Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (1): 50-61.doi: 10.3724/SP.J.1226.2019.00050

Previous Articles     Next Articles

Accumulation and geochemical evidence for the Little Ice Age episode in eastern Antarctica

ChuanJin Li1,*(),JiaWen Ren1,CunDe Xiao1,2,MingHu Ding1,3,AiHong Xie1,ZhiHeng Du1,XiangYu Ma1,DaHe Qin1   

  1. 1. State Key Laboratory of the Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    3. Institute of Climate System (Polar Meteorology), Chinese Academy of Meteorological Sciences, Beijing 100081, China
  • Received:2018-05-16 Accepted:2018-12-17 Online:2019-02-01 Published:2019-03-22
  • Contact: ChuanJin Li E-mail:lichuanjin@lzb.ac.cn
  • About author:ChuanJin Li, State Key Laboratory of the Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. E-mail:lichuanjin@lzb.ac.cn

Abstract:

Data on accumulation and concentration of chemical compounds recorded in an essentially unexplored area (Dome Argus) of the Indian Ocean sector of eastern Antarctica during the past 2,680 years (680 B.C. to 1999 A.D.) are presented. During the first 1,700 years (680 B.C. to 1000 A.D.), the accumulation data shows a slightly decreasing trend, while chemical ions appear to be stable, representing a stable climatic condition. An intensive increasing trend of the accumulation occurred during the 12th to 14th century. The period from 15th to 19th century was characterized by a rapid reducing accumulation and concentrations of volatile compounds suffering post-depositional loss linked to sparse precipitation amount, which was temporally consistent with the Little Ice Age (LIA) episode. Comparison between observed accumulation rates with other eastern Antarctic ice cores show a consistent decreasing trend during LIA, while sea salt and dust-originated ions increased due to sea ice extent and intensified atmospheric transportation. Distribution of volcanic originated sulfate over the Antarctic continent show a significant change during the 15th century, coincident with the onset of the LIA. These results are important for the assessment of Antarctic continent mass balance and associated interpretation of the Dome A deep ice core records.

Key words: accumulation rates, sea salt, chemical compounds, Little Ice Age, eastern Antarctica

Figure 1

Location of the DT-401 ice core site and other ice core sites in East Antarctica (solid dots), also the CHINARE expedition route from Zhongshan Station to Dome A (dashed line)"

Figure 2

Variations in accumulation rate in the DT-401 ice core during the past 2,680 years. The gray dots represent the 10-year mean values, and solid black line represents the 30-year average values. The dashed line in the middle indicates the mean value (0.031 m H2O/a) for the period"

Figure 3

Accumulation rates between volcanic events (Unknown 1259 A.D., Kuwae 1454 A.D., Unknown 1809 A.D., Tambora 1815 A.D., Krakatoa 1883 A.D. and Agung 1963 A.D.) for five ice core locations in eastern Antarctica. Ice core locations are PR-B (red), DML (Blue), DT-401 (brown), Dome A (green) and DT263 (black)"

Table 1

Temporal variation of the average concentrations of sodium, magnesium, nss calcium, chloride, nss sulfate, non-volcanic nss sulfate, EOF1 and accumulation rates in DT-401 ice core"

Time compounds 680 B.C. to 900 A.D. 901A.D. to 1450 A.D. 1451A.D. to 1850 A.D. 1851A.D. to 1999 A.D.
Na+ (ng/g) 17.8±10.7 18.1±10.2 24.9±15.4 26.7±16.4
Mg2+ (ng/g) 3.7±2.3 3.5±2.2 4.1±2.4 3.9±2.4
Ca2+ (ng/g) 31.4±16.6 26.4±15.2 34.7±26.2 46.6±36.3
Cl? (ng/g) 38.2±11.9 38.9±9.6 35.1±13.6 33.3±20.1
nssSO 4 2 - (ng/g) 79.5±36.2 86.0±62.8 89.1±32.6 85.2±25.2
Non volcanic nssSO 4 2 - (ng/g) 70.0±16.9 71.9±15.6 79.5±26.7 81.0±36.9
EOF1 0.01±0.83 -0.27±0.74 0.05±1.29 0.67±1.79
Accumulation (kg/(m?a)) 0.031±0.004 0.034±0.008 0.027±0.005 0.025±0.006
Na 1,580/158 550/55 400/40 150/15

