Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (3): 208-217.doi: 10.3724/SP.J.1226.2019.00208.

Previous Articles     Next Articles

MODIS observed snow cover variations in the Aksu River Basin, Northwest China

Jing Li1(),ShiYin Liu2,Qiao Liu3   

  1. 1. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, Gansu 730000, China
    2. Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650500, China
    3. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
  • Received:2018-10-30 Accepted:2019-04-03 Online:2019-06-30 Published:2019-07-01
  • Contact: Jing Li


A major proportion of discharge in the Aksu River is contributed from snow- and glacier-melt water. It is therefore essential to understand the cryospheric dynamics in this area for water resource management. The MODIS MOD10A2 remote-sensing database from March 2000 to December 2012 was selected to analyze snow cover changes. Snow cover varied significantly on a temporal and spatial scale for the basin. The difference of the maximum and minimum Snow Cover Fraction (SCF) in winter exceeded 70%. On average for annual cycle, the characteristic of SCF is that it reached the highest value of 53.2% in January and lowest value of 14.7% in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000 m below and 3,000 m above. The fluctuation of annual average snow cover is strong which shows that the spring snow cover was on the trend of increasing because of decreasing temperatures for the period of 2000-2012. However, temperature in April increased significantly which lead to more snowmelt and a decrease of snow cover. Thus, more attention is needed for flooding in this region due to strong melting of snow.

Key words: MODIS snow data, Aksu River, snow cover fraction, climate change

Figure 1

Location of the Aksu River Basin, SRTM DEM of the basin and gauging station situation within the basin"

Figure 2

Distribution of monthly precipitation and temperature from Aksu and Akqi meteorological stations in the ARB (1957-2012)"

Figure 3

The change of cloud coverage before and after cloud removal using spatial filter method for MODIS 8-day composite snow data"

Table 1

Comparison of snow cover fraction derived from MODIS and TM"

Date (No.) Elevation band Band-wise snow cover fraction
2000-09-13 (257) <3,000 m 0% 0%
3,000-5,000 m 47% 41%
>5,000 m 88% 81%
2001-10-02 (275) <3,000 m 0% 0%
3,000-5,000 m 63% 56%
>5,000 m 100% 96%
2002-07-17 (198) <3,000 m 0% 0%
3,000-5,000 m 37% 35%
>5,000 m 72% 68%
2002-10-05 (278) <3,000 m 0% 0%
3,000-5,000 m 40% 37%
>5,000 m 78% 74%
2003-03-14 (073) <3,000 m 10% 0%
3,000-5,000 m 51% 46%
>5,000 m 92% 88%

Table 2

Characteristics of four elevation zones extracted from SRTM of the ARB"

Zone Elevation range (m) Mean elevation (m) Area and ratio (km2) Glacier area and ratio (km2)
A 1,062-3,000 1,894 14,632.7 (33.9%) 3 (0.02%)
B 3,000-4,000 3,571 20,244.4 (46.9%) 345 (1.7%)
C 4,000-5,000 4,248 7,832.9 (18.1%) 1,802 (23.0%)
D 5,000-7,182 5,235 413.0 (0.96%) 245 (59.3%)
Total - - 43,123 (100%)

Figure 4

The ARB annual snow cover distribution on monthly (a) and seasonally (b) acquired from MODIS 8-day composite snow data over the period of 2000-2012"

Figure 5

The average, maximum and minimum cycle of 8-day composite snow cover fraction (%) in the ARB over the period of 2000-2012"

Figure 6

The annual cycle of snow cover fraction (%) averaged over the period of 2000-2012 based on the 8-day MODIS snow cover map for four elevation zones. (a) Below 2,000 m; (b) 3,000-4,000 m; (c) 4,000-5,000 m; (d) beyond 5,000 m"

Figure 7

Variation and changing trend of seasonal mean SCF over the period of 2000-2012"

Figure 8

The relationship between SCF and temperature (a), precipitation (b) in the spring time of 2000-2012"

Figure 9

The changing trend of snow cover for spring (March, April and May) in ARB during 2000-2012"

Figure 10

The change trend of temperature and precipitation in spring and in each month of spring over the period of 2000-2012"

