeastern Australia during the late quaternary. Australian Ecology, 19(4): 417−424. DOI: 10. 1111/j.1442-9993.1994.tb00507.x.
doi: 10. 1111/j.1442-9993.1994.tb00507.x. |
|
Dawes WR , Short DL , 1993. The efficient numerical solution of differential equations for coupled water and solute dynamics: the WAVES model. Technical Memorandum-CSIRO, Australia, Division of Water Resources, 93(18). Procite: 75f60280-d9ac-4f71-aacf-cd5454e3284e. | |
Doody TM , Holland KL , Benyon RG , et al. , 2009. Effect of groundwater freshening on riparian vegetation water balance. Hydrological Processes, 23(24): 3485−3499. DOI: 10. 1002/hyp.7460.
doi: 10. 1002/hyp.7460. |
|
Eklundh L , Jönsson P , 2012. IMESAT 3.1 software manual. Lund, Sweden: Lund University. | |
Fan XM , Pedroli B , Liu GH , et al. , 2011. Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity. Ecohydrology, 4(6): 744−756. DOI: 10.1002/eco.164.
doi: 10.1002/eco.164. |
|
Feng Q , Peng JZ , Li JG , et al. , 2012. Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions. Journal of Arid Land, 4(4): 378−389. DOI: 10.3724/SP.J.1227.2012.00378.
doi: 10.3724/SP.J.1227.2012.00378. |
|
Fu AH , Chen YN , Li WH , 2014. Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China. Science China Earth Sciences, 57(6): 1293−1305. DOI: 10.1007/s11430-013-4680-8.
doi: 10.1007/s11430-013-4680-8. |
|
Fu BH , Burgher I , 2015. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. Journal of Arid Environments, 113: 59−68. DOI: 10.1016/j.jaridenv.2014.09.010.
doi: 10.1016/j.jaridenv.2014.09.010. |
|
Han M , Zhao CY , Šimůnek J , et al. , 2015. Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model. Agricultural Water Management, 160: 64−75. DOI: 10.1016/j.agwat. 2015.06.028.
doi: 10.1016/j.agwat. 2015.06.028. |
|
Hao XM , Li WH , Huang X , et al. , 2010. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Processes, 24(2): 178−186. DOI: 10.1002/hyp.7432.
doi: 10.1002/hyp.7432. |
|
Hose GC , Bailey J , Stumpp C , et al. , 2014. Groundwater depth and topography correlate with vegetation structure of an upland peat swamp, Budderoo Plateau, NSW, Australia. Ecohydrology, 7(5): 1392−1402. DOI: 10.1002/eco.1465.
doi: 10.1002/eco.1465. |
|
Hou T , Zhu YH , Lu HS , et al. , 2011. Modelling capillary rise of crop land under different groundwater level. Hydrological Cycle and Water Resources Sustainability in Changing Environments, 350: 212−218. | |
Jansson R , Laudon H , Johansson E , et al. , 2007. The importance of groundwater discharge for plant species number in riparian zones. Ecology, 88(1): 131−139. DOI: 10.1890/0012-9658(2007)88 [131:TIOGDF]2.0.CO;2.
doi: 10.1890/0012-9658(2007)88 |
|
Jia YH , Zhao CY , Zhou L , et al. , 2009. Estimation of Leaf Area Index using remote sensing in the groundwater-fluctuating belt in lower reaches of Heihe River, Northwest China. In: Proceedings of 2009 International Conference on Environmental Science and Information Application Technology. Wuhan, China: IEEE, pp. 462−465. DOI: 10.1109/ESIAT. 2009.403.
doi: 10.1109/ESIAT. 2009.403. |
|
Jönsson P , Eklundh L , 2004. TIMESAT−a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8): 833−845. DOI: 10.1016/j.cageo. 2004.05.006.
doi: 10.1016/j.cageo. 2004.05.006. |
|
Jorenush MH , Sepaskhah AR , 2003. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions. Agricultural Water Management, 61(2): 125−141. DOI: 10.1016/S0378-3774(02)00176-2.