Figure 4

Temporal variation of the concentrations of (a) Na+, (b) Cl?, (c) Mg2+, (d) Ca2+, (e) nss SO 4 2 - and (f) δ18O. Thick lines represent 30-year smoothed data"

Figure 5

(a) The ratios between fluxes of events recorded in ten Antarctic ice cores and Tambora (used as reference event) are reported against age for the last millennium. (b) The standard deviation for the considered events is indicated. References are reported in the text"

Anschütz H , Sinisalo A , Isaksson E , et al. , 2011. Variation of accumulation rates over the last eight centuries on the East Antarctic Plateau derived from volcanic signals in ice cores. Journal of Geophysical Research, 116(D20): D20103. DOI: 10.1029/2011JD015753.
doi: 10.1029/2011JD015753.
Basile I , Grousset FE , Revel M , et al . , 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth and Planetary Science Letters, 146(3−4): 573−589. DOI: 10.1016/S00 12-821X(96)00255-5.
doi: 10.1016/S00 12-821X(96)00255-5.
Becagli S , Benassai S , Castellano E , et al . , 2004. Chemical characterization of the last 250 years of snow deposition at Talos Dome (East Antarctica). International Journal of Environmental Analytical Chemistry, 84(6−7): 523−536. DOI: 10. 1080/03067310310001640384.
doi: 10. 1080/03067310310001640384.
Bradley RS , Jones PD , 1993. "Little Ice Age" summer temperature variations: their nature and relevance to recent global warming trends. The Holocene, 3(4): 367−376. DOI: 10.11 77/095968369300300409.
doi: 10.11 77/095968369300300409.
Broecker WS , Peng TH , 1982. Tracers in the sea. Palisades, New York: Lamont-Doherty Geological Observatory, pp. 26−27.
Castellano E , Becagli S , Jouzel J , et al . , 2004. Volcanic eruption frequency over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes. Global and Planetary Change, 42(1−4): 195−205. DOI: 10.1016/j.gloplacha.2003.11.007.
doi: 10.1016/j.gloplacha.2003.11.007.
Castellano E , Becagli S , Hutterli M , et al . , 2005. Holocene volcanic history as recorded in the sulfate stratigraphy of the European project for ice coring in Antarctica Dome C (EDC96) ice core. Journal of Geophysical Research, 110(D6): D06114. DOI: 10.1029/2004JD005259.
doi: 10.1029/2004JD005259.
Cole-Dai J , Mosley-Thompson E , Thompson LG , 1997. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores. Journal of Geophysical Research, 102(D14): 16761−16771. DOI: 10.1029/97JD01394.
doi: 10.1029/97JD01394.
Cole-Dai J , Mosley-Thompson E , Wight SP , et al . , 2000. A 4100-year record of explosive volcanism from an East Antarctica ice core. Journal of Geophysical Research, 105(D19): 24431−24441. DOI: 10.1029/2000JD900254.
doi: 10.1029/2000JD900254.
Cosme E , Hourdin F , Genthon C , et al . , 2005. Origin of dimethylsulfide, non-sea-saltsulfate, and methanesulfonic acid in eastern Antarctica. Journal of Geophysical Research, 110(D3): D03302. DOI: 10.1029/2004JD004881.
doi: 10.1029/2004JD004881.
Crowley TJ, 2000. Causes of climate change over the past 1000 years. Science, 289(5477): 270−277. DOI: 10.1126/science.289.5477.270.
doi: 10.1126/science.289.5477.270.
De Deckker P , Norman M , Goodwin ID , et al . , 2010. Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3−4): 205−223. DOI: 10.1016/j.palaeo.2009.11.013.
doi: 10.1016/j.palaeo.2009.11.013.
Delmas RJ , Kirchner S , Palais JM , et al . , 1992. 1000 years of explosive volcanism recorded at the South Pole. Tellus B: Chemical and Physical Meteorology, 44(4): 335−350. DOI: 10.3402/tellusb.v44i4.15461.