Aizen V , Aizen E , Melack J , 1995. Climate, snow cover, glaciers, and runoff in the Tien Shan, Central Asia. Water Resource Bulletin, 31(6): 1113-1129. DOI: 10.1038/nclimate 1592 .
doi: 10.1038/nclimate 1592
Aizen V , Aizen E , Melack J , et al ., 1997. Climatic and hydrologic changes in the Tien Shan, Central Asia. Journal of Climate, 10(6): 1393-1404. DOI: 10.1175/1520-0442(1997)010<1393:cahcit>;2 .
doi: 10.1175/1520-0442(1997)010<1393:cahcit>;2
Archer DR , Fowler HJ , 2004. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences Discussions, 8(1): 47-61. DOI: 10. 5194/hess-8-47-2004 .
doi: 10. 5194/hess-8-47-2004
Barnett TP , Adam JC , Lettenmaier DP , 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303-309.
Barry RG, 2008. Snow Cover. Terrestrial Essential Climate Variables for Climate Change Assessment, Mitigation and Adaptation, GTOS-52.In: Sessa R, Dolman H (eds.). Rome: FAO, pp. 20-21.
Bothe O , Fraedrich K , Zhu X , 2012. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theoretical and Applied Climatology, 108(3-4): 345-354. DOI: 10.1007/s00704-011-0537-2 .
doi: 10.1007/s00704-011-0537-2
Boori MS , Ferraro RR , 2012. Northern hemisphere snow variations with season and elevation using GIS and AMSR-E Data. Journal of Earth Science Climatic Change, 3(3): 49. DOI: 10.4172/2157-7617.S12-001 .
doi: 10.4172/2157-7617.S12-001
Dietz AJ , Kuenzer C , Conrad C , 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing, 34(11): 3879-3902. DOI: 10. 1080/01431161.2013.767480 .
doi: 10. 1080/01431161.2013.767480
Duethmann D , Bolch T , Farinotti D , et al . 2015. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resources Research, 51(6): 4727-4750. DOI: 10.1002/2014 WR016716 .
doi: 10.1002/2014 WR016716
Gao J , Williams M , Fu W , et al ., 2012. Spatiotemporal distribution of snow in eastern Tibet and the response to climate change. Remote Sensing of Environment, 121: 1-9. DOI: 10.1016/j.rse.2012.01.006 .
doi: 10.1016/j.rse.2012.01.006
Guo W , Liu S , Xu J , et al ., 2015. The second Chinese glacier inventory: data, methods and results. Journal of Glaciology, 61(226): 357-372.
Hall D , Foster K , Verbyla JL , et al ., 1998. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in Central Alaska. Remote Sensing of Environment, 66(2): 129-137. DOI: 10.1016/S0034-4257(98)00051-0 .
doi: 10.1016/S0034-4257(98)00051-0
Hall D , Riggs G , 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes, 21(12):1534-1547. DOI: 10.1002/hyp.6715 .
doi: 10.1002/hyp.6715
Hu R, 2004. Physical Geography of the Tianshan Mountains in China. 1st Ed.. Beijing: China Environmental Science Press, pp. 122-153. (in Chinese)
Hagg W , Braun LN , Kuhn M , et al ., 2007. Modelling of hydrological response to climate change in glacierized Central Asian catchments. Journal of Hydrology, 332(1): 40-53. DOI: 10.1016/j.jhydrol.2006.06.021 .
doi: 10.1016/j.jhydrol.2006.06.021
Immerzeel WW , Droogers P , Jong de SM , et al ., 2009. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113(1): 40-49. DOI: 10.1016/j.rse. 2008.08.010 .
doi: 10.1016/j.rse. 2008.08.010
IPCC, 2013. Annex I: Atlas of global and regional climate projections. In Climate Change 2013: The Physical Basis, Contribution of Working Group I to the 5th Assessment Repot of the IPCC. Cambridge, U.K. Cambridge University Press.
Jain S , Lall U , 2000. Magnitude and timing of annual maximum floods: Trends and large-scale climatic associations for the Blacksmith Fork River, Utah. Water Resources Research, 36(12): 3641-3651.
Klein AG , Bernett AC , 2003. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000-2001 snow year. Remote Sensing of Environment, 86: 162-176. DOI: 10.1016/s0034-4257(03)00097-x .
doi: 10.1016/s0034-4257(03)00097-x
Ke CQ , Liu X , 2014. MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Climate Research, 59(1): 15-26. DOI: 10.3354/cr01206 .
doi: 10.3354/cr01206
Krysanova V , Wortmann M , Bolch T , et al ., 2015. Analysis of current trends in climate parameters, river discharge and glaciers in the Aksu River basin (Central Asia). Hydrological Sciences Journal, 60(4): 566-590. DOI: 10.1080/02626667.2014.925559 .
doi: 10.1080/02626667.2014.925559
Kundzewicz ZW , Merz B , Vorogushyn S , et al ., 2015. Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin. Environmental Earth Sciences, 73(2): 501-516. DOI: 10.1007/s12665-014-3137-5 .
doi: 10.1007/s12665-014-3137-5
Lemke P , Ren J , Alley RB , et al ., 2007. Observations: Changes in Snow, Ice, and Frozen Ground. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change.
