Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (4): 295-326.doi: 10.3724/SP.J.1226.2019.00295.

Previous Articles     Next Articles

Holocene lake carbon sequestration, hydrological status and vegetation change, China

LingMei Xu,Yu Li(),WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang   

  1. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, Gansu 730000, China
  • Received:2019-04-16 Accepted:2019-05-31 Online:2019-08-31 Published:2019-09-02
  • Contact: Yu Li E-mail:liyu@lzu.edu.cn

Abstract:

Lakes have received considerable attention as long-term sinks for organic carbon (C) at regional and global scales. Previous studies have focused on assessment and quantification of carbon sinks, and few have worked on the relationship between millennial-scale lake C sequestration, hydrological status and vegetation, which has important scientific significance in improving our understanding of lake C stocks and storage mechanisms. Here, we present a comprehensive study of pollen records, organic geochemical proxies, lake-level records, sediment accumulation rate (SAR) and organic C accumulation rate (CAR) in China since the Holocene. We also include numerical climate classification and lake-level simulations, to investigate variations of lake C sequestration, hydrological status and vegetation during the Holocene. Results indicate that the evolution of lake C accumulation showed an out-of-phase relationship with hydrological status and vegetation in China. Lake C accumulation exhibited an overall trend of increasing from the early to late Holocene in response to gradually increasing terrestrial organic matter input. However, China as a whole experienced the densest vegetation cover in the middle Holocene, corresponding to the mid-Holocene optimum of a milder and wetter climate. Optimal hydrological conditions were asynchronous in China; for example, early Holocene in Asian monsoon dominated areas, and middle Holocene in westerlies controlled regions. Our synthesis indicated that climate change was the main factor controlling the long-term variability in lake C accumulation, hydrologic conditions, as well as vegetation, and human influences were usually superimposed on the natural trends.

Key words: lake sediment, millennial-scale, organic carbon accumulation, lake hydrological status, vegetation, climate change

Figure 1

Overview map showing lake sites selected in this study (numbers in symbols refer to lakes described in Table 1) and the"

Table 1

Information on lake records for organic C accumulation rate, lake level and vegetation changes of China"

ID Site Proxies Region Relationship between CAR and proxies K?ppen climate zones CAR Lake level Vegetation
TOC C/N δ13C TPC 1st 2nd 3rd 8.5-6 ka 8.5 ka-PI 6 ka-PI 8.5-6 ka 8.5 ka-PI 6 ka-PI 8.5-6 ka 8.5 ka-PI 6 ka-PI
1 Bangong Co TOC, Pollen TP - / / + Arid Desert Cold High Low Low High High High Low High High
2 Songxi Co TOC TP + / / / Arid Steppe Cold Low Low Low Low High High Low High High
3 Naleng Lake TOC, C/N, δ13C, Pollen TP * * * * Polar Tundra / High Low Low High High High Low High High
4 Chen Co TOC, C/N, Pollen TP + + / + Polar Tundra / High Low Low High High High Low High High
5 Nam Co TOC, C/N, Pollen TP - - / + Polar Tundra / High Low Low High High High Low High High
6 Zigetang Co TOC, δ13C, Pollen TP + / + - Polar Tundra / Low High High High High High Low High High
7 Ngoin Co TOC, C/N, δ13C TP - - - / Polar Tundra / Low Low Low High High High Low High High
8 Paru Co TOC TP - / / / Polar Tundra / High High High High High High Low High High
9 Pumoyum Co TOC TP + / / / Polar Tundra / High High Low High High High Low High High
10 Koucha Lake TOC, δ13C TP * / * / Polar Tundra / Low Low Low High High High Low High High
11 Ximen Co TOC TP * / / / Polar Tundra / Low Low High High High High Low High High
12 Qinghai Lake TOC, C/N, δ13C, Pollen TP + + + + Cold Dry Winter

Cold

Summer

Low High High High High High Low High High
13 Donggi Cona Lake TOC, C/N TP + - / / Polar Tundra / Low Low Low High High High Low High High
14 Gahai Lake TOC, C/N, δ13C, Pollen TP + - + - Arid Steppe Cold High Low Low High High Low Low High High
15 Chaka Salt Lake TOC TP - / / / Arid Steppe Cold Low Low Low Low High High Low High High
16 Genggahai Lake TOC, C/N, δ13C TP - - - / Arid Steppe Cold Low Low Low High High High Low High High
17 Erlongwan Maar Lake TOC, C/N, δ13C, Pollen MR + + * * Cold Dry Winter

Warm

Summer

Low Low High Low High High Low High High
18 Xingkai Lake TOC, C/N, δ13C, Pollen MR + + - * Cold Dry Winter

Warm

Summer

High High High Low High High Low High High
19 Sihailongwan Maar Lake TOC, C/N, δ13C MR - - - / Cold Dry Winter Warm Summer High High High Low High High Low High High
20 Moon Lake TOC, C/N, δ13C, Pollen MR + * - - Cold Dry Winter Cold Summer Low Low Low High High High Low High High
21 Erhai Lake TOC, δ13C, Pollen MR + / - - Temperate Dry Summer Warm Summer High High High High High High Low High High
22 Dian Chi TOC, C/N, δ13C, Pollen MR + + - + Temperate Dry Summer Warm Summer Low Low Low High High High Low High High
23 Xima Chi TOC MR + / / / Temperate Dry Summer Warm Summer High Low Low High High High Low High High
24 Xingyun Lake TOC, C/N, δ13C, Pollen MR - + + + Temperate Dry Winter Warm Summer Low High High High High High Low High High
25 Lugu Lake TOC, Pollen MR + / / + Temperate Dry Winter Warm Summer Low Low Low High High High Low High High
26 Hugangyan Maar Lake TOC, C/N, δ13C, Pollen MR + + + + Temperate Dry Winter Warm Summer High High High High High High High High High
27 Dajiuhu Lake TOC, C/N, δ13C, Pollen MR + * + + Temperate Dry Winter Hot Summer Low Low Low High High High Low Low High
28 Gucheng Lake TOC MR - / / / Temperate Dry Winter Hot Summer Low / / High High High Low High High
29 Jiangling TOC, C/N, δ13C, Pollen MR + + - * Temperate Without dry season Hot Summer Low Low Low High High High Low High High
30 Dahu Lake TOC, C/N, δ13C, Pollen MR + - - + Temperate Without dry season Hot Summer High High Low High High High High High Low
31 Chaohu Lake TOC, Pollen MR + / / * Temperate Without dry season Hot Summer Low / / High High High Low Low High
32 Taihu Lake TOC, Pollen MR + / / - Temperate Without dry season Hot Summer High / / High High High Low High High
33 Beihuqiao TOC, C/N, δ13C MR + - + / Temperate Without dry season Hot Summer High / / High High High Low High High
34 Longgan Lake TOC MR + / / / Temperate Without dry season Hot Summer High Low Low High High High Low High High
35 Sanqing Chi TOC MR + / / / Cold Dry Winter Warm Summer / / Low / / High / / High
36 Bosten Lake TOC, C/N, Pollen NAC * * / * Arid Desert Cold Low Low Low Low Low High Low Low High
37 Aibi Lake TOC NAC + / / / Arid Desert Cold / / High Low Low High Low High High
38 Yitang Lake TOC, C/N, δ13C NAC - + - / Arid Desert Cold High High Low Low High High Low High High
39 Balikun Lake TOC, Pollen NAC + / / + Arid Steppe Cold High Low Low Low Low High Low Low High
40 Wulungu Lake TOC, C/N, δ13C, Pollen NAC - - - + Arid Steppe Cold Low Low Low Low Low High Low Low High
41 Manas Lake TOC, Pollen NAC + / / + Arid Steppe Cold Low Low Low Low Low High High High High
42 Zhuye Lake TOC, C/N, δ13C, Pollen NAC + + - - Arid Desert Cold Low Low Low High High High Low High High
43 Juyanze Lake TOC, Pollen NAC + / / * Arid Desert Cold Low Low Low High High Low High High High
44 Huahai Lake TOC, C/N NAC + + / / Arid Desert Cold High High High Low High High Low High High
45 Sanjiaocheng TOC, δ13C, Pollen NAC - + / + Arid Desert Cold Low Low Low Low High High High High High
46 Daihai Lake TOC, C/N, Pollen NAC - - / + Cold Dry Winter Warm Summer Low Low Low High High High Low High High
47 Dali Lake TOC, C/N, δ13C NAC * + * / Cold Dry Winter Warm Summer Low Low Low High High High Low High High
48 Gonghai Lake TOC NAC - / / / Cold Dry Winter Warm Summer Low Low Low High High High Low High High
49 Hulun Lake TOC, δ13C, Pollen NAC + / - - Arid Steppe Cold Low Low Low Low High High Low High High
50 Tengger Nuur TOC, Pollen NAC - / / * Arid Desert Cold High High Low High High High Low High High
51 Yanhaizi Lake TOC, C/N NAC + + / / Arid Desert Cold High High Low High High High Low High High