doi: 10.3402/tellusb.v44i4.15461.
Delmonte B , Petit JR , Basile-Doelsch I , et al . , 2007. Late quaternary interglacials in East Antarctica from ice-core dust records. Developments in Quaternary Science, 7: 53−73. DOI: 10.1016/S1571-0866(07)80031-5.
doi: 10.1016/S1571-0866(07)80031-5.
Delmonte B , Baroni C , Andersson PS , et al . , 2010a. Aeolian dust in the Talos dome ice core (East Antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles. Journal of Quaternary Science, 25(8): 1327−1337. DOI: 10.1002/jqs.1418.
doi: 10.1002/jqs.1418.
Delmonte B , Andersson PS , Schöberg H , et al . , 2010b. Geographic provenance of Aeolian dust in East Antarctica during Pleistocene glaciations: preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quaternary Science Reviews, 29(1−2): 256−264. DOI: 10.1016/j.quascirev.2009.05.010.
doi: 10.1016/j.quascirev.2009.05.010.
Ding MH , Xiao CD , Li YS , et al . , 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan Station to Dome A, Antarctica. Journal of Glaciology, 57(204): 658−666. DOI: 10.3189/002214311797409820.
doi: 10.3189/002214311797409820.
Ding MH , Xiao CD , Li CJ , et al . , 2015. Surface mass balance and its climate significance from the coast to Dome A, East Antarctica. Science China Earth Sciences, 58(10): 1787−1797. DOI: 10.1007/s11430-015-5083-9.
doi: 10.1007/s11430-015-5083-9.
Donaldson DJ , George C , 2012. Sea-surface chemistry and its impact on the marine boundary layer. Environmental Science & Technology, 46(19): 10385−10389. DOI: 10.1021/es301651m.
doi: 10.1021/es301651m.
EPICA Community Members, 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429(6992): 623−628. DOI: 10.1038/nature02599.
doi: 10.1038/nature02599.
Fischer H , Siggaard-Andersen ML , Ruth U , et al . , 2007. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Reviews of Geophysics, 45(1): RG1002. DOI: 10.1029/2005RG00 0192.
doi: 10.1029/2005RG00 0192.
Gabrielli P , Wegner A , Petit JR , et al . , 2010. A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice. Quaternary Science Reviews, 29(1−2): 265−273. DOI: 10.1016/j.quascirev. 2009. 09.002.
doi: 10.1016/j.quascirev. 2009. 09.002.
Hou SG , Li YS , Xiao CD , et al . , 2007. Recent accumulation rate at Dome A, Antarctica. Chinese Science Bulletin, 52(3): 428−431. DOI: 10.1007/s11434-007-0041-3.
doi: 10.1007/s11434-007-0041-3.
IPCC, 2013. Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S , Qin D , Manning M ,et al . (eds.). Cambridge: Cambridge University Press.
Karlöf L , Winther JG , Isaksson E , et al . , 2000. A 1500 year Record of Accumulation at Amundsenisen Western Dronning Maud Land, Antarctica, Derived from electrical and radioactive measurements on a 120 m ice core. Journal of Geophysical Research, 105(D10): 12471−12483. DOI: 10.1029/1999J D901119.
doi: 10.1029/1999J D901119.
Kreutz KJ , Mayewski PA , Meeker LD , et al . , 1997. Bipolar changes in atmospheric circulation during the Little Ice Age. Science, 277(5330): 1294−1296. DOI: 10.1126/science.27 7.5330.1294.
doi: 10.1126/science.27 7.5330.1294.
Kreutz KJ , Mayewski PA , 1999. Spatial variability of Antarctic surface snow glaciochemistry: implications for paleoatmospheric circulation reconstruction. Antarct Sci., 11: 105−118.