In: Solomon S , Qin D , Manning M , et al . (eds.). Cambridge University Press: Cambridge, New York.
Li LY , Ke CQ , 2014. Analysis of spatiotemporal snow cover variations in Northeast China based on moderate-resolution-imaging spectroradiometer data. Journal of Applied Remote Sensing, 8(1): 084695-084695. DOI: 10.1117/1.JRS.8.084695 .
doi: 10.1117/1.JRS.8.084695
Li C , Su F , Yang D , et al ., 2018. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014. International Journal of Climatology, 38(2): 708-728. DOI: 10.1002/joc.5204 .
doi: 10.1002/joc.5204
Parajka J , Blöeschl G , 2006. Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences Discussions, 3(4): 1569-1601. DOI: 10.5194/hess-10-679-2006 .
doi: 10.5194/hess-10-679-2006
Pu ZX , Xu L , Salomonson VV , 2007. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophysical Research Letters, 34(6): L06706. DOI: 10.1029/2007GL029262 .
doi: 10.1029/2007GL029262
Stewart IT, 2009. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrological Processes, 23(1): 78-94. DOI: 10.1002/hyp.7128 .
doi: 10.1002/hyp.7128
Sorg A , Bolch T , Stoffel M , et al ., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2(10): 725-731. DOI: 10.1038/nclimate1592 .
doi: 10.1038/nclimate1592
Tong J , Déry SJ , Jackson PL , 2009. Topographic control of snow distribution in an alpine watershed of western Canada inferred from spatially-filtered MODIS snow products. Hydrology and Earth System Sciences, 13(3): 319-326. DOI: 10.5194/hessd-5-2347-2008 .
doi: 10.5194/hessd-5-2347-2008
Tang ZG , Wang J , Li HY , et al ., 2013. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectra-radiometer fractional snow cover product from 2001 to 2011. Journal of Applied Remote Sensing, 7(1): 073582. DOI: 10.1117/1.JRS.7.073582 .
doi: 10.1117/1.JRS.7.073582
Tang ZG , Wang X , Wang J , et al ., 2017. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001-2015. Remote Sensing, 9(10): 1045. DOI: 10.3390/rs9101045 .
doi: 10.3390/rs9101045
Unger-Shayesteh K , Vorogushyn S , Farinotti D , et al ., 2013. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planetary Change, 110: 4-25. DOI: 10.1016/j.gloplacha.2013. 02.004 .
doi: 10.1016/j.gloplacha.2013. 02.004
Woo MK , Thorne R , 2006. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrological Processes, 20(10): 2129-2139. DOI: 10.1002/hyp.6205 .
doi: 10.1002/hyp.6205
Wang XW , Xie HJ , Liang TG , 2008. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment, 112(4): 1497-1513. DOI: 10.1016/j.rse.2007.05.016 .
doi: 10.1016/j.rse.2007.05.016
Xu CC , Chen YN , Hamid Y , et al ., 2009. Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, Northwestern China. Hydrological Processes, 23(14): 2045-2055. DOI: 10.1002/hyp.7334 .
doi: 10.1002/hyp.7334
Yang DQ , Zhao YY , Robinson D , et al ., 2003. Streamflow response to seasonal snow cover extent changes over large Siberian watersheds. Journal of Geophysical Research, 112: F02S22. DOI: 10.1029/2002jd003149 .
doi: 10.1029/2002jd003149
Zhang G , Xie H , Yao T , et al ., 2012. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010). Water Resources Research, 48(10): W10529. DOI: 10.1029/2012WR011971 .
doi: 10.1029/2012WR011971
Zhou H , Aizen E , Aizen V , 2013. Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sensing of Environment, 136: 146-162. DOI: 10.1016/j.rse.2013.04.015 .
doi: 10.1016/j.rse.2013.04.015
[1] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[2] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[3] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[4] Sanjaya Gurung, Bikas C. Bhattarai, Rijan B. Kayastha, Dorothea Stumm, Sharad P. Joshi, Pradeep K. Mool. Study of annual mass balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang,Nepal [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 311-318.
[5] Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226.
[6] Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94.
[7] ZhiWen Xiong, YongPeng Yang, ZhaoRong Zhu, XiangQing Zhao, HanCheng Cai. Effect of climate change and railway embankment on the degradation of underlain permafrost [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 554-559.
[8] Xi Chen, JianKun Liu, Nan Xie, HuiJing Sun. Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 354-364.
[9] YanWei Zhang, QuanSheng Ge, FengQing Jiang, JingYun Zheng, WenShou Wei. Assessing changes in extreme precipitation over Xinjiang using regional climate model of PRECIS [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 170-179.
Full text



No Suggested Reading articles found!