Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (2): 150-158.doi: 10.3724/SP.J.1226.2019.00150.

Previous Articles    

Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China

HongWei Wang1(),Yuan Qi1,ChunLin Huang1,XiaoYing Li1,2,XiaoHong Deng1,JinLong Zhang1   

  1. 1. Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-18 Online:2019-04-01 Published:2019-04-29
  • Contact: HongWei Wang
  • About author:HongWei Wang, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel: +86-931-4967724; E-mail:


This research was undertaken to clarify the characteristics of vegetation change and its main influencing factors on the Qinghai-Tibet Plateau. Using the greenness rate of change (GRC) and correlation factors, we analyzed the trend of vegetation change and its dominant factors from 2000 to 2015. The results indicate that the vegetation tended to improve from 2000 to 2015 on the Qinghai-Tibet Plateau, with the improved area accounting for 39.93% of the total; and the degraded area accounting for 19.32%. The areas of degraded vegetation are mainly concentrated in the low-relief and intermediate-relief mountains of the high-altitude and extremely high-altitude areas on the Qinghai-Tibet Plateau, as the vegetation characteristics are impacted by the terrain. Temperature and precipitation have obvious response mechanisms to vegetation growth, but the effects of precipitation and temperature on vegetation degradation are not significant over a short time frame. Overgrazing and population growth are the dominant factors of vegetation degradation on the Qinghai-Tibet Plateau.

Key words: Qinghai-Tibet Plateau, remote sensing, vegetation activity, degraded, dominant factors

Figure 1

Spatial distribution of DEM and meteorological stations on the Qinghai-Tibet Plateau"

Figure 2

Time-series of NDVI values among MOD13A3, MYD13A3, and the average monthly NDVI on the Qinghai-Tibet Plateau from 2000 to 2015"

Figure 3

Spatial change trends of MODIS NDVI on the Qinghai-Tibet Plateau: (a) 2000?2005, (b) 2005?2010, (c) 2010?2015, and (d) 2000?2015"

Table 1

Comparison of MODIS NDVI trend on the Qinghai-Tibet Plateau (2000?2005, 2005?2010, 2010?2015, 2000?2015)"

NDVI trends Degree Statistical indicators 2000?2005 2005?2010 2010?2015 2000?2015
Θ slope ?0.0091 Greatly degraded Area (km2) 221,859 297,241 661,191 19,835
Area percentage 7.17% 9.60% 21.36% 0.64%
?0.0090 Θ slope ?0.0046 Slightly degraded Area (km2) 189,560 296,979 452,265 85,238
Area percentage 6.12% 9.59% 14.61% 2.75%
?0.0045 Θ slope ?0.0010 Significantly degraded Area (km2) 345,325 608,095 603,892 492,964
Area percentage 11.16% 19.64% 19.51% 15.93%
?0.0009 Θ slope 0.0009 Basically unchanged Area (km2) 478,519 706,871 559,710 1,261,121
Area percentage 15.46% 22.84% 18.08% 40.74%
0.0010 Θ slope 0.0045 Significantly improved Area (km2) 747,150 601,379 457,228 867,716
Area percentage 24.14% 19.43% 14.77% 28.03%
0.0046 Θ slope 0.0090 Slightly improved Area (km2) 433,155 304,178 183,245 239,382
Area percentage 13.99% 9.83% 5.92% 7.73%
0.0091 Θ slope Greatly improved Area (km2) 679,854 280,679 177,891 129,166
Area percentage 21.96% 9.07% 5.75% 4.17%

Figure 4

Change trend of NDVI in different vegetation types"

Figure 5

The change trend of NDVI in different types of mountainous areas (A1?A5 is low altitude, intermediate altitude, sub-high altitude, high altitude, and extremely high altitude; B1?B6 is plain/platform, hill, low-relief mountain, intermediate-relief mountain, high-relief mountain, and extremely high-relief mountain)"

Figure 6

Time-series changes of NDVI and mean temperature on the Qinghai-Tibet Plateau"

Figure 7

Time-series changes of NDVI and precipitation on the Qinghai-Tibet Plateau"

Figure 8

Time-series change of population and livestock in the Qinghai Province and the Tibet Autonomous Region"