Langway Jr CC , Osada K , Clausen HB , et al . , 1994. New chemical stratigraphy over the last millennium for Byrd Station, Antarctica. Tellus B: Chemical and Physical Meteorology, 46(1): 40−51. DOI: 10.3402/tellusb.v46i1.15750.
doi: 10.3402/tellusb.v46i1.15750.
Legrand M , Delmas RJ , 1985. Spatial and temporal variations of snow chemistry in Terre Adélie (East Antarctica). Annals of Glaciology, 7: 20−25. DOI: 10.1017/S0260305500005851.
doi: 10.1017/S0260305500005851.
Legrand M , Mayewski P , 1997. Glaciochemistry of polar ice cores: a review. Reviews of Geophysics, 35(3): 219−243. DOI: 10.1029/96RG03527.
doi: 10.1029/96RG03527.
Legrand MR , Delmas RJ , 1988. Formation of HCl in the Antarctic atmosphere. Journal of Geophysical Research, 93(D6): 7153−7168. DOI: 10.1029/JD093iD06p07153.
doi: 10.1029/JD093iD06p07153.
Li CJ , Xiao CD , Hou SG , et al . , 2012. Dating a 109.9 m ice core from Dome A (East Antarctica) with volcanic records and a firn densification model. Science China Earth Science, 55(8): 1280−1288. DOI: 10.1007/s11430-012-4393-4.
doi: 10.1007/s11430-012-4393-4.
Li CJ , Ren JW , Qin DH , et al . , 2013. Factors controlling the nitrate in the DT-401 ice core in eastern Antarctica. Science China Earth Sciences, 56(9): 1531−1539. DOI: 10.1007/s11430-012-8888-9.
doi: 10.1007/s11430-012-8888-9.
Li CJ , Ren JW , Xiao CD , et al . , 2015. A 2680-year record of sea ice extent in the Ross Sea and the associated atmospheric circulation derived from the DT401 East Antarctic ice core. Science China Earth Sciences, 58(11): 2090−2102. DOI: 10.1007/s11430-015-5125-3.
doi: 10.1007/s11430-015-5125-3.
Li YS , Cole-Dai J , Zhou LY , 2009. Glaciochemical evidence in an East Antarctica ice core of a recent (A.D. 1450−1850) neoglacial episode. Journal of Geophysical Research, 114(D8): D08117. DOI: 10.1029/2008JD011091.
doi: 10.1029/2008JD011091.
Marino F , Castellano E , Ceccato D , et al . , 2008. Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial-interglacial cycle. Geochemistry, Geophysics, Geosystems, 9(10): Q10018. DOI: 10.1029/2008GC002023.
doi: 10.1029/2008GC002023.
Marino F , Castellano E , Nava S , et al . , 2009. Coherent composition of glacial dust on opposite sides of the East Antarctic Plateau inferred from the deep EPICA ice cores. Geophysical Research Letters, 36(23): L23703. DOI: 10.1029/2009GL040732.
doi: 10.1029/2009GL040732.
Mayewski PA , Maasch KA , 2006. Recent warming inconsistent with natural association between temperature and atmospheric circulation over the last 2000 years. Climate of the Past Discussions, 2(3): 327−355. DOI: 10.5194/cpd-2-327-2006.
doi: 10.5194/cpd-2-327-2006.
Meeker LD , Mayewski PA , Twickler MS , et al . , 1997. A 110,000-year history of change in continental biogenic emissions and related atmospheric circulation inferred from the Greenland Ice Sheet Project Ice Core. Journal of Geophysical Research, 102(C12): 26489−26504. DOI: 10.1029/97JC01492.
doi: 10.1029/97JC01492.
Meese DA , Gow AJ , Grootes P , et al . , 1994. The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Science, 266(5191): 1680−1682. DOI: 10.1126/science.266.5191.1680.
doi: 10.1126/science.266.5191.1680.
Miller GH , Á Geirsdóttir , Zhong YF , 2012. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters, 39(2): L02708. DOI: 10.1029/2011GL050168.
doi: 10.1029/2011GL050168.
Minikin A , Legrand M , Hall J , et al . , 1998. Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. Journal of Geophysical Research, 103(D9): 10975−10990. DOI: 10.1029/98JD00249.