Figure 2

Temporal variation patterns of regional organic C content (a), sediment accumulation rate (b) and"

Table 2

Lake areas (Duan et al., 2008), organic C content, sediment and C accumulation rate, as well as estimated regional C burial for various geographical zones of China"

Region Lake area (km2) OC (%) SAR (mm/a) CAR (g C/(m2·a)) Total C burial (Pg)
TP 44,993.30 4.39 0.56 6.95 3.80
MX 26,326.30 8.60 0.62 9.45 3.00
NAC 19,700.30 2.52 0.75 7.60 2.00
Total 91,019.90 5.04 0.64 8.00 8.80

Figure 3

Relationships between Holocene C accumulation rate and environmental variables or lake characteristics."

Figure 4

Simulated lake-level changes for 8.5 ka minus 6.0 ka (a), 8.5 ka minus PI (b), and 6.0 ka minus PI (c). Points show locations of lake sites, with color indicating the direction of lake level change implied by the paleo record"

Figure 5

The temporal and spatial evolution of Holocene lake C accumulation (a), hydrological status (b) and vegetation (c). Colors show different evolution patterns of lakes in China: PI>6 ka>8.5 ka (green points); PI>8.5 ka>6 ka (orange points); 8.5 ka>6 ka>PI (red points); 8.5 ka>PI>6 ka (blue points); 6 ka>8.5 ka>PI (yellow points); 6 ka>PI>8.5 ka (purple points); no data available (pink points). The K?ppen's climate classification map for China is calculated based on the 0.5°×0.5° monthly gridded precipitation and temperature datasets of 53 years during 1961-2013, and a 0.5°×0.5° gridded elevation data derived from a quality-controlled global Digital Elevation Model (DEM). This map only contains the mainland of China, and the south China sea, Taiwan region, Diaoyu Island, etc. are not include in the map"

Table 3

Information on fossil pollen records in representative pollen indicators from China"

ID Site Artemisia Chenopodiaceae Pinus Betula Cyperaceae Quercus A/C Trees Herbs
1 Bangong Co High High High High High Low / / / / / / Low High High / / / Low Low High / / / / / /
2 Songxi Co / / / / / / / / / / / / / / / / / / / / / / / / / / /
3 Naleng Lake / / / High Low Low Low Low Low Low High High High High Low / / / / / / Low High High / / /
4 Chen Co High Low Low / / / High High High Low Low High Low High High / / / Low Low Low / / / / / /
5 Nam Co High High High High Low Low Low Low Low / / / Low Low Low / / / / / / Low Low High / / /
6 Zigetang Co High High High High Low Low High Low Low Low Low High Similar Low Low / / / / / / / / / / / /
7 Ngoin Co / / / / / / / / / / / / / / / / / / / / / / / / / / /
8 Paru Co / / / / / / / / / / / / / / / / / / / / / / / / / / /
9 Pumoyum Co High High Low High High Low / / / High High High High Low Low / / / High High Low Low Low High High High Low
10 Koucha Lake High High Low High High Low Low Low High High High High Low Low High / / / High High Low / / / / / /
11 Ximen Co / / / / / / / / / / / / / / / / / / / / / / / / / / /
12 Qinghai Lake High High Low Low Low Low Low Low High High High High High High Low High High High High Low Low Low High High / / /
13 Gahai Lake High High High High High Low High High High High High High Low High High / / / High High Low / / / / / /
14 Chaka Salt Lake / / / / / / / / / / / / / / / / / / / / / / / / / / /
15

Donggi

Cona Lake

/ / / / / / / / / / / / / / / / / / / / / / / / / / /
16

Genggahai

Lake

/ / / / / / / / / / / / / / / / / / / / / / / / / / /
17

Erlongwan

Maar Lake

High High Low High High Low High Low Low High High Low High High Low Low Low High High High Low / / / High High Low
18 Xingkai Lake High High Low Low High High Low Low Low Low High High High High High Low Low Low High High High / / / / / /
19

Sihailongwan

Maar Lake

/ / / / / / / / / / / / / / / / / / / / / / / / / / /
20 Moon Lake Low Low High High High Low Low Low Low Low Low High High Low Low Low Low Low Low Low High Low Low High Low Low High
21 Erhai Lake Low Low Low / / / Low High High High High High / / / Low Low Low Low High High Low High High Low High High
22 Dian Chi / / / / / / / / / / / / / / / / / / / / / Low Low High High Low Low
23 Xima Chi / / / / / / / / / / / / / / / / / / / / / / / / / / /
24

Xingyun

Lake

Low Low Low / / / Low Low High Low Low High Low High High Low Low High / / / / / / Low Low Low
25 Lugu Lake High High Low / / / Low High High High High Low Low Low Low Low Low High Low High High / / / / / /
26 Dajiuhu Lake Low Low Low High High High Low Low High Low Low High / / / Low Low High Low Low Low Low Low High Low High High
27

Huguangyan

Maar Lake

High Low Low High High Low / / / / / / High Low Low Low Low High High Low Low High High High Low Low Low
28 Jiangling Low Low High High Low Low High Low Low Low Low Low Low Low High High High High Low Low Low Low High High High High High
29 Dahu Lake / / / / / / High Low Low / / / Low Low High High High High / / / High High Low High Low Low
30 Chaohu Lake High Low Low Low Low Low High Low Low Low Low Low Low High High Low High High High High High High High High High High High
31 Taihu Lake Low High High Low High High Low Low Low Low Low Low Low Low Low High High High High High High / / / / / /
32

Gucheng

Lake

Low High High Similar Similar High Low High High / / / / / / / / / Low High High / / / / / /
33 Beihuqiao / / / / / / / / / / / / / / / / / / / / / / / / / / /
34

Longgan

Lake

/ / / / / / / / / / / / / / / / / / / / / / / / / / /
35 Sanqing Chi / / / / / / / / / / / / / / / / / / / / / / / / / / /
36 Bosten Lake High High High High High Low / / / / / / High High High / / / Low Low High / / / Low High High
37 Aibi Lake Low High High Low High High Low High High / / / / / / Low Similar High Low High High / / / / / /
38 Yitang Lake / / / / / / / / / / / / / / / / / / / / / / / / / / /
39 Balikun Lake Low Low Low High High Low Low Low High Low High High Low Low Low / / / Low Low High / / / Low High High
40