Anyamba A , Tucker CJ , 2012. Historical Perspective of AVHRR NDVI and Vegetation Drought Monitoring. Remote Sens Drought: Innovative Monitoring Approaches. Boca Raton: CRC Press, pp. 23−49.
Croux C , Dehon C , 2010. Influence functions of the Spearman and Kendall correlation measures. Statistical Methods & Applications,. 19(4):497−515. DOI: 10.1007/s10260-010-0142-z.
doi: 10.1007/s10260-010-0142-z
Dardel C , Kergoat L , Hiernaux P , et al . , 2014. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sensing of Environment, 140: 350−364. DOI: 10.1016/j.rse.2013.09.011.
doi: 10.1016/j.rse.2013.09.011
Fensholt R , Rasmussen K , Nielsen TT , et al . , 2009. Evaluation of earth observation based long term vegetation trends-Intercom paring NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 113(9): 1886−1898. DOI: 10.1016/j.rse.2009.04.004.
doi: 10.1016/j.rse.2009.04.004
Godinez-Alvarez H , Herrick JE , Mattocks M , et al . , 2009. Comparison of three vegetation monitoring methods: their relative utility for ecological assessment and monitoring. Ecological Indicators, 9(5): 1001−1008. DOI: 10.1016/j.ecolind.2008.11.011.
doi: 10.1016/j.ecolind.2008.11.011
Hu YF , Jiang SL , Yuan S , et al . , 2017. Changes in soil organic carbon and its active fractions in different desertification stages of alpine-cold grassland in the eastern Qinghai−Tibet Plateau. Environmental Earth Sciences, 76(9): 348. DOI: 10.1007/s12665-017-6684-8.
doi: 10.1007/s12665-017-6684-8
Huete A , Didan K , Miura T , et al . , 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1−2): 195−213. DOI: 10.1016/S0034-4257(02)00096-2.
doi: 10.1016/S0034-4257(02)00096-2
Jamali S , Seaquist J , Eklundh L , et al . , 2014. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sensing of Environment, 141: 79−89. DOI: 10.1016/j.rse.2013.10.019.
doi: 10.1016/j.rse.2013.10.019
Li F , Zeng Y , Li XS , et al . , 2014. Remote sensing based monitoring of interannual variations in vegetation activity in China from 1982 to 2009. Science China Earth Sciences, 57(8): 1800−1806. DOI: 10.1007/s11430-014-4883-7.
doi: 10.1007/s11430-014-4883-7
Li G , Sun WL , Zhang H , et al . , 2014. Balance between actual number of livestock and livestock carrying capacity of grassland after added forage of straw based on remote sensing in Tibetan Plateau. Transaction of the Chinese Society of Agricultural Engineering, 30(17): 200−211. DOI:10.39 69/j.issn.1002-6819.2014.17.026.
doi: 10.39 69/j.issn.1002-6819.2014.17.026
Moss RH , Edmonds JA , Hibbard KA , et al . , 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747. DOI: 10.1038/nature 08823.
doi: 10.1038/nature 08823
Nan X , Li AN , Chen Y , et al . , 2016. Design and compilation of Digital Mountain map of china (1:6700000) in vertical layout. Remote Sensing Technology and Application, 31(3): 451−458. DOI: 10.11873/j.issn.1004-0323.2016.3.0454.
doi: 10.11873/j.issn.1004-0323.2016.3.0454
Otto M , Höpfner C , Curio J , et al . , 2016. Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data. Theoretical and Applied Climatology, 123(1−2): 23−41. DOI: 10.1007/s00704-014-1344-3.
doi: 10.1007/s00704-014-1344-3
Peng J , Liu ZH , Liu YH , et al . , 2012. Trend analysis of vegetation dynamics in Qinghai−Tibet Plateau using Hurst Exponent. Ecological Indicators, 14(1): 28−39. DOI: 10.1016/j.ecolind.2011.08.011.
doi: 10.1016/j.ecolind.2011.08.011
Pinzon JE , Tucker CJ , 2014. A non-stationary 1981−2012 AVHRR NDVI3g time series. Remote Sensing, 6(8): 6929−6960. DOI: 10.3390/rs6086929.
doi: 10.3390/rs6086929
Qian S , Mao LX , Hou YY , et al . , 2007. Livestock carrying capacity and balance between carrying capacity of grassland with added forage and actual livestock in the Qinghai-Tibet Plateau. Journal of Natural Resources, 22(3): 389−397. DOI: 1000-3037(2007)03-0389-10.
doi: 1000-3037(2007)03-0389-10
Smith AMS , Kolden CA , Tinkham WT , et al . , 2014. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment, 154: 322−337. DOI: 10.1016/j.rse.2014.03.038.
doi: 10.1016/j.rse.2014.03.038
Stow D , Daeschner S , Hope A , et al . , 2003. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. International Journal of Remote Sensing, 24(5): 1111−1117. DOI: 10.1080/0143116021000020144.
doi: 10.1080/0143116021000020144
Stow DA , Hope A , McGuire D , et al . , 2004. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 89(3): 281−308. DOI: 10.1016/j.rse.2003.10.018.
doi: 10.1016/j.rse.2003.10.018