doi: 10.1029/98JD00249.
Morgan V , Van Ommen TD , 1997. Seasonality in late-Holocene climate from ice-core records. The Holocene, 7(3): 351−354. DOI: 10.1177/095968369700700312.
doi: 10.1177/095968369700700312.
Mosley-ThompsonE, 1992. Paleoenvironmental conditions in Antarctic since A.D. 1500: ice core evidence. In: Bradley RS, Jones PD (eds.). Climate Since A.D. 1500. New York: Routledge, pp. 572−591.
Mulvaney R , Wolff EW , 1994. Spatial variability of the major chemistry of the Antarctic ice sheet. Annals of Glaciology, 20: 440−447. DOI: 10.3189/172756494794587159.
doi: 10.3189/172756494794587159.
Mulvaney R , Oerter H , Peel DA , et al . , 2002. 1000 year ice-core records from Berkner Island, Antarctica. Annals of Glaciology, 35: 45−51. DOI: 10.3189/172756402781817176.
doi: 10.3189/172756402781817176.
PetitJ R , Jouzel J , Raynaud D , et al . , 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735): 429−436. DOI: 10.103 8/20859.
doi: 10.103 8/20859.
Qin X , Li CJ , Xiao CD , et al . , 2014. Spatial distribution of marine chemicals along a transect from Zhongshan Station to the Grove Mountain area, Eastern Antarctica. Science China Earth Sciences, 57(10): 2366−2373. DOI: 10.1007/s11430-014-4907-3.
doi: 10.1007/s11430-014-4907-3.
Reijmer CH , Van Den Broeke MR , Scheele MP , 2002. Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 dataset. Journal of Climate, 15(14): 1957−1968. DOI: 10.1175/1520-0442(2002)015 <1957:APTASR>2.0.CO;2.
doi: 10.1175/1520-0442(2002)015
Ren JW , Sun JY , Qin DH , 2004. Preliminary results of ionic concentrations in snow pits along the Zhongshan-Dome A traverse route, Antarctica. Annals of Glaciology, 39: 155−160. DOI: 10.3189/172756404781814366.
doi: 10.3189/172756404781814366.
Ren JW , Xiao CD , Hou SG , et al . , 2009. New focuses of polar ice-core study: NEEM and Dome A. Chinese Science Bulletin, 54(6): 1009−1011. DOI: 10.1007/s11434-009-0012-y.
doi: 10.1007/s11434-009-0012-y.
Ren JW , Li CJ , Hou SG , et al . , 2010. A 2680 year volcanic record from the DT-401 East Antarctic ice core. Journal of Geophysical Research, 115(D11): D11301. DOI: 10.1029/2009JD012892.
doi: 10.1029/2009JD012892.
Reusch DB , Mayewski PA , Whitlow SI, et al . , 1999. Spatial variability of climate and past atmospheric circulation patterns from central west Antarctic glaciochemistry. Journal of Geophysical Research, 104(D6): 5985−6001. DOI: 10.1029/1998JD200056.
doi: 10.1029/1998JD200056.
Revel-Rolland M , De Deckker P , Delmonte B , et al . , 2006. Eastern Australia: a possible source of dust in East Antarctica interglacial ice. Earth and Planetary Science Letters, 249(1−2): 1−13. DOI: 10.1016/j.epsl.2006.06.028.
doi: 10.1016/j.epsl.2006.06.028.
Röthlisberger R , Hutterli MA , Sommer S , et al . , 2000. Factors controlling nitrate in ice cores: evidence from the Dome C deep ice core. Journal of Geophysical Research, 105(D16): 20565−20572, DOI: 10.1029/2000JD900264.
doi: 10.1029/2000JD900264.
Röthlisberger R , Mulvaney R , Wolff EW , et al . , 2002. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophysical Research Letters, 29(20): 1963. DOI: 10.1029/2002GL015186.
doi: 10.1029/2002GL015186.
Russell A , McGregor GR , 2010. Southern hemisphere atmospheric circulation: impacts on Antarctic climate and reconstructions from Antarctic ice core data. Climatic Change, 99(1−2): 155−192. DOI: 10.1007/s10584-009-9673-4.
doi: 10.1007/s10584-009-9673-4.