Wulungu

Lake

Low Low High Low Low Low / / / Low Low High / / / / / / High High High Low Low High / / /
41 Manas Lake / / / / / / / / / / / / / / / / / / Low High High / / / / / /
42 Zhuye Lake Low Low High Low Low High High High Low / / / / / / Low High High High High High High High High Low Low High
43 Juyanze Lake Low Low Low High High Low Low Low High High High Low High Low Low Low Low High Low Low High / / / / / /
44 Huahai Lake / / / / / / / / / / / / / / / / / / / / / / / / / / /
45 Sanjiaocheng Low Low High Low Low Low High Low Low / / / / / / / / / Low High High / / / / / /
46 Daihai Lake High Low Low Low Low Low Low High High High High High / / / Low High High High High High Low High High High Low Low
47 Dali Lake / / / / / / / / / / / / / / / / / / / / / / / / / / /
48

Gonghai

Lake

/ / / / / / / / / / / / / / / / / / / / / / / / / / /
49 Hulun Lake High High Low Low Low Low Low Low Low High High High Low Low Low / / / High High High Low Low High High High Low
50

Tengger

Nuur

High High High High Low Low Low Low High High High High Low High High High High High Low High High / / / / / /
51

Yanhaizi

Lake

/ / / / / / / / / / / / / / / / / / / / / / / / / / /
Aichner B , Wilkes H , Herzschuh U , et al ., 2010. Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau. Journal of Paleolimnology, 43: 873-899. DOI: 10.1007/s10933-009-9375-y .
doi: 10.1007/s10933-009-9375-y
Alin SR , Johnson TC , 2007. Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake atmosphere exchange estimate. Global Biogeochemical Cycles, 21(3): GB3002. DOI: 10.1029/2006GB002881 .
doi: 10.1029/2006GB002881
An ZS , Poter SC , Kutzbach JE , et al ., 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Review, 19(8): 743-762. DOI: 10.1016/s0277-3791(99)00031-1 .
doi: 10.1016/s0277-3791(99)00031-1
Avnimelech Y , Ritvo G , Meijer LE, et al ., 2001. Water content, organic carbon and dry bulk density in flooded sediments. Aquacultural Engineering, 25(1): 25-33. DOI: https://doi.org/10.1016/S0144-8609(01)00068-1 .
doi: 10.1016/S0144-8609(01)00068-1
Baker B , Diaz H , Hargrove W , et al ., 2010. Use of the Köppen-trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People's Republic of China. Climatic Change, 98(1-2): 113-131. DOI: https://doi.org/10.1007/s10584-009-9622-2 .
doi: 10.1007/s10584-009-9622-2
Balascio NL , D'Andrea WJ , Bradley RS , et al ., 2013. Biogeochemical evidence for hydrologic changes during the Holocene in a lake sediment record from southeast Greenland. The Holocene, 23: 1428-1439. DOI: 10.1177/0959683613 493938 .
doi: 10.1177/0959683613 493938
Bird BW , Polisar PJ , Lei Y , et al ., 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth & Planetary Science Letters, 399: 92-102. DOI: 10.1016/j.epsl.2014.05.017 .
doi: 10.1016/j.epsl.2014.05.017
Broccoli AJ , Manabe S , 1992. The effects of orography on midlatitude northern hemisphere dry climates. Journal of Climate, 5(11): 1181-1201. DOI: 10.1175/1520-0442(1992)005<1181:teooom>2.0.co;2 .
doi: 10.1175/1520-0442(1992)005<1181:teooom>2.0.co;2
Campo EV , Cour P , Hang SX , 1996. Holocene environmental changes in Bangong Co basin (Western Tibet) Part 2 The pollen record. Palaeogeography Palaeoclimatology Palaeoecology, 120: 49-63. DOI: 10.1016/0031-0182(95)00033-x .
doi: 10.1016/0031-0182(95)00033-x
Chen CTA , Lan HC , Lou JY , et al ., 2003. The dry Holocene megathermal in Inner Mongolia. Palaeogeography Palaeoclimatology Palaeoecology, 193: 181-200. DOI: 10.1016/s0031-0182(03)00225-6 .
doi: 10.1016/s0031-0182(03)00225-6
Chen F , Yu Z , Yang M , et al ., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27(3): 351-364. DOI: 10.1016/j.quascirev.2007.10.017 .
doi: 10.1016/j.quascirev.2007.10.017
Chen FH , Chen XM , Chen JH , et al ., 2014. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun lake, south-west China. Journal of Paleolimnology, 29: 661-674. DOI: 10.1002/jqs.2735 .
doi: 10.1002/jqs.2735
Chen FH , Liu J , Xu Q , et al ., 2013. Environmental magnetic studies of sediment cores from Gonghai Lake: implications for monsoon evolution in North China during the late glacial and Holocene. Journal of Paleolimnology, 49: 447-464. DOI: 10.1007/s10933-012-9677-3 .
doi: 10.1007/s10933-012-9677-3
Cole JJ , Prairie YT , Caraco NF , et al ., 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1): 172-185. DOI: https://doi.org/10.1007/s10021-006-9013-8 .
doi: 10.1007/s10021-006-9013-8
Crann CA , Patterson RT , Macumber AL , et al ., 2015. Sediment accumulation rates in subarctic lakes: insights into age-depth modeling from 22 dated lake records from the northwest Territories, Canada. Quaternary Geochronology, 27(3): 131-144. DOI: 10.1016/j.quageo.2015.02.001 .
doi: 10.1016/j.quageo.2015.02.001
Danielson RE , Sutherland PL , 1986. Porosity In: Klute A (ed.). Methods of soil analysis, part 1, Physical and Mineralogical Methods, Am. Soc. Agr., Madison, Wisconsin, pp.443-461..
Davis MB , 2000. Palynology after Y2K—understanding the source area of pollen in sediments. Annual Review of Earth & Planetary Sciences, 28: 1-18. DOI: 10.1146/annurev.earth.28.1.1 .
doi: 10.1146/annurev.earth.28.1.1
Dean WE , Gorham E , 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 26(6): 535-538. DOI: 10.1130/0091-7613(1998)026<0535:masocb>2.3.co;2 .
doi: 10.1130/0091-7613(1998)026<0535:masocb>2.3.co;2
Duan XN , Wang XK , Lu F , 2008. Carbon sequestration and its potential by wetland ecosystems in China. Acta Ecologica Sinica, 28(2): 463-469. DOI: 10.3321/j.issn:1000-0933. 2008.02.002 . (in Chinese)
doi: 10.3321/j.issn:1000-0933. 2008.02.002
Ehleringer J , Björkman O , 1977. Quantum yields for CO2 uptake in C3 and C4 plants dependence on temperature, CO2, and O2 concentration. Plant Physiology, 59(1): 86-90. DOI: 10.1104/pp.59.1.86 .
doi: 10.1104/pp.59.1.86
Ehleringer JR , Cerling TE , Helliker BR , 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3): 285-299. DOI: 10.1007/s004420050311 .
doi: 10.1007/s004420050311
Elliott JA , Jones ID , Thackeray SJ , 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia, 559(1): 401-411. DOI: 10.1007/s10750-005-1233-y .
doi: 10.1007/s10750-005-1233-y
Fan H , Gasse F , Huc A , et al ., 1996. Holocene environmental changes in Bangong Co basin (western Tibet)part 3: Biogenic remains. Palaeogeography Palaeoclimatology Palaeoecology, 120: 65-78. DOI: 10.1016/0031-0182(95)00034-8 .
doi: 10.1016/0031-0182(95)00034-8
Fan JW , Xiao J , Wen R , et al ., 2015. Holocene environment variations recorded by stable carbon and nitrogen isotopes of sedimentary organic matter from Dali lake in Inner Mongolia. Quaternary Sciences, 35: 856-870. DOI: 10.11928/j.issn.1001-7410-2015.04.08 . (in Chinese)
