Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (2): 142-157.doi: 10.3724/SP.J.1226.2017.00142

Previous Articles    

Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau

ShaoYing Wang1, Yu Zhang1,2, ShiHua Lyu2, LunYu Shang1, YouQi Su1, HanHui Zhu1   

  1. 1. Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gausu 730000, China;
    2. College of Atmospheric Sciences, Chendu University of Information Technology, Chengdu, Sichuan 610225, China
  • Received:2016-11-23 Revised:2017-01-20 Published:2018-11-23
  • Contact: Yu Zhang, Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gausu 730000, China. Tel: +86-931-4967092; E-mail:
  • Supported by:
    This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 91537106, 41405016, 41275016, 91537104, and 41605011).

Abstract: Understanding the energy balance on the Tibetan Plateau is important for better prediction of global climate change. To characterize the energy balance on the Plateau, we examined the radiation balance and the response of albedo to environmental factors above an alpine meadow and an alpine wetland surfaces in the eastern Tibetan Plateau, using 2014 data. Although our two sites belong to the same climatic background, and are close geographically, the annual incident solar radiation at the alpine meadow site (6,447 MJ/(m2·a)) was about 1.1 times that at the alpine wetland site (6,012 MJ/(m2·a)), due to differences in the cloudiness between our two sites. The alpine meadow and the alpine wetland emitted about 38% and 42%, respectively, of annual incident solar radiation back into atmosphere in the form of net longwave radiation; and they reflected about 22% and 18%, respectively, of the annual incident solar radiation back into atmosphere in the form of shortwave radiation. The annual net radiation was 2,648 and 2,544 MJ/(m2·a) for the alpine meadow site and the alpine wetland site, respectively, accounting for only about 40% of the annual incident solar radiation, significantly lower than the global mean. At 30-min scales, surface albedo exponentially decreases with the increase of the solar elevation angle; and it linearly decreases with the increase of soil-water content for our two sites. But those relationships are significantly influenced by cloudiness and are site-specific.

Key words: Tibetan Plateau, radiation balance, surface albedo, solar elevation angle, soil water content