Saltzman ES, 1995. Ocean/atmosphere cycling of dimethylsulfide. In: Delmas RJ (ed.). Ice Core Studies of Global Biogeochemical Cycles. Berlin: Springer, pp. 65−89. DOI: 10.1007/978-3-642-51172-1_4.
doi: 10.1007/978-3-642-51172-1_4.
Sommer S , Appenzeller C , Rothlisberger R , et al . , 2000. Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica: 1. Annually resolved accumulation rates. Journal of Geophysical Research, 105(D24): 29411−29421. DOI: 10.1029/2000JD900449.
doi: 10.1029/2000JD900449.
Souney JM , Mayewski PA , Goodwin ID , et al . , 2002. A 700-year record of atmospheric circulation developed from the Law Dome ice core, east Antarctica. Journal of Geophysical Research, 107(D22): 4608. DOI: 10.1029/2002JD002104.
doi: 10.1029/2002JD002104.
Suzuki T , Iizuka Y , Matsuoka K , et al . , 2002. Distribution of sea salt components in snow cover along the traverse route from the coast to Dome Fuji station 1000 km inland at east Dronning Maud Land, Antarctica. Tellus B: Chemical and Physical Meteorology, 54(4): 407−411. DOI: 10.3402/tellusb.v54 i4.16674.
doi: 10.3402/tellusb.v54 i4.16674.
Traufetter F , Oerter H , Fischer H , et al . , 2004. Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and firn cores from Amundsenisen, Antarctica. Journal of Glaciology, 50(168): 137−146. DOI: 10.3189/172756504781830222.
doi: 10.3189/172756504781830222.
Traversi R , Becagli S , Castellano E , et al . , 2004. Spatial and temporal distribution of environmental markers from Coastal to Plateau areas in Antarctica by firn core chemical analysis. International Journal of Environmental Analytical Chemistry, 84(6−7): 457−470. DOI: 10.1080/0306731031000164 0393.
doi: 10.1080/0306731031000164 0393.
Wagenbach D , Ducroz F , Mulvaney R , et al . , 1998. Sea-salt aerosol in coastal Antarctic regions. Journal of Geophysical Research, 103(D9): 10961−10974. DOI: 10.1029/97JD0 1804.
doi: 10.1029/97JD0 1804.
Wagnon P , Delmas RJ , Legrand M . 1999. Loss of volatile acid species from upper firn layers at Vostok, Antarctica. Journal of Geophysical Research, 104(D3): 3423−3431. DOI: 10. 1029/98JD02855.
doi: 10. 1029/98JD02855.
Wang JL , Yang B , Ljungqvist FC , et al . , 2017. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nature Geoscience, 10(7): 512−517. DOI: 10.1038/ngeo2962.
doi: 10.1038/ngeo2962.
Wang YT , Sodemann H , Hou SG , et al . , 2013. Snow accumulation and its moisture origin over Dome Argus, Antarctica. Climate Dynamics, 40(3−4): 731−742. DOI: 10.1007/s00 382-012-1398-9.
doi: 10.1007/s00 382-012-1398-9.
Weller R , Traufetter F , Fischer H , et al . , 2004. Postdepositional losses of methane sulfonate, nitrate, and chloride at the European Project for Ice Coring in Antarctica deep-drilling site in Dronning Maud Land, Antarctica . Journal of Geophysical Research, 109(D7): D07301. DOI: 10.1029/2003J D004189.
doi: 10.1029/2003J D004189.
Wolff EW , Jones AE , Martin TJ , et al . , 2002. Modelling photochemical NOX production and nitrate loss in the upper snowpack of Antarctica. Geophysical Research Letters, 29(20): 1944. DOI: 10.1029/2002GL015823.
doi: 10.1029/2002GL015823.
Wolff EW , Rankin AM , Röthlisberger R , 2003. An ice core indicator of Antarctic sea ice production? Geophysical Research Letters, 30(22): 2158. DOI: 10.1029/2003GL018454.
doi: 10.1029/2003GL018454.
Wolff EW , Jones AE , Bauguitte SJB , et al . , 2008. Reassessment of the factors controlling temporal profiles of nitrate in polar ice cores using evidence from snow and atmospheric measurements. Atmospheric Chemistry and Physics Discussions, 8(3): 11039−11062. DOI: 10.5194/acpd-8-11039-2008.
doi: 10.5194/acpd-8-11039-2008.
Xiao C , Ding M , Masson-Delmotte V , et al . , 2013. Stable isotopes in surface snow along a traverse route from Zhongshan Station to Dome A, East Antarctica. Climate Dynamics, 41(9−10): 2427−2438. DOI: 10.1007/s00382-012-1580-0.
doi: 10.1007/s00382-012-1580-0.
Xiao C , Li R , Sneed SB , et al . , 2013. A record of Antarctic sea ice extent in the Southern Indian Ocean for the past 300 yr and its relationship with global mean temperature. The Cryosphere Discussions, 7(4): 3611−3625. DOI: 10.5194/tcd-7-3611-2013.
doi: 10.5194/tcd-7-3611-2013.
Xiao CD , Mayewski PA , Qin DH , et al . , 2004. Sea level pressure variability over the southern indian ocean inferred from a glaciochemical record in princess Elizabeth Land, EastAntarctica. Journal of Geophysical Research, 109(D16): D16101. DOI: 10.1029/2003JD004065.
doi: 10.1029/2003JD004065.
Xiao CD , Li YS , Hou SG , et al . , 2008. Preliminary evidence indicating Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core. Chinese Science Bulletin, 53(1): 102−106. DOI: 10.1007/s11434-007-0520-6.
doi: 10.1007/s11434-007-0520-6.
Xing YH , Zhang YH , Xu YT , et al . , 2006. Synthesis and characterization of two new types of oxovanadium complexes with pyrazole as ligand. Chinese Science Bulletin, 51(18): 2189−2196. DOI: 10.1007/s11434-006-2085-1.
doi: 10.1007/s11434-006-2085-1.
Yan YP , Mayewski PA , Kang SC , et al . , 2005. An ice-core proxy for Antarctic circumpolar zonal wind intensity. Annals of Glaciology, 41: 121−130. DOI: 10.3189/1727564057818 13294.
doi: 10.3189/1727564057818 13294.
Yang YD , Sun B , Wang ZM , et al . , 2014. GPS-derived Velocity and Strain Fields around Dome Argus, Antarctica. Journal of Glaciology, 60(222): 735−742. DOI: 10.3189/2014JoG14 J078.
doi: 10.3189/2014JoG14 J078.
Zhang N , An CL , Fan XP , et al . , 2014. Chinese first deep ice-core drilling project DK-1 at dome a, Antarctica (2011−2013): progress and performance. Annals of Glaciology, 55(68): 88−98. DOI: 10.3189/2014AoG68A006.
doi: 10.3189/2014AoG68A006.
Zhao N , Zhang QZ , Wang WX , 2016. Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study. Frontiers of Environmental Science & Engineering, 10(5): 3. DOI: 10.1007/s11783-016-0836-z.
doi: 10.1007/s11783-016-0836-z.
[1] HuiJun Jin, XiaoLi Chang, DongLiang Luo, RuiXia He, LanZhi Lü, SiZhong Yang, DongXin Guo, XueMei Chen, Stuart A. Harris. Evolution of permafrost in Northeast China since the Late Pleistocene [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 269-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang,YongQiu Wu,MeiHui Pan,RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao,ShiHua Lyu,ZhaoGuo Li,LiJuan Wen,Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga,Za Dui,Duodian Luozhu,Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang,JunQia Kong,ZeYu Du,YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu,ZhongKui Xie,XinPing Wang,YaJun Wang,YuBao Zhang,YuHui He,WenMei Li,WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei,XiaoFei Ma,PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong,AiJun Guo,XiaoJuan Yin,JinFeng Cui,Xiao Yang,YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .