Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (4): 267-282.doi: 10.3724/SP.J.1226.2019.00267.

Previous Articles     Next Articles

A paleo-hydrological simulation experiment and its verification in an inland basin

YuXin Zhang1,Yu Li1(),XinZhong Zhang1,ChengQi Zhang2,WangTing Ye1,Yuan Liu1   

  1. 1. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, Gansu 730000, China
    2. Key Laboratory of Ecohydrology of Inland River Basin/Gansu Hydrology and Water Resources Engineering Research Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-01-07 Accepted:2019-04-12 Online:2019-08-31 Published:2019-09-02
  • Contact: Yu Li E-mail:liyu@lzu.edu.cn

Abstract:

Hydrological circulation, as the most basic material cycle and active natural phenomenon on earth, exerts a significant influence on climate change. The mid-Holocene is an important period to better understand modern environmental change; however, little research has focused on its quantitative simulation of paleo-hydrological process. In this research, we first collected chronological evidence and sediment records from six Holocene sedimentary sections in the Shiyang River Basin to reconstruct the mid-Holocene environment and terminal paleo-lake area. Secondly, we comprehensively analyzed modern pollen combinations and their propagation characteristics in surface soil, air, river and lacustrine sediments in the Shiyang River Basin, and combined the pollen records, as well as quantitatively reconstructed the millennial-scale vegetation zones. Finally, based on the land-cover adjustment results during the mid-Holocene, we successfully used the Soil and Water Assessment Tool (SWAT) model, a modern distributed hydrological watershed model, to simulate mid-Holocene runoff in the basin. Results show that the reconstructed climate in the basin was warmer and moister than that in recent times. Vegetation types in the mid-Holocene mainly consisted of sub-alpine shrub distributed between 2,550 m and 2,750 m, forest at an elevation of 2,550-2,750 m, steppe at an elevation of 1,550-2,150 m and desert steppe below 1,550 m. The upstream, midstream, downstream and average annual runoff of the mid-Holocene in the basin were 16.76×108 m3, 22.86×108 m3, 9.00×108 m3 and 16.20×108 m3 respectively, compared to 15.61×108 m3 of modern annual runoff. Also, the area of terminal paleo-lake in the mid-Holocene was 628 km2. Thus, this study provides a new quantitative method for paleo-hydrological simulation.

Key words: SWAT model, inland basin, vegetation reconstruction, runoff simulation, mid-Holocene

Figure 1

The locations of sections and drainage system in the Shiyang River Basin"

Table 1

Elevation, mean annual temperature, precipitation and potential evaporation of three zones in the Shiyang River Basin"

Zones Elevation (m) Temperature (°C) Precipitation (mm) Evaporation (mm)
Qilian Mountains 2,000-5,000 -0.1 300-600 700-1,200
Wuwei sub-basin 1,500-2,000 7.5 150-300 1,200-2,000
Minqin sub-basin 1,300-1,500 8.1 <150 2,000-2,600

Table 2

The average percentage and transport characteristics of each pollen type in different media of six vegetation zones"

Group Pollen Media Vegetation zone types
1 2 3 4 5 6
Group One Betula Surface soil 0.86 1.92 2.33 2.09 2.43 1.40
River 10.15 4.81 3.32 2.40
Lake 0.33 0.19 0.45 0.64 1.06
Air 0.47 0.85 1.46
Picea Surface soil 63.80 70.49 60.56 50.09 23.69 4.53
River 23.95 26.30 14.67 15.20
Lake 78.46 66.18 66.76 46.52 44.27
Air 14.40 1.69 3.18
Sabina Surface soil 0.49 0.25 0.46 0.66 0.84 0.64
River 9.00 6.44 5.33 1.60
Lake 3.10 1.09 1.76 2.78 1.10
Air 1.73 1.69 1.16
Selaginella Surface soil 5.25 2.13 1.52 1.73 0.49 1.91
River 0.00 0.00 0.00 0.00
Lake 1.68 1.87 1.28 0.97 0.00
Air 0.00 0.00 0.00
Group Two Ephedra Surface soil 0.09 0.07 0.06 0.00 0.01 0.00
River 0.80 0.39 0.20 1.20
Lake 0.00 0.00 0.00 0.00 0.00
Air 0.87 6.78 1.69
Nitraria Surface soil 0.66 0.87 1.78 2.12 3.86 12.08
River 2.80 2.86 1.08 5.45
Lake 0.00 0.51 0.85 0.91 6.57
Air 8.97 3.39 32.47
Group Three Artemisia Surface soil 0.16 1.44 2.81 9.00 13.10 11.95
River 4.50 9.17 15.45 10.70
Lake 0.00 0.71 1.44 2.20 1.30
Air 6.79 11.02 1.31
Chenopodiaceae Surface soil 0.47 1.20 8.23 9.87 8.62 8.70
River 4.55 7.44 9.98 10.70
Lake 1.01 1.46 5.62 4.35 5.35
Air 13.66 12.71 5.25
Compositae Surface soil 11.79 4.88 9.57 9.62 10.10 11.41
River 2.45 3.43 8.78 13.10
Lake 3.04 0.00 0.00 0.00 0.00
Air 2.39 0.85 4.95
Gramineae Surface soil 5.73 4.22 7.44 16.03 23.38 25.72
River 10.8 13.89 17.15 17.20
Lake 4.27 1.73 6.12 14.51 3.34
Air 29.65 15.25 14.02
Pinus Surface soil 3.84 2.22 2.16 4.22 4.71 4.79
River 8.45 4.26 6.02 8.75
Lake 3.50 0.00 0.00 0.00 0.00
Air 1.89 0.85 6.76
Rhamnaceae Surface soil 0.47 0.89 1.64 0.92 0.69 0.24
River 1.25 1.06 0.32 0.00
Lake 3.68 0.92 0.17 0.25 0.39
Air 0.29 0.00 0.30

Table 3

Classification results of the modern pollen samples by discriminant analysis"

Vegetation type Predicted group membership
C D E F G H
C 5 (62.5%) 3 (37.5%) 0 0 0 0
D 0 25 (100%) 0 0 0 0
E 0 0 12 (100%) 0 0 0
F 0 0 1 (14.3%) 5 (71.4%) 1 (14.3%) 0
G 0 0 0 5 (45.5) 6 (54.5%) 0
H 0 0 0 0 0 12 (100%)

Table 4

Six pollen-climate groups based on HCA and MDS analysis"

Group Climatic features Pollen taxa
G1 Warm and dry Arte, Chen, Gram
G2 Dry Nitr, Ephe
G3 Warm Comp, Sabi, Sela
G4 Cold and humid Picea
G5 Cold Betula
G6 Slightly humid Rham, Pinus

Table 5

Mean annual precipitation from four meteorological stations in the Shiyang River Basin"

Station name Station number Elevation (m) Latitude Longitude Mean annual precipitation (mm)
Yongchang 52,674 1,976.9 38.23°N 101.97°E 198.77
Wuwei 52,679 1,531.5 38.08°N 102.92°E 168.45
Minqin 52,681 1,367.5 38.63°N 103.08°E 112.07
Wushaoling 52,787 3,045.1 37.20°N 102.87°E 396.80

Table 6

The pollen-precipitation index P and modern"

Vegetation type Elevation range (m) P Pr
C 3,200-3,600 11.45 /
D 3,000-3,200 29.93 383.69-416.09
E 2,000-2,600 27.55 221.69-318.89
F 1,500-2,000 6.07 140.69-221.69
G 1,300-1,500 2.96 108.29-140.69
H 1,100-1,300 1.69 75.89-108.29

Table 7

The restored terminal lake area of the Shiyang River drainage area"

Paleo-lake embankments Elevation (m) Age Dating method Lake area (km2)
D1 1,308 6,100 (5,700-6,500)

OSL

(a)

628
D2 6,500 (6,100-6,600)
D3 6,333 (6,279-6,404)

14C dating

(2σ) (cal. a B.P.)

D4 6,810 (6,534-7,156)

Figure 2

The terminal lake of the Shiyang River drainage basin during the mid-Holocene"

Figure 3

Geochemical proxies from upstream, midstream and downstream sections in the Shiyang River drainage basin"

Figure 4

Vegetation types of the Shiyang River Basin during the mid-Holocene"

Figure 5

The compared curve between the simulated month runoff and the measured month runoff during verification period"

Table 8

The average runoff in the Shiyang River Basin"

Region Runoff (m3/a) Average runoff of the whole watershed (m3/a) The range of runoff in 175 sub-basins (m3/a)
Upstream 16.76×108 16.20×108 6.90×107-154.14×108
Midstream 22.86×108
Downstream 9.00×108
Anwar T , Kravchinsky VA , Zhang R , et al ., 2017. Holocene climatic evolution at the Chinese Loess Plateau: testing sensitivity to the global warming-cooling events. Journal of Asian Earth Sciences, 15(166): 223-232. DOI: 10.1016/j.jseaes.2018.07.032 .
doi: 10.1016/j.jseaes.2018.07.032
Arnold JG , Srinivasan R , Muttiah RS , et al ., 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34(1): 73-89. DOI: 10.1111/j.1752-1688.1998.tb059 61.x .
doi: 10.1111/j.1752-1688.1998.tb059 61.x
Babich VV , Rudaya NA, Kalugin IA , et al ., 2015. Complex use of the geochemical features of bottom deposits and pollen records for paleoclimate reconstructions (with lake Teletskoe, Altai Republic, as an example). Contemporary Problems of Ecology, 8(4): 405-413. DOI: 10.1134/S199542 5515040022 .
doi: 10.1134/S199542 5515040022
Badejo AO, Gal JK , Hyun SM , et al ., 2014. Reconstruction of paleohydrological and paleoenvironmental changes using organic carbon and biomarker analyses of sediments from the northern East China Sea. Quaternary International, 10(344): 211-223. DOI: 10.1016/j.quaint.2014.06.035 .
doi: 10.1016/j.quaint.2014.06.035
Bai SY , Wang L , Shi JQ , et al ., 2013. Runoff simulation for Kaidu river basin based on SWAT model. Journal of Arid Land Resources and Environment, 27(9): 79-84. (in Chinese)
Barron EJ , Hay WW , Thompson S , 1989. The hydrologic cycle: A major variable during earth history. Palaeogeography Palaeoclimatology Palaeoecology, 3(75): 157-174. DOI: 10.1016/0921-8181(89)90001-5 .
doi: 10.1016/0921-8181(89)90001-5
Brahney J , Clague JJ , Edwards TWD , et al ., 2010. Late Holocene paleohydrology of Kluane Lake, Yukon Territory, Canada. Journal of Paleolimnology, 44(3): 873-885. DOI: 10.1007/s10933-010-9459-8 .
doi: 10.1007/s10933-010-9459-8
Busacca AJ , Begét JE , Markewich HW , et al ., 2003. Eolian sediments. Developments in Quaternary Sciences, Volume 1: 275-309. DOI: 10.1016/S1571-0866(03)01013-3 .
doi: 10.1016/S1571-0866(03)01013-3
Cao YZ , 1989. River-lake system and climatic change in east China. China Environmental Science, 9: 247-255. (in Chinese)
Cerlini PB , Meniconi S , Brunone B , 2017. Groundwater supply and climate change management by means of global atmospheric datasets. preliminary results. Procedia Engineering, 186C: 420-427. DOI: 10.1016/j.proeng.2017. 03.245 .
doi: 10.1016/j.proeng.2017. 03.245
Chaplot V , 2005. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology, 312(1-4): 207-222. DOI: 10.1016/j.jhydrol.2005.02.017. DOI: 10.1016/j.jhydrol.2005.02.017 .
doi: 10.1016/j.jhydrol.2005.02.017. DOI: 10.1016/j.jhydrol.2005.02.017
Chen FH , Cheng B , Zhao Y , et al ., 2006. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene, 16(5): 675-684. DOI: 10.1191/0959683606hl951rp .
doi: 10.1191/0959683606hl951rp
Clark ID , Jean-Charles F , 1990. Paleoclimatic reconstruction in Northern Oman based on carbonates from hyperalkaline groundwaters. Quaternary Research, 33(3): 320-336. DOI: 10.1016/0033-5894(90)90059-T .
doi: 10.1016/0033-5894(90)90059-T
Commandeur JJF , Heiser WJ , 1993. Mathematical Derivations in the Proximity Scaling (PROXSCAL) of Symmetric Data Matrices. Leiden: University of Leiden Department of Data Theory. Available online at: .
Eiler JM , 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30(25): 3575-3588. DOI: 10.1016/j.quascirev. 2011.09.001 .
doi: 10.1016/j.quascirev. 2011.09.001
Feng XQ , Zhang GX , Yin XG , 2010. Study on the hydrological response to climate change in Wuyur River Basin based on the SWAT Model. Progress in Geography, 29(7): 827-832. DOI: 10.3724/SP.J.1084.2010.00199 . (in Chinese)
doi: 10.3724/SP.J.1084.2010.00199
Guo XY , Chen FH , Shi Q , 2000. The application of GIS and water and energy budget to the study on the water rebuilding of paleo-lake—A case in Shiyang River Drainage. Scientia Geographica Sinica, 20: 422-426. (in Chinese)
Hu YH , Feng JJ , Wang MF , et al ., 2016. Influences of climate and land surface change on runoff and sediment in Jialing River Basin. Science of Soil and Water Conservation, 14(4): 75-83. (in Chinese)
Hua WJ , Chen HS , Zhu SG , et al ., 2013. Hotspots of the sensitivity of the land surface hydrological cycle to climate change. Chinese Science Bulletin, 58(30): 3682-3688. DOI: 10.1007/s11434-013-5846-7 .
doi: 10.1007/s11434-013-5846-7
Huo ZL , Feng SY , Kang SZ , et al ., 2008. Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China. Hydrological Processes, 22(16): 3155-3167. DOI: 10.1002/hyp.6900 .
doi: 10.1002/hyp.6900
Ingram BL , Sloan D , 1992. Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science, 255(5040): 68-72. DOI: 10.1126/science.255. 5040.68 .
doi: 10.1126/science.255. 5040.68
Jha MK , Arnold JG , Gassman PW , 2006. Water quality modeling for the Raccoon River Watershed using SWAT. Transactions of the ASAE, 50: 479-493.
Krom MD , Stanley JD , Cliff RA , et al ., 2002. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development. Geology, 30(1): 71-74. DOI: 10.1130/0091-7613(2002)030<0071:nrsfot>2.0.co;2 .
doi: 10.1130/0091-7613(2002)030<0071:nrsfot>2.0.co;2
Lettéron A , Fournier F , Hamon Y , et al ., 2017. Multi-proxy paleoenvironmental reconstruction of saline lake carbonates: Paleoclimatic and paleogeographic implications (Priabonian-Rupelian, Issirac Basin, SE France). Sediment. Sedimentary Geology, 358(1): 97-120. DOI: 10.1016/j.sedgeo.2017.07.006 .
doi: 10.1016/j.sedgeo.2017.07.006
Li CL , 2011. Runoff simulation in upstream of the Shiyang river basin using SWAT model. Dissertation, University of Lanzhou. DOI: 10.7666/d.Y2336419 .
doi: 10.7666/d.Y2336419
Li FP , Zhang YQ , Xu ZX , et al ., 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505(15): 188-201. DOI: 10.1016/j.jhydrol.2013.09.052 .
doi: 10.1016/j.jhydrol.2013.09.052
Li JJ , 1990. The patterns of environmental changes since Late Pleistocene in northwestern China. Quaternary Sciences, 3: 197-204. (in Chinese)
Li X , Li ZJ , Dong JR , 2009a. Application of SWAT model in runoff simulation in upper reaches of Yihe River. Journal of Hohai University, 37(1): 23-26. (in Chinese)
Li Y , Liu Y , 2017. Long-term reconstructions and simulations of the hydrological cycle in the inland rivers, arid China: A case study of the Shiyang River Drainage Basin. Advances in Earth Science, 32(7): 731-743. DOI: 10.11867/j.issn.1001-8166.2017.07.0731 . (in Chinese)
doi: 10.11867/j.issn.1001-8166.2017.07.0731
Li Y , Wang NA , Cheng HY , et al ., 2009b. Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas, 38(2): 349-361. DOI: 10.1111/j.1502-3885.2008.00063.x .
doi: 10.1111/j.1502-3885.2008.00063.x
Li Y , Wang NA , Li ZL , et al ., 2011. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin. Chinese Science Bulletin, 56(6): 535-546. DOI: 10.1007/s11434-010-4277-y .
doi: 10.1007/s11434-010-4277-y
Li Y , Wang NA , Zhang CQ , et al ., 2014a. Early Holocene environment at a key location of the northwest boundary of the Asian summer monsoon: a synthesis on chronologies of Zhuye Lake, Northwest China. Journal of Arid Land, 6(5): 511-528. DOI: 10.1007/s40333-014-0064-y .
doi: 10.1007/s40333-014-0064-y
Li Y , Wang Y , Zhang CQ , 2015. Interactions among millennial-scale geomorphic processes in different parts of a drainage basin, arid China. Physical Geography, 36(5): 367-394. DOI: 10.1080/02723646.2015.1050936 .
doi: 10.1080/02723646.2015.1050936
Li Y , Wang Y , Zhang CQ , et al ., 2014b. Changes of sedimentary facies and Holocene environments in the middle reaches of inland rivers, arid China: A case study of the Shiyang River. Geographical Research, 33(10): 1866-1880. DOI: 10.11821/dlyj201410008 . (in Chinese)
doi: 10.11821/dlyj201410008
Li Y , Zhang CQ , Li PC , et al ., 2017a. Basin-wide sediment grain-size numerical analysis and paleo-climate interpretation in the Shiyang River Drainage Basin. Geographical Analysis, 49: 309-327. DOI: 10.1111/gean.12123 .
doi: 10.1111/gean.12123
Li Y , Zhang CQ , Wang NA , et al ., 2017b. Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 10(13): 501-506. DOI: 10.1038/ngeo2972 .
doi: 10.1038/ngeo2972
Linsley RK , Crawford NH , 1960. Computation of a synthetic streamflow record on a digital computer. International Association of Scientific Hydrological, 5(3): 526-538.
Liu B , Jin HL , Sun Z , et al ., 2012. Geochemical evidences of dry climate in the mid-Holocene in Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Sciences in Cold and Arid Regions, 4(6): 472-483. DOI: 10.3724/SP.J.1226.2012. 00472 .
doi: 10.3724/SP.J.1226.2012. 00472
Liu XQ , Shen J , Wang SM , et al ., 2002. A 16000-year pollen record of Qinghai Lake and its paleo-climate and paleoenvironment. Chinese Science Bulletin, 47(22): 1931-1936. DOI: 10.1360/02tb9421 .
doi: 10.1360/02tb9421
Liu Y , Li Y , 2017. Quantitative reconstruction of precipitation and runoff during MIS 5a, MIS 3a, and Holocene, arid China. Theoretical and Applied Climatology, 130: 747-754. DOI: 10.1007/s00704-016-1921-8 .