doi: 10.1016/S0378-3774(02)00176-2. |
|
Kuglerová L , Jansson R , Ågren A , et al. , 2014. Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. Ecology, 95(3): 715−725. DOI: 10.1890/13-0363.1.
doi: 10.1890/13-0363.1. |
|
Lamontagne S , Cook PG , O'Grady A , et al. , 2005. Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310(1−4): 280−293. DOI: 10.1016/j.jhydrol.2005.01.009.
doi: 10.1016/j.jhydrol.2005.01.009. |
|
Li WH , Zhou HH , Fu AH , et al. , 2013. Ecological response and hydrological mechanism of desert riparian forest in inland river, northwest of China. Ecohydrology, 6(6): 949−955. DOI: 10.1002/eco.1385.
doi: 10.1002/eco.1385. |
|
Ma XD , Chen YN , Zhu CG , et al. , 2011. The variation in soil moisture and the appropriate groundwater table for desert riparian forest along the Lower Tarim River. Journal of Geographical Sciences, 21(1): 150−162. DOI: 10.1007/s11442-011-0835-8.
doi: 10.1007/s11442-011-0835-8. |
|
Mahoney JM , Rood SB , 1992. Response of a hybrid poplar to water table decline in different substrates. Forest Ecology and Management, 54(1−4): 141−156. DOI: 10.1016/0378-1127(92)90009-X.
doi: 10.1016/0378-1127(92)90009-X. |
|
Marohn C , Distel A , Dercon G , et al. , 2012. Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia. Natural Hazards and Earth System Sciences, 12(9): 2879−2891. DOI: 10.5194/nhess-12-2879-2012.
doi: 10.5194/nhess-12-2879-2012. |
|
Muñoz-Reinoso JC, 2001. Vegetation changes and groundwater abstraction in SW Doñana, Spain. Journal of Hydrology, 242(3−4): 197−209. DOI: 10.1016/S0022-1694(00)00397-8.
doi: 10.1016/S0022-1694(00)00397-8. |
|
Oomes MJM , Olff H , Altena HJ , 1996. Effects of vegetation management and raising the water table on nutrient dynamics and vegetation change in a wet grassland. Journal of Applied Ecology, 33: 576−588. DOI: 10.2307/2404986.
doi: 10.2307/2404986. |
|
ORNL DAAC, 2018. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool. ORNLDAAC, OakRidge, Tennessee, USA. Accessed on September 7, 2015. Subset obtained for MOD15A2 product at 41.9943N,101.1372E, time period: 2000-02-18 to 2015-08-21, and subset size:7×7 km. DOI: https://doi.org/10.3334/ORNLDAAC/1241.
doi: 10.3334/ORNLDAAC/1241. |
|
Pang ZH , Huang TM , Chen YN , 2010. Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle Tarim River, Xinjiang Uygur, Western China. Hydrological Processes,24(2): 147−159. DOI: 10.1002/hyp.7438.
doi: 10.1002/hyp.7438. |
|
Perry LG , Andersen DC , Reynolds LV, et al. , 2012. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology, 18(3): 821−842. DOI: 10.1111/j.1365-248 6.2011.02588.x.
doi: 10.1111/j.1365-248 6.2011.02588.x. |
|
Sabo JL , Sponseller R , Dixon M , et al. , 2005. Riparian zones increase regional species richness by harboring different, notmore, species. Ecology, 86(1): 56−62. DOI: 10.1890/04-0668.
doi: 10.1890/04-0668. |
|
Scott RL , Cable WL , Huxman TE , et al. , 2008. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. Journal of Arid Environments, 72(7): 1232−1246. DOI: 10.1016/j.jaridenv.2008.01.001.
doi: 10.1016/j.jaridenv.2008.01.001. |
|
Scott RL, 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology, 150(2): 219−225. DOI: 10.1016/j.agrformet. 2009. 11.002.
doi: 10.1016/j.agrformet. 2009. 11.002. |
|
Silberstein RP , Dawes WR , Bastow TP , et al. , 2013. Evaluation of changes in post-fire recharge under native woodland using hydrological measurements, modelling and remote sensing. Journal of Hydrology, 489: 1−15. DOI: 10.1016/j.jhydrol.2013.01.037.
doi: 10.1016/j.jhydrol.2013.01.037. |
|
Smettem KRJ , Waring RH , Callow JN , et al. , 2013. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Global Change Biology, 19(8): 2401−2412. DOI: 10.1111/gcb.12223.
doi: 10.1111/gcb.12223. |
|
Sommer B , Froend R , 2014. Phreatophytic vegetation responses to groundwater depth in a drying mediterranean-type landscape. Journal of Vegetation Science, 25(4): 1045−1055. DOI: 10.1111/jvs.12178.
doi: 10.1111/jvs.12178. |
|
Soylu ME , Kucharik CJ , Loheide II SP , 2014. Influence of groundwater on plant water use and productivity: development of an integrated ecosystem—Variably saturated soil water flow model. Agricultural and Forest Meteorology, 189−190: 198−210. DOI: 10.1016/j.agrformet. 2014. 01.019.
doi: 10.1016/j.agrformet. 2014. 01.019. |
|
Stromberg JC , Tiller R , Richter B , 1996. Effects of groundwater decline on riparian vegetation of semiarid regions: the San Pedro, Arizona. Ecological Applications, 6(1): 113−131. DOI: 10.2307/2269558.
doi: 10.2307/2269558. |
|
Vogt T , Schirmer M , Cirpka OA , 2012. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrology and Earth System Sciences, 16(2): 473−487. DOI: 10.5194/hess-16-473-2012.
doi: 10.5194/hess-16-473-2012. |
|
Williams DG , Cable W , Hultine K , et al. , 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3−4): 241−258. DOI: 10.1016/j.agrformet. 2004.04.008.
doi: 10.1016/j.agrformet. 2004.04.008. |
|
Wilson KB , Hanson PJ , Mulholland PJ , et al. , 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106(2): 153−168. DOI: 10.1016/S0168-1923(00)00199-4.
doi: 10.1016/S0168-1923(00)00199-4. |
|
Xi HY , Feng Q , Zhang L , et al. , 2016. Effects of water and salinity on plant species composition and community succession in Ejina Desert Oasis, northwest China. Environmental Earth Sciences, 75(2): 138. DOI: 10.1007/s12665-015-4823-7.
doi: 10.1007/s12665-015-4823-7. |
|
Yang YH , Chen YN , Li WH , 2009. Relationship between soil properties and plant diversity in a desert riparian forest in the lower reaches of the Tarim River, Xinjiang, China. Arid Land Research and Management,23(4): 283−296. DOI: 10.1080/15324980903231991.
doi: 10.1080/15324980903231991. |
|
Zambrano-Bigiarini M, 2011. Goodness-of-fit measures to compare observed and simulated values with hydroGOF. DOI: https://cran.r-project.org/web/packages/hydroGOF/vignettes/hydroGOF_Vignette.pdf.
doi: https://cran.r-project.org/web/packages/hydroGOF/vignettes/hydroGOF_Vignette.pdf. |
|
Zhang L , Dawes WR , Hatton TJ , 1996. Modelling hydrologic processes using a biophysically based mode-application of WAVES to FIFE and HAPEX-MOBILHY. Journal of Hydrology, 185(1−4): 147−169. DOI: 10.1016/0022-1694(95)03006-9.
doi: 10.1016/0022-1694(95)03006-9. |
|
Zhang L , Dawes WR , 1998. WAVES: an integrated energy and water balance model. Canberra: CSIRO Land and Water. | |
Zhao CY , Cheng GD , Nan ZR , et al. , 2007. Relationship between vegetation distribution and groundwater level in the lower reaches of Heihe River basin, China. In: Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain: IEEE, pp. 3963−3966. DOI: 10.1109/IGARSS.2007.4423716.
doi: 10.1109/IGARSS.2007.4423716. |
|
Zhao Y , Zhao CY , Xu ZL , et al. , 2012. Physiological responses of Populus euphratica Oliv. to groundwater table variations in the lower reaches of Heihe River, Northwest China. Journal of Arid Land, 4(3): 281−291. DOI: 10.3724/SP.J.1227. 2012.00281.
doi: 10.3724/SP.J.1227. 2012.00281. |
No related articles found! |
|