Sun HL , Zheng D , Yao TD , et al . , 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 67(1): 3−12.
Tian F , Brandt M , Liu YY , et al . , 2016. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sensing of Environment, 177: 265−276. DOI: 10.1016/j.rse.2016.02.056.
doi: 10.1016/j.rse.2016.02.056
Tian F , Fensholt R , Verbesselt J , et al . , 2015. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 163: 326−340. DOI: 10.1016/j.rse.2015.03.031.
doi: 10.1016/j.rse.2015.03.031
Wang GX , Cheng GD , Shen YP , 2002. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication. Journal of Glaciology and Geocryology, 24(6): 693−700. DOI: 1000-0240(2002)06-0693-08.
doi: 1000-0240(2002)06-0693-08
Wang YS , Lou ZP , Sun CC , et al . , 2008. Ecological environment changes in Daya Bay, China, from 1982 to 2004. Marine Pollution Bulletin, 56(11): 1871−1879. DOI: 10.1016/j.marpolbul.2008.07.017.
doi: 10.1016/j.marpolbul.2008.07.017
Wang ZQ , Zhang YZ , Yang Y , et al . , 2016. Quantitative assess the driving forces on the grassland degradation in the Qinghai−Tibet Plateau, in China. Ecological Informatics, 33: 32−44. DOI: 10.1016/j.ecoinf.2016.03.006.
doi: 10.1016/j.ecoinf.2016.03.006
Waylen P , Southworth J , Gibbes C , et al . , 2014. Time series analysis of land cover change: Developing statistical tools to determine significance of land cover changes in persistence analyses. Remote Sensing, 6(5): 4473−4497. DOI: 10.3390/rs6054473.
doi: 10.3390/rs6054473
Xu G , Zhang HF , Chen BZ , et al . , 2014. Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011. Remote Sensing, 6(4): 3263−3283. DOI: 10.3390/rs6043263.
doi: 10.3390/rs6043263
Yao TD , Zhu LP , 2006. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 21(5): 459−464. DOI: 1001-8166(2006)05-0459-06.
doi: 1001-8166(2006)05-0459-06
Zhang L , Guo HD , Wang CZ , et al . , 2014. The long-term trends (1982−2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 72(6): 1827−1841. DOI: 10.1007/s12665-014-3092-1.
doi: 10.1007/s12665-014-3092-1
Zhang TT , Zeng SL , Gao Y , et al . , 2011. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 11(6): 1552−1562. DOI: 10.1016/ lind.2011.03. 025.
doi: 10.1016/ lind.2011.03. 025
Zhu JF , Zhou Y , Wang SX , et al . , 2015. Multicriteria decision analysis for monitoring ecosystem service function of the Three-River Headwaters region of the Qinghai-Tibet Plateau, China. Environmental Monitoring and Assessment, 187(6): 355. DOI: 10.1007/s10661-015-4523-5.
doi: 10.1007/s10661-015-4523-5
[1] Wei Cao,Yu Sheng,Ji Chen,JiChun Wu. Applying the AHP-FUZZY method to evaluate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau: a case study of Chaidaer-Muli Railway [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 447-457.
[2] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[3] YuZhong Yang, QingBai Wu, HuiJun Jin, Peng Zhang. δ18O,δD and d-excess signatures of ground ice in permafrost in the Beiluhe Basin on the Qinghai-Tibet Plateau,China [J]. Sciences in Cold and Arid Regions, 2017, 9(1): 38-45.
[4] XiaoLi Chang, HuiJun Jin, RuiXia He, LanZhi Lü, Stuart A. Harris. Evolution and changes of permafrost on the Qinghai-Tibet Plateau during the Late Quaternary [J]. Sciences in Cold and Arid Regions, 2017, 9(1): 1-19.
[5] JiaLi Xie, ChangZhen Yan, ZhiXiang Lu, Sen Li. Remote-sensing data reveals the response of soil erosion intensity to land use change in Loess Plateau,China [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 325-333.
[6] ShengBo Xie, JianJun Qu, Tao Wang. Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 187-195.
[7] GuangSheng Liu, GenXu Wang. Influence of short-term experimental warming on heat-water processes of the active layer in a swamp meadow ecosystem of the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 125-134.
[8] XiuJuan Zhang, ShiYin Liu, Li Liu. Moraine-dammed glacial lake changes during the recent 40 years in the Poiqu River Basin, Himalayas [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 654-665.
[9] JinChang Li, HaiXia Liu, Yong Liu, ZhiZhu Su, ZiQiang Du. Land use and land cover change processes in China's eastern Loess Plateau [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 722-729.
[10] JinChang Li, HaiXia Liu, ZhiZhu Su, Yong Liu, YongGang Yang. Characterizing changes in ecosystem service values in China's eastern Loess Plateau [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 272-281.
Full text



No Suggested Reading articles found!