doi: 10.11928/j.issn.1001-7410-2015.04.08
Feng JL , Zhu LP , Li YX , 2004. Sedimentary environments and facies about Chen Co lacustrine delta, south Tibetan plateau. Geographical Research, 23: 649-656. DOI: 10.1007/BF02873097 . (in Chinese)
doi: 10.1007/BF02873097
Fleitmann D , Burns SJ , Mudelsee M , et al ., 2003. Holocene forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman. Science, 300(5626): 1737-1739. DOI: 10.1126/science.1083130 .
doi: 10.1126/science.1083130
Gui ZF , Xue B , Yao SC , et al ., 2013. Organic carbon burial in lake sediments in the middle and lower reaches of the yangtze river basin, China. Hydrobiologia, 710(1): 143-156. DOI: 10.1007/s10750-012-1365-9 .
doi: 10.1007/s10750-012-1365-9
Guo J , Li J , Zhao Q , Fang R , et al ., 2012. The grain size and element record of the dry mid-Holocene lake in the Tengger Nuur, Inner Mongolia plateau, China. Marine Geology & Quaternary Geology, 32: 115-122. DOI: 10.3724/SP.J. 1140.2012.05.115 . (in Chinese)
doi: 10.3724/SP.J. 1140.2012.05.115
Guo XY , 2012. Holocene Climate Change Documented by Lake Sediments from Lake Gahai in the Monsoonal Margin Region, Northwest China. Doctoral dissertation, Lanzhou University, China. (in Chinese)
Han ML , 2004. Climatic change and its environmental characteristics of the Xiliao River Valley in the Liao Dynasty. Scientia Geographica Sinica, 24(5): 550-556. DOI: 10.1117/12.528072 .
doi: 10.1117/12.528072
Herzschuh U , 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quaternary Science Reviews, 25(1): 163-178. DOI: 10.1016/j.quascirev.2005.02.006 .
doi: 10.1016/j.quascirev.2005.02.006
Herzschuh U , Kramer A , Mischke S , et al ., 2009. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan plateau deduced from Koucha lake pollen spectra. Quaternary Research, 71: 162-171. DOI: 10.1016/j.yqres.2008.09.003 .
doi: 10.1016/j.yqres.2008.09.003
Herzschuh U , Tarasov P , Wünnemann B , et al ., 2004. Holocene vegetation and climate of the Alashan plateau, NW China, reconstructed from pollen data. Palaeogeography Palaeoclimatology Palaeoecology, 211: 1-17. DOI: 10.1016/j.palaeo.2004.04.001 .
doi: 10.1016/j.palaeo.2004.04.001
Hu F , Yang Y , Zhang J , et al ., 2015. Sedimentary environmental evolution during last deglaciation and early Holocene in Chaohu region. Marine Geology & Quaternary Geology, 35: 153-162. DOI: 10.3724/SP.J.1140.2015.01153 . (in Chinese)
doi: 10.3724/SP.J.1140.2015.01153
Hu S , Wang S , Appel E , et al ., 2000. Environmental mechanism of magnetic susceptibility changes of lacustrine sediments from lake Hulun, China. Science China Earth Sciences, 43: 534-540. DOI: 10.1007/BF02875315 .
doi: 10.1007/BF02875315
Jasper JP , Gagosian RB , 1990. The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico. Geochimica et Cosmochimica Acta, 54(4): 1117-1132. DOI: 10.1016/0016-7037(90)90443-o .
doi: 10.1016/0016-7037(90)90443-o
Jiang Q , Shen J , Liu X , et al ., 2007. A high-resolution climatic change since Holocene inferred from multi-proxy of lake sediment in westerly area of China. Chinese Science Bulletin, 52: 1970-1979. DOI: 10.1007/s11434-007-0245-6 .
doi: 10.1007/s11434-007-0245-6
Jin LY , Chen F , Morrill C , et al ., 2012. Causes of early Holocene desertification in arid central Asia. Climate Dynamics, 38(7-8): 1577-1591. DOI: 10.1007/s00382-011-1086-1 .
doi: 10.1007/s00382-011-1086-1
Kai H , Wünnemann B , 2009. Hydrological changes and holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quaternary International, 194: 28-44. DOI: 10.1016/j.quaint. 2007.06.037 .
doi: 10.1016/j.quaint. 2007.06.037
Kastowski M , Hinderer M , Vecsei A , 2011. Long-term carbon burial in European lakes: analysis and estimate. Global Biogeochem Cycle, 25(3): GB3019. DOI: 10.1029/2010GB00 3874 .
doi: 10.1029/2010GB00 3874
Kling GW , Kipphut GW , Miller MC , 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science, 251(4991): 298-301. DOI: 10.1126/science.251.4991.298 .
doi: 10.1126/science.251.4991.298
Kortelainen P , Pajunen H , Rantakari M , et al ., 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Global Change Biology, 10: 1648-1653. DOI: 10. 1111/j.1365-2486.2004.00848.x .
doi: 10. 1111/j.1365-2486.2004.00848.x
Kortelainen P , Rantakari M , Huttunen JT , et al ., 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology, 12(8): 1554-1567. DOI: 10.1111/j.1365-2486.2006.01167.x .
doi: 10.1111/j.1365-2486.2006.01167.x
Kramer A , Herzschuh U , Mischke S , et al ., 2010a. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological in vestigations. Palaeogeography Palaeoclimatology Palaeoecology, 286: 23-41. DOI: 10.1016/j.palaeo.2009.12.001 .
doi: 10.1016/j.palaeo.2009.12.001
Kramer A , Herzschuh U , Mischke S , et al ., 2010b. Late Quaternary environmental history of the south-eastern Tibetan plateau inferred from the lake Naleng non-pollen palynomorph record. Vegetation History and Archaeobotany, 19: 453-468. DOI: 10.1007/s00334-009-0219-5 .
doi: 10.1007/s00334-009-0219-5
Krishnamurthy RV , Bhattacharya SK , Kusumgar S , 1986. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India. Nature, 323(6084): 150-152. DOI: 10.1038/323150a0 .
doi: 10.1038/323150a0
Li B , Yu Z , Liang Z , et al ., 2014. Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global & Planetary Change, 118: 69-84. DOI: 10. 1016/j.gloplacha.2014.04.006 .
doi: 10. 1016/j.gloplacha.2014.04.006
Li L , 2013. Distribution of TS/TOC and iron-sulfides in the Holocene sediments from the Taihu Lake plain and its implications for the sedimentary environment. Doctoral dissertation, East China Normal University. (in Chinese)
Li SJ , Wnnemann B , Xia WL , et al ., 2009b. A preliminary study of the Holocene lake level changes and their causes derived from the sediment record of Zigetang Lake, Tibetan Plateau. Earth Science Frontiers, 16: 162-167. DOI: 10.1007/s11430-007-0113-x .
doi: 10.1007/s11430-007-0113-x
Li XB , Chen JF , Zhang PZ , et al ., 1999. The characteristics of carbon isotope composition of modern plants over Qinghai-Tibet Plateau (NE) and its climatic information. Acta Sedimentologica Sinica 17(2): 325-329. DOI: 10.1021/j1000 21a067 . (in Chinese).
doi: 10.1021/j1000 21a067
Li Y , Morrill C , 2010. Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments. Climate Dynamics, 35(6): 1119-1132. DOI: 10.1007/s00382-010-0861-8 .
doi: 10.1007/s00382-010-0861-8
Li Y , Wang N , Cheng H , et al ., 2009a. Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye lake, NW China. Boreas, 38: 349-361. DOI: 10.1111/j.1502-3885.2008.00063.x .