doi: 10.1007/s00704-016-1921-8
Long H , Wang NA , Li Y , et al ., 2007. Mid-Holocene climate variations from lake records of the east Asian monsoon margin: a multi-proxy and geomorphological study. Quaternary Sciences, 27(3): 371-381. DOI: 10.1016/S1872-5791(07)60044-X . (in Chinese)
doi: 10.1016/S1872-5791(07)60044-X
Luoto TP , Ojala AEK , Arppe L , et al ., 2018. Synchronized proxy-based temperature reconstructions reveal mid-to late Holocene climate oscillations in High Arctic Svalbard. Journal of Quaternary Science, 33(1): 93-99. DOI: 10. 1002/jqs.3001 .
doi: 10. 1002/jqs.3001
Ma YZ , Liu KB , Feng ZD , et al ., 2008a. A survey of modern pollen and vegetation along a south-north transect in Mongolia. Journal of Biogeography, 35(8): 1512-1532. DOI: 10.1111/j.1365-2699.2007.01871.x .
doi: 10.1111/j.1365-2699.2007.01871.x
Ma ZM , Kang SZ , Zhang L , et al ., 2008b. Analysis of impacts of climate variability and human activity on stream flow for a river basin in arid region of northwest China. Journal of Hydrology, 352(3-4): 239-249. DOI: 10.1016/j.jhydrol.2007.12.022 .
doi: 10.1016/j.jhydrol.2007.12.022
Meyers PA , 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289. DOI: 10.1016/S0146-6380(02)00168-7 .
doi: 10.1016/S0146-6380(02)00168-7
Meyers PA , Ishiwatari R , 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7): 867-900. DOI: 10.1016/0146-6380(93)90100-P .
doi: 10.1016/0146-6380(93)90100-P
Mischke S , Lai ZP , Long H , et al ., 2016. Holocene climate and landscape change in the northeastern Tibetan Plateau foreland inferred from the Zhuyeze Lake record. Holocene, 26: 643-654.
Neitsch SL , Arnold JG , Kiniry JR , et al ., 2011. Soil and Water Assessment Tool: Theoretical Documentation, version 2009. Zhengzhou: Yellow River Conservancy Press.
Ohmura A , Wild M , 2002. Is the hydrological cycle accelerating? Science298(5597): 1345-1346. DOI: 10.1126/science.1078972 .
doi: 10.1126/science.1078972
Qin BQ , 1997. Estimates of paleo-hydrological parameters and water balance of Qinghai lake with energy-water balance model. Oceanologia Et Limnologia Sinica, 28(6): 611-616. (in Chinese)
Reuter J , Buenning N , Yoshimura K , 2018. Evaluating hydrological influences on mid-latitude δ18Op in the Middle East. Climate Dynamics, 50(9-10): 3153-3170. DOI: 10.1007/s00382-017-3798-3 .
doi: 10.1007/s00382-017-3798-3
Shi YF , Kong ZC , Wang SM , et al ., 1994. Climates and environments of the Holocene Mega Thermal Maximum in China. Science in China, 37(4): 481-481. DOI: 10.1007/BF00699859 .
doi: 10.1007/BF00699859
Song ZF , Zeng JJ , Jin YZ , et al ., 2016. Distributed simulation of monthly runoff using SWAT and SUFI-2 Algorithm in Shiyang River Basin. Bulletin of Soil and Water Conservation, 36(5): 172-177. DOI: 10.13961/j.cnki.stbctb.2016. 05.035 . (in Chinese)
doi: 10.13961/j.cnki.stbctb.2016. 05.035
Sun DH , Shaw J , An ZS , et al ., 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 72 Ma Late Cenozoic Eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters, 25(1): 85-88. DOI: 10.1029/97GL03353 .
doi: 10.1029/97GL03353
Sun W , 2013. Runoff simulation of the Shiyang River basin using SWAT model. Dissertation