Al-Riahi M,Al-Jumaily K,Kamies I,2003.Measurements of net radiation and its components in semi-arid climate of Baghdad.Energy Conversion and Management,44(4):509-525.DOI:10.1016/S0196-8904(02)00075-4.
Beringer J,Tapper N,2002.Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX).Journal of Geophysical Research:Atmospheres,107(D21):AAC3-1-AAC3-13.DOI:10.1029/2001JD001431.
Betts RA,2000.Offset of the potential carbon sink from boreal forestation by decreases in surface albedo.Nature,408(6809):187-190.DOI:10.1038/35041545.
Charlson RJ,Valero FP,Seinfeld JH,2005.In search of balance.Science,308(5723):806-807.DOI:10.1126/science.1108162.
Gu LH,Fuentes JD,Shugart HH,et al.,1999.Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness:Results from two North American deciduous forests.Journal of Geophysical Research:Atmospheres,104(D24):31421-31434.DOI:10.1029/1999JD901068.
Gu S,Tang Y,Cui X,et al.,2005.Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau.Agricultural and Forest Meteorology,129(3-4):175-185.DOI:10.1016/j.agrformet.2004.12.002.
Guan X,Huang J,Guo N,et al.,2009.Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau.Advances in Atmospheric Sciences,26(4):692-700.DOI:10.1007/s00376-009-8198-0.
Gupta SK,Ritchey NA,Wilber AC,et al.,1999.A climatology of surface radiation budget derived from satellite data.Journal of Climate,12(8):2691-2710.D O I:10.1175/1520-0442(1999)012ACOSRB>2.0.CO;2.
Hong JY,Kim J,2008.Simulation of surface radiation balance on the Tibetan Plateau.Geophysical Research Letters,35(L08814):813-826.DOI:10.1029/2008GL033613.
Kudish AI,Ianetz A,1996.Analysis of daily clearness index,global and beam radiation for Beer Sheva,Israel:Partition according to day type and statistical analysis.Energy Conversion and Management,37(4):405-416.DOI:
Lei R,Leppäranta M,Erm A,et al.,2011.Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009.Estonian Journal of Earth Sciences,60(1):50-64.DOI:10.3176/earth.2011.1.05.
Li SG,Lai CT,Lee G,et al.,2005.Evapotranspiration from a wet temperate grassland and its sensitivity to microenvironmental variables.Hydrological Processes,2005.Evapotranspiration from a wet temperate grassland and its sensitivity to microenvironmental variables.Hydrological Processes,19(2):517-532.DOI:10.1002/hyp.5673.
Li Y,Hu Z,2009.A study on parameterization of surface albedo over grassland surface in the northern Tibetan Plateau.Advances in Atmospheric Sciences,26(1):161-168.DOI:10.1007/s00376-009-0161-6.
Liu H,Tu G,Dong W,2008a.Three-year changes of surface albedo of degraded grassland and cropland surfaces in a semiarid area.Chinese Science Bulletin,53(8):1246-1254.DOI:10.1007/s11434-008-0171-2.
Liu H,Wang B,Fu C,2008b.Relationships between surface albedo,soil thermal parameters and soil moisture in the semi-arid area of Tongyu,northeastern China.Advances in Atmospheric Sciences,25(5):757-764.
Ma N,Zhang YS,Guo YH,et al.,2015.Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe.Journal of Hydrology,529(3):980-992.DOI:
Ma W,Ma Y,Li M,et al.,2005.Seasonal variation on land surface energy budget and energy balance components in the northern Tibetan Plateau.Journal of Glaciology and Geocryology,27(5):673-679.
Meng X,Evans JP,McCabe M,2014.The influence of inter-annually varying albedo on regional climate and drought.Climate Dynamics,42(3-4):787-803.DOI:10.1007/s00382-013-1790-0.
Monteny B,Lopez Morales JP,Elguero E,et al.,1998.An overview of changing surface processes in semiarid grasslands of the San Pedro catchment near Cananea-Sonora,Mexico,Symposium internacional sobre la utilizacion y aprovechamiento de la flora silvestre de zonas aridas.ORSTOM;Universidad de Sonora,Hermosillo (MEX),Sonora,pp.145-166.
Neena S,Biju V,Renuka G,2014.Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station.Journal of Earth System Science,123(5):1115-1128.DOI:10.1007/s12040-014-0452-x.
Paltridge GW,Platt CMR,1981.Radiative Processes in Meteorology and Climatology.Translated by:Lu et al..Beijing:Science Press,pp.207.(in Chinese)
Qiu J,2008.China:The third pole.Nature,454(7203):393-396.DOI:10.1038/454393a.
Shang L,Zhang Y,LüS,et al.,2015.Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau.Science Bulletin,60(4):435-446.DOI:10.1007/s11434-014-0685-8.
Shi QQ,Liang SL,2013.Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured,reanalysis,and remote sensing data sets:1.Methodology.Journal of Geophysical Research:Atmospheres,118(16):8921-8934.DOI:10.1002/jgrd.50719.
Small EE,Kurc SA,2003.Tight coupling between soil moisture and the surface radiation budget in semiarid environments:Implications for land-atmosphere interactions.Water Resources Research,39(10):SWC4-1.DOI:10.1029/2002WR001297.
Wang KC,Wang PC,Liu JM,et al.,2005.Variation of surface albedo and soil thermal parameters with soil moisture content at a semidesert site on the western Tibetan Plateau.Boundary-Layer Meteorology,116(1):117-129.DOI:10.1007/s10546-004-7403-z.
Wang SY,Zhang Y,LüSH,et al.,2012.Seasonal variation characteristices of radiation and energy budgets in alpine meadow ecosystem in Maqu Grassland.Plateau Meteorology,31(3):605-614.
Wang SY,Zhang Y,LüSH,et al.,2016.Biophysical regulation of carbon fluxes over an alpine meadow ecosystem in the eastern Tibetan Plateau.International Journal of Biometeorology,60(6):801-812.DOI:10.1007/s00484-015-1074-y.
Wild M,Folini D,Schär C,et al.,2013.The global energy balance from a surface perspective.Climate Dynamics,40(11):3107-3134.DOI:10.1007/s00382-012-1569-8.
Xiao Y,Zhao L,li R,et al.,2010.The characteristics of surface albedo in permafrost regions of northern Tibetan Plateau.Journal of Glaciology and Geocryology,32(3):480-488.
Yang K,Ye BS,Zhou DG,et al.,2011.Response of hydrological cycle to recent climate changes in the Tibetan Plateau.Climatic Change,109(3):517-534.DOI:10.1007/s10584-011-0099-4.
Yao JM,Zhao L,Gu LL,et al.,2009.The microclimatic characteristics in the Tanggula Pass on the Tibetan Plateau.Journal of Glaciology and Geocryology,31(4):650-658.
Yao T,Thompson LG,Mosbrugger V,et al.,2012.Third Pole Environment (TPE).Environmental Development,3:52-64.DOI:
Ye D,Gao Y,1979.Meteorology of the Tibet Plateau.Beijing:Science Press.(in Chinese)
Zhang X,Gu S,Zhao X,et al.,2010.Radiation partitioning and its relation to environmental factors above a meadow ecosystem on the Qinghai-Tibetan Plateau.Journal of Geophysical Research:Atmospheres,115:D10106.DOI:10.1029/2009JD012373.
Zhang YF,Wang XP,Pan YX,et al.,2013.Diurnal and seasonal variations of surface albedo in a spring wheat field of arid lands of Northwestern China.International Journal of Biometeorology,57(1):67-73.DOI:10.1007/s00484-012-0534-x.
Zheng Z,Dong W,Li Z,et al.,2015.Observational study of surface spectral radiation and corresponding albedo over Gobi,desert,and bare loess surfaces in northwestern China.Journal of Geophysical Research:Atmospheres,120(3):883-896.DOI:10.1002/2014JD022516.
Zheng Z,Wei Z,Li Z,et al.,2014.Study of parameterization of surface albedo of bare soil over the Gobi desert in the Dunhuang region.Chinese Journal of Atmospheric Sciences,38(2):297-308.
[1] YinHuan Ao,ShiHua Lyu,ZhaoGuo Li,LiJuan Wen,Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391.
[2] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[3] ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125.
[4] BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144.
[5] SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94.
[6] YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579.
Full text



No Suggested Reading articles found!