doi: 10.1111/j.1502-3885.2008.00063.x
Li Y , Wang N , Li ZL , et al ., 2011. The relationships among organic geochemical proxies and their palaeoenvironment significance in the Zhuye Lake sediment. Journal of Glaciology and Geocryology, 33: 334-341. DOI: 10.1007/s11589-011-0776-4 . (in Chinese)
doi: 10.1007/s11589-011-0776-4
Li Y , Xu LM , 2016. Asynchronous Holocene Asian monsoon vapor transport and precipitation. Palaeogeography Palaeoclimatology Palaeoecology, 461: 195-200. DOI: 10.1016/j.palaeo.2016.08.024 .
doi: 10.1016/j.palaeo.2016.08.024
Li Y , Zhang Q , Li B , 1994. Ostracod fauna and environmental changes during the past 17 000 years in the western Tibet. Acta Geographica Sinica, 49: 46-54. DOI: 10.11821/xb199401006 . (in Chinese)
doi: 10.11821/xb199401006
Li Y , Zhou XH , Li Z , et al ., 2013. Relationship between pollen assemblages and organic geochemical proxies in the Zhuyeze palaeo-lacustrine basin sediments and its response to climate change. Journal of Desert Research, 33: 87-93. DOI: 10.7522/j.issn.1000-694X.2013.00012 . (in Chinese)
doi: 10.7522/j.issn.1000-694X.2013.00012
Liu M , Fan DJ , 2010. Geochemical sediment records of the Yangtze River delta and its response to human activities in recent 60 years. Science China Press, 55(36): 3506-3515. DOI: 10.1007/s11434-010-4256-3 . (in Chinese).
doi: 10.1007/s11434-010-4256-3
Liu Q , Gu ZY , Liu JL , et al ., 2005a. Bulk organic carbon isotopic record of Huguangyan Maar Lake, Southeastern China and its paleoclimatic and paleoenvironmental significance since 62 ka BP. Marine Geology & Quaternary Geology, 25: 115-126. DOI: 10.1016/j.quaint.2004.02.001 . (in Chinese)
doi: 10.1016/j.quaint.2004.02.001
Liu Q , Liu J , Chen X , et al ., 2005b. Stable carbon isotope record of bulk organic matter from the Sihailongwan Maar Lake, northeast China during the past 185 ka. Quaternary Sciences, 25: 711-721. DOI: 10.3321/j.issn:1001-7410. 2005.06.007 . (in Chinese)
doi: 10.3321/j.issn:1001-7410. 2005.06.007
Liu XJ , Lai ZP , Zeng FM , et al ., 2013. Holocene lake level variations on the Qinghai-Tibetan Plateau. International Journal of Earth Sciences, 102(7): 2007-2016. DOI: 10.1007/s00531-013-0896-2 .
doi: 10.1007/s00531-013-0896-2
Liu XQ , Dong H , Rech JA , et al ., 2008a. Evolution of Chaka Salt Lake in NW China in response to climatic change during the latest Pleistocene-Holocene. DOI: 10.1016/j.quascirev.2007.12.006. Quaternary Science Reviews, 27: 867-879.
Liu XQ , Herzschuh U , Shen J , et al ., 2008b. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quaternary Sciences, 70: 412-425. DOI: 10.1016/j.yqres.2008.06.005 .
doi: 10.1016/j.yqres.2008.06.005
Liu YY , Zhang SQ , Liu JQ , et al ., 2008c. Vegetation and environment history of Erlongwan Maar Lake during the late Pleistocene on pollen record. Acta Micropalaeontologica Sinica, 25: 274-280. DOI: 10.1007/s11434-012-5244-6 . (in Chinese)
doi: 10.1007/s11434-012-5244-6
Lohmann U , Sausen R , Bengtsson L , et al ., 1993. The Köppen climate classification as a diagnostic tool for general circulation models. Climate Research, 3: 177-193. DOI: 10. 2514/6.1995-214 .
doi: 10. 2514/6.1995-214
Long H , Lai ZP , Wang NA , et al ., 2010. Holocene climate variations from Zhuyeze terminal lake records in east Asian monsoon margin in arid northern China. Quaternary Resarch, 74(1): 46-56. DOI: 10.1016/j.yqres.2010.03.009 .
doi: 10.1016/j.yqres.2010.03.009
Lü XM , Zhu LP , Nishimura M , et al ., 2011. A high-resolution environmental change record since 19 cal ka BP in Pumoyum Co, southern Tibet. Chinese Science Bulletin, 56(27): 2931-2940. DOI: 10.1007/s11434-011-4656-z .
doi: 10.1007/s11434-011-4656-z
Ma CM , Zhu C , Zheng CG , et al ., 2008. Geochemical studies of high-resolution climate change during late glacial from peat at Dajiuhu Lake in Shenlongjia in Hubai Province. Chinese Science Bulletin, 53(SI): 26-37. DOI: 10.3321/j.issn:0023-074X.2008.z1.003 . (in Chinese)
doi: 10.3321/j.issn:0023-074X.2008.z1.003
Ma YZ , Zhang HC , Pachur HJ , et al ., 2004. Modern pollen-based interpretations of mid-Holocene palaeoclimate (8500 to 3000 cal. BP) at the southern margin of the Tengger desert, northwestern China. Holocene, 14: 841-850. DOI: 10. 1191/0959683604h1764rp .
doi: 10. 1191/0959683604h1764rp
Makohonienko M , Kitagawa H , Naruse T , et al ., 2004. Late-Holocene natural and anthropogenic vegetation changes in the Dongbei Pingyuan (Manchurian Plain), northeastern China. Quaternary International, 123: 71-88. DOI: 10. 1016/j.quaint.2004.02.010 .
doi: 10. 1016/j.quaint.2004.02.010
Martini IP , Cortizas AM , Chesworth W , 2006. Peatlands :evolution and records of environmental and climate changes. Developments in Earth Surface Processes, 9: 17-51. DOI: 10. 1016/S0928-2025(06)09003-1 .
doi: 10. 1016/S0928-2025(06)09003-1
Matsumoto R , 2005. A high-resolution climatic change since the late glacial age inferred from multi-proxy of sediments in Qinghai lake. Science China Earth Sciences, 48: 742-751. DOI: 10.1360/03yd0148 .
doi: 10.1360/03yd0148
Mingram J , Schettler G , Nowaczyk N , et al ., 2004. The Huguang Maar Lake ― a high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from south China. Quaternary International, 122: 85-107. DOI: https://doi.org/10.1016/j.quaint.2004.02.001 .
doi: 10.1016/j.quaint.2004.02.001
Müller B , Maerki M , Schmid M , et al ., 2005. Internal carbon and nutrient cycling in lake baikal: sedimentation, upwelling, and early diagenesis. Global & Planetary Change, 46(1-4): 101-124. DOI: 10.1016/j.gloplacha.2004.11.008 .
doi: 10.1016/j.gloplacha.2004.11.008
Naipal V , Reick C , Pongratz J , et al ., 2015. Improving the global applicability of the rusle model-adjustment of the topographical and rainfall erosivity factors. Geoscientific Model Development Discussions, 8(9): 2991-3035. DOI: 10. 5194/gmd-8-2893-2015 .
doi: 10. 5194/gmd-8-2893-2015
Nishimura M , Matsunaka T , Morita Y , et al ., 2014. Paleoclimatic changes on the southern Tibetan plateau over the past 19,000 years recorded in lake Pumoyum Co, and their implications for the southwest monsoon evolution. Palaeogeography Palaeoclimatology Palaeoecology, 396: 75-92. DOI: 10.1016/j.palaeo.2013.12.015 .
doi: 10.1016/j.palaeo.2013.12.015
Numaguti A , 1999. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. Journal of Geophysical Research, 104(D2): 1957-1972. DOI: 10. 1029/1998jd200026 .
doi: 10. 1029/1998jd200026
O'Leary M , 1988. Carbon isotopes in photosynthesis. BioScience, 38: 328-336. DOI: 10.2307/1310735 .
doi: 10.2307/1310735
Opitz S , Wünnemann B , Aichner B , et al ., 2012. Late glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan plateau, inferred from sedimentological analysis. Palaeogeography Palaeoclimatology Palaeoecology, s337-s 338: 159-176. DOI: 10.1016/j.palaeo.2012.04.013 .
doi: 10.1016/j.palaeo.2012.04.013
Parmesan C , 2006. Ecological and evolutionary responses to recent climate change. Ecology, Evolution and Systematics, 37(1): 275-290. DOI: 10.2307/30033846 .
doi: 10.2307/30033846
Peel MC , Finlayson BL , Mcmahon TA , 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology & Earth System Sciences, 4: 439-473. DOI: 10.1127/0941-2948/2006/0130 .
doi: 10.1127/0941-2948/2006/0130
Qian WH , Ding T , Hu HR , et al ., 2009. An overview of dry-wet climate variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China. Advances in Atmospheric Sciences, 26(4): 630-641. DOI: 10.1007/s00376-009-8213-5 .
doi: 10.1007/s00376-009-8213-5
Ran LS , Lu XX , 2014. Sediment load and carbon burial in the yellow river during the Holocene. Pages Magazine, April. DOI: 10.22498/pages.22.1.34 .
doi: 10.22498/pages.22.1.34
Rhodes TE , Gasse F , Lin R , et al ., 1996. A late Peistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeography Palaeoclimatology Palaeoecology, 120: 105-121. DOI: 10.1016/0031-0182(95)00037-2 .
doi: 10.1016/0031-0182(95)00037-2
Rodwell MJ , Hoskins BJ , 1996. Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society, 122(534): 1385-1404. DOI: 10.1002/qj.497122 53408 .
doi: 10.1002/qj.497122 53408
Romero C , Rachidi F , Paolone M , et al ., 2013. Statistical distributions of lightning currents associated with upward negative flashes based on the data collected at the Säntis (EMC) Tower in 2010 and 2011. IEEE Transactions on Power Delivery, 28(3): 1804-1812. DOI: 10.1109/TPWRD.2013. 2254727 .
doi: 10.1109/TPWRD.2013. 2254727
Romero C , Rubinstein M , Rachidi F , et al ., 2012. Some characteristics of positive and bipolar lightning flashes recorded on the Säntis tower in 2010 and 2011. International Conference on Lightning Protection, pp. 1-5. DOI: 10.1109/ICLP. 2012.6344271 .
doi: 10.1109/ICLP. 2012.6344271
Rubel F , Kottek M , 2010. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2): 135-141. DOI: 10.1127/0941-2948/2010/0430 .
doi: 10.1127/0941-2948/2010/0430
Saito Y , Yang Z , Hori K , 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 41(2): 219-231. DOI: 10. 1016/S0169-555X(01)00118-0 .
doi: 10. 1016/S0169-555X(01)00118-0
Shao XH , Wang YJ. , Cheng H , et al ., 2006. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite d18O record from Shennongjia in Central China. Chinese Science Bulletin, 51(2): 221-228. DOI: 10.1007/s11434-005-0882-6 .
doi: 10.1007/s11434-005-0882-6
Shen J , 2013. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the last glacial maximum: a review and synthesis of lacustrine sediment archives. Chinese Science Bulletin, 58: 17-31. DOI: 10.1007/s11434-012-5510-7 .
doi: 10.1007/s11434-012-5510-7
Shen J , Jones RT , Yang XD , et al ., 2006. The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China the role of climate and human forcings. Holocene. 16: 265-276. DOI: 10.1191/0959683606hl923rp .
doi: 10.1191/0959683606hl923rp
Shen J , Liu XQ , Wang SM , et al ., 2005a. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International, 136: 131-140. DOI: 10.1360/03yd0148 .
doi: 10.1360/03yd0148
Shen J , Yang L , Yang X , et al ., 2005b. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan province, China. Science China Earth Sciences, 48: 353-363. DOI: 10.1371/journal.pone.0102167 .
doi: 10.1371/journal.pone.0102167
Shu JW , Wang WM , Chen W , 2007. Holocene vegetation and environment changes in the NW Taihu plain, Jiangsu province, east China. Acta Micropalaeontologica Sinica, 24: 210-221. DOI: 10.3969/j.issn.1000-0674.2007.02.007 . (in Chinese)
doi: 10.3969/j.issn.1000-0674.2007.02.007
Sobek S , Anderson N , Bernasconi S , et al ., 2014. Low organic carbon burial efficiency in arctic lake sediments. Journal of Geophysical Research: Biogeosciences, 119: 1231-1243. DOI: 10.1002/2014JG002612 .
doi: 10.1002/2014JG002612
Song L , Qiang MR , Lang LL , et al ., 2012. Changes in palaeoproductivity of Genggahai Lake over the past 16 ka in the Gonghe Basin, northeastern Qinghai-Tibetan plateau. Chinese Science Bulletin, 57: 2595-2605. DOI: 10.1007/s11434-012-5191-2 .
doi: 10.1007/s11434-012-5191-2
Song YQ , Luo Y , Li SC , et al ., 2016. Holocene environmental change and climatic periodicities recorded from the lacustrian sediments in the Sanqing Chi section, Taibai Mountain. Journal of Lake Sciences, 28: 899-908. DOI: 10. 18307/2016.0424 . (in Chinese)
doi: 10. 18307/2016.0424
Stuiver M , Reimer RW , 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35: 215e230. DOI: 10.1017/S0033822200013904 .
doi: 10.1017/S0033822200013904
Tao SC , An CB , Chen FH , et al ., 2010. Holocene vegetation changes interpreted from pollen records in Balikun Lake, Xinjiang, China. Acta Palaeontologica Sinica, 48: 194-199. DOI: 10.1360/972009-495 . (in Chinese)
doi: 10.1360/972009-495
Tao SC , An CB , Chen FH , et al ., 2010. Holocene vegetation changes interpreted from pollen records in Balikun Lake, Xinjiang, China. Acta Palaeontologica Sinica, 48(2): 194-199. DOI: 10.1360/972009-495 . (in Chinese)
doi: 10.1360/972009-495
Turcq B , Albuquerque ALS , Cordeiro RC , et al ., 2002. Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology, 148(1): 319-342. DOI: 10.1016/S0037-0738(01)00224-X .
doi: 10.1016/S0037-0738(01)00224-X
Wang G , Han J , Zhou L , et al ., 2005. Carbon isotope ratios of plants and occurrences of C4 species under different soil moisture regimes in arid region of northwest China. Physiologia Plantarum, 125(1): 74-81. DOI: 10.1111/j.1399-3054.2005.00549.x .
doi: 10.1111/j.1399-3054.2005.00549.x
Wang M , Chen H , Yu Z , et al ., 2015. Carbon accumulation and sequestration of lakes in China during the Holocene. Global Change Biology, 21(12): 4436. DOI: 10.1111/gcb.13055 .
doi: 10.1111/gcb.13055
Wang N , Li Z , Li Y , et al ., 2013. Millennial-scale environmental changes in the Asian monsoon margin during the Holocene, implicated by the lake evolution of Huahai lake in the Hexi corridor of northwest China. Quaternary International, s313-s 314: 100-109. DOI: 10.1016/j.quaint.2013. 08.039 .
doi: 10.1016/j.quaint.2013. 08.039
Wang S , Dou H , 1998. Lakes in China. Science Press, Beijing, China. (in Chinese)
Wang S , Hu S , Appel E , et al ., 1999. Incursion of sea water into Gucheng lake detected by magnetic, biologic and chemical data. Physics & Chemistry of the Earth Part A Solid Earth & Geodesy, 24: 805-809. DOI: 10.1016/S1464-1895(99)00118-0 .
doi: 10.1016/S1464-1895(99)00118-0
Wang XY , Wu L , Zhang GS , et al ., 2008. Characteristics and environmental significance of magnetic susceptibility and grain size of lake sediments since Holocene in Chaohu Lake, Anhui province. Scientia Geographica Sinica, 28: 548-553. DOI: 10.1017/S0004972710001772 . (in Chinese)
doi: 10.1017/S0004972710001772
Wei YE , Cheng LJ , Zhu LD , et al ., 2016. History of environmental change during early-middle Holocene recorded by Beihuqiao core in Zhejian, China. Acta Sedimentologica Sinica, 34: 543-554. DOI: 10.14027/j.cnki.cjxb.2016.03.012 . (in Chinese)
doi: 10.14027/j.cnki.cjxb.2016.03.012
Wen RL , Xiao JL , Chang ZG , et al ., 2010. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas, 39: 262-272. DOI: 10.1111/j.1502-3885.2009.00125.x .
doi: 10.1111/j.1502-3885.2009.00125.x
Whitmore TJ , Brenner M , Engstrom DR , et al ., 1994. Accelerated soil erosion in watersheds of Yunnan Province, China. Journal of Soil and Water Conservation, 49: 67-72. DOI: 10.2307/4002848 .
doi: 10.2307/4002848
Wu J , 1995. Characters of the evolution of climate and environment during the last 10ka years in Aibi Lake Basin, Xinjiang. Scientia Geographica Sinica, 15: 39-46. DOI: 10. 1088/0256-307X/12/7/010 . (in Chinese)
doi: 10. 1088/0256-307X/12/7/010
Wu J , Liu Q , 2012. Pollen-recorded vegetation and climate changes from Moon Lake since late Glacial. Earth Science-Journal of China University of Geosciences, 37: 947-954. DOI: 10.3799/dqkx.2012.103 . (in Chinese)
doi: 10.3799/dqkx.2012.103
Wu J , Shen J , 2010a. Paleoenviromental and paleoclimatic changes in Lake Xingkai inferred from stable carbon and nitrogen isotopes of bulk organic matter since 28 ka BP. Acta Sedimentologica Sinica, 28: 365-372. DOI: 10.1017/S0004972710001772 . (in Chinese)
doi: 10.1017/S0004972710001772
Wu J , Shen J , 2010b. Paleoclimate evolution since 277 ka BP reflected by grain size variation of a sediment core from Lake Xingkai, northeastern Asia. Journal of Lake Science, 22: 110-118. DOI: 10.18307/2010.0116 . (in Chinese)
doi: 10.18307/2010.0116
Wu YH , Andreas L , Bernd W , et al ., 2007. Holocene climate change in the central Tibetan plateau inferred by lacustrine sediment geochemical records. Science in China: Earth Sciences, 50: 1548-1555. DOI: 10.1007/s11430-007-0113-x .
doi: 10.1007/s11430-007-0113-x
Wu YH , Wang SM , Hou XH , 2006. Chronology of Holocene lacustrine sediments in Co Ngoin, Central Tibetan Plateau. Science in China: Earth Sciences, 49: 991-1001. DOI: 10.1007/s11430-006-0991-3 .
doi: 10.1007/s11430-006-0991-3
Wu YH , Wu RJ , Xue B , et al ., 1998. Paleoenvironmental Evolution in Dianchi Lake Area since 13 ka BP. Journal of Lake Sciences, 10: 5-9. DOI: 10.18307/1998.0202 . (in Chinese)
doi: 10.18307/1998.0202
Xiao JL , Xu QH , Nakamura T , et al ., 2004. Holocene vegetation variation in the Daihai Lake region of north-central China a direct indication of the Asian monsoon climatic history. Quaternary Science Reviews, 23: 1669-1679. DOI: 10.1016/j.quascirev.2004.01.005 .
doi: 10.1016/j.quascirev.2004.01.005
Xie YY , 2004. Climatic environment change over 9 ka BP: evidence from Jiangling area, Jianghan Plain, China. Doctoral dissertation, University of Geosciences, China. (in Chinese)
Xue JB , Zhang W , 2011. Holocene climate variation denoted by Barkol lake sediments in northeastern Xinjiang and its possible linkage to the high and low latitude climates. Science in China: Earth Sciences, 54: 603-614. DOI: 10.1007/s11430-010-4111-z .
doi: 10.1007/s11430-010-4111-z
Xue JB , Zhang W , 2011. Holocene climate variation denoted by Barkol lake sediments in northeastern Xinjiang and its possible linkage to the high and low latitude climates. Science China Earth Sciences, 54(4): 603-614. DOI: 10.1007/s11430-010-4111-z .
doi: 10.1007/s11430-010-4111-z
Xue JB , Zhong W , Peng XY , et al ., 2007. Paleo-climate significance for the past 12 ka BP revealed by Dahu peat record in the eastern south mountain. Marine Geology & Quaternary Geology, 27: 105-113. (in Chinese)
Yang J , Cui Z , Yi Z , et al ., 2004. The influencing factors and environmental significance of magetic susceptibility in the Glacio-lacustrinal sediments on the Diancang Mountains, Yunnan Province. Quaternary Sciences, 24: 591-597. DOI: 10.3321/j.issn:1001-7410.2004.05.017 . (in Chinese)
doi: 10.3321/j.issn:1001-7410.2004.05.017
Yang XD , Wu YH , Zhu YX , et al ., 2002. Environmental changes revealed by lacustrine sediment from Longgan Lake since Last Glacial Maximum. Journal of Lake Science, 14: 106-109. DOI: 10.18307/2002.0202 . (in Chinese)
doi: 10.18307/2002.0202
Ye DZ , Gao YX , 1979. Meteorology of the Qinghai-Xizang Plateau. Beijing: Science Press, pp. 278.
Yin LJ , Li MR , 1997. A study on the geographic distribution and ecology of C4 plants in China I C4 plant distributionin China and their relation with regional climatic condition. Acta Ecologica Sinica, 17(4): 350-363. (in Chinese)
You H , Liu J , 2012. High-resolution climate evolution derived from the sediment records of Erlongwan Maar Lake since 14 ka BP. Chinese Science Bulletin, 57(27): 3610-3616. DOI: 10.1007/s11434-012-5244-6 .
doi: 10.1007/s11434-012-5244-6
You HT , Liu JQ , 2012. High-resolution climate evolution derived from the sediment records of Erlongwan Maar Lake since 14 ka BP. Chinese Science Bulletin, 57: 3610-3616. DOI: 10.1007/s11434-012-5244-6 .
doi: 10.1007/s11434-012-5244-6
Yu G , Chen X , Ni J , et al ., 2000. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography, 27: 635-664. DOI: info:doi/10.1046/j.1365-2699.2000.00431.x .
doi: info:doi/10.1046/j.1365-2699.2000.00431.x
Yuan DX , Cheng H , Edwards RL , et al ., 2004. Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science, 304(5670): 575-578. DOI: 10.1126/science. 1091220 .
doi: 10.1126/science. 1091220
Zhang C , Mischke S , 2009. A lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau. Quaternary Science Reviews, 28: 1970-1983. DOI: 10.1016/j.quascirev.2009.03.007 .
doi: 10.1016/j.quascirev.2009.03.007
Zhang CJ , Chen FH , Shi Q , et al ., 2000. Carbon isotopic records of lake organic matter during Holocene climatic variations in the arid semiarid areas of northwest China—taking Sanjiaocheng in the drainage area of the shiyang river as an example. Marine Geology & Quaternary Geology, 20: 93-97. DOI: 10.1007/s11769-000-0051-4 . (in Chinese)
doi: 10.1007/s11769-000-0051-4
Zhang CJ , Feng ZD , Yang QL , et al ., 2010. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. Holocene, 20: 363-373. DOI: 10.1177/0959683609353428 .
doi: 10.1177/0959683609353428
Zhang CJ , Zheng MP , Prokopenko A , et al ., 2007. The palaeoenvironmental variation from the high-resolution record of the Holocene sediment carbonate and isotopic composition in Bosten Lake and responding to glacial activity. Acta Geologica Sinica, 81: 1658-1671. DOI: 10.22498/pages.7.3.10 . (in Chinese)
doi: 10.22498/pages.7.3.10
Zhang F , Xue B , Yu G , 2016. The lake status change of China since the late Quaternary and its significance for palaeoenvironment. Quaternary Sciences, 36(3): 598-611. DOI: 10.11928/j.issn.1001-7410.2016.03.10 . (in Chinese)
doi: 10.11928/j.issn.1001-7410.2016.03.10
Zhang FJ , Xue B , Yao SC , et al ., 2013. The organic carbon burial rate in Chinese lake sediments during Holocene megathermal. Quaternary Sciences, 33(2): 401-402. DOI: 10.1126/science.1091220 . (in Chinese)
doi: 10.1126/science.1091220
Zhang GJ , Li CX , 2015. Lake-level and paleoenvironment variations in Yitang Lake (northwestern China) during the past 23ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments. Chinese Science Bulletin, 35: 172-179. DOI: 10.11928/j.issn.1001-7410.2015. 01-16 . (in Chinese)
doi: 10.11928/j.issn.1001-7410.2015. 01-16
Zhang W , Ming Q , Shi Z , et al ., 2014. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China. Plos One, 9: e102167. DOI: 10.1371/journal.pone.0102167 .
doi: 10.1371/journal.pone.0102167
Zhao LY , Lu HY , Zhang EL , et al ., 2015. Lake-level and paleoenvironment variations in Yitang Lake (northwestern China) during the past 23 ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments. Quaternary Sciences, 35(1): 172-179. DOI: 10. 11928/j.issn.1001-7410.2015.01.16 . (in Chinese)
doi: 10. 11928/j.issn.1001-7410.2015.01.16
Zhao Y , Yu ZC , Chen FH , et al ., 2007. Holocene vegetation and climate historyat Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology, 145(3-4): 275-288. DOI: 10.1016/j.revpalbo.2006. 12.002 .
doi: 10.1016/j.revpalbo.2006. 12.002
Zheng Q , 2014. Vegetational and environmental changes since 15 ka BP recorded by Lake Lugu in the southwest monsoon domain. Doctoral dissertation, Yunnan normal university, China. (in Chinese)
Zheng Q , Zhang HC , Ming QZ , et al ., 2014. Vegetational and environmental changes since 15 ka BP recorded by Lake Lugu in the southwest monsoon domain. Quaternary Sciences, 34: 1314-1326. DOI: 10.3969/j.issn.1001-7410. 2014.06.21 . (in Chinese)
doi: 10.3969/j.issn.1001-7410. 2014.06.21
Zheng Q , 2014. Vegetational and environmental changes since 15 ka BP recorded by Lake Lugu in the southwest monsoon domain. Doctoral dissertation, Yunnan normal university, China. (in Chinese)
Zhong W , Xue JB , Cao JX , et al ., 2010. Bulk organic carbon isotopic record of lacustrine sediments in Dahu swamp, eastern Nanling mountains in south China: implication for catchment environmental and climatic changes in the last 16,000 years. Journal of Asian Earth Sciences, 38: 162-169. DOI: 10.1016/j.jseaes.2009.12.011 .
doi: 10.1016/j.jseaes.2009.12.011
Zhou XH , Li Y , Zhang CQ , et al ., 2013. The response of organic geochemical proxies in Holocene lake sediments to millennial-scale climate change. Journal of Salt Lake Research, 21: 1-9. (in Chinese)
Zhu C , Ma CM , Zhang WQ , et al ., 2006. Pollen record from Dajiuhu Basin of shennongjia and environmental changes since 15.753 ka BP. Quaternary Sciences, 26: 814-826. DOI: 10.1016/S1872-2040(06)60041-8 . (in Chinese)
doi: 10.1016/S1872-2040(06)60041-8
Zhu GR , Li Y , 2015. Types and changes of chinese climate zones from 1961 to 2013 based on köppen climate classification. Arid Land Geography, 38(6): 1121-1132. DOI: 10. 13826/j.cnki.cn65-1103/x.2015.06.005 . (in Chinese)
doi: 10. 13826/j.cnki.cn65-1103/x.2015.06.005
Zhu LP , Zhen XL , Wang JB , et al ., 2009. A ~30,000-year record of environmental changes inferred from lake Chen Co, southern Tibet. Journal of Paleolimnology, 42: 343-358. DOI: 10.1007/s10933-008-9280-9 .
doi: 10.1007/s10933-008-9280-9
[1] YuXin Zhang,Yu Li,XinZhong Zhang,ChengQi Zhang,WangTing Ye,Yuan Liu. A paleo-hydrological simulation experiment and its verification in an inland basin [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 267-282.
[2] LingLing Song,ZongJie Li,Qing Tian,LieFu Wang,Jing He,RuiFeng Yuan,Juan Gui,BaiJuan Zhang,YueMin Lv. Variation and relationship between soil moisture and environmental factors in the source region of the Yangtze River from 2005 to 2016 [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 184-193.
[3] Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217.
[4] HongWei Wang,Yuan Qi,ChunLin Huang,XiaoYing Li,XiaoHong Deng,JinLong Zhang. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 150-158.
[5] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[6] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[7] RuiXia He, HuiJun Jin, XiaoLi Chang, YongPing Wang, LiZhong Wang. Freeze-thaw processes of active-layer soils in the Nanweng'he River National Natural Reserve in the Da Xing'anling Mountains, northern Northeast China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 104-113.
[8] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[9] Sanjaya Gurung, Bikas C. Bhattarai, Rijan B. Kayastha, Dorothea Stumm, Sharad P. Joshi, Pradeep K. Mool. Study of annual mass balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang,Nepal [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 311-318.
[10] Yang Zhao, Peng Zhang, YiGang Hu, Lei Huang. Effects of artificial vegetation arrangement and structure on the colonization and development of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 343-349.
[11] Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226.
[12] Olof Andrén, XueYong Zhao, Thomas Kätterer, Martin Bolinder. Agroecosystem research in Uppsala, Sweden and Naiman, China:Some observations 1987-2014 [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 1-8.
[13] Lei Huang, Peng Zhang, YiGang Hu, Yang Zhao. Soil water deficit and vegetation restoration in the refuse dumps of the Heidaigou open-pit coal mine, Inner Mongolia, China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 22-35.
[14] Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94.
[15] ChaoFeng Fu, JingBo Zhao, FanMin Mei, TianJie Shao, Jun Zuo. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 675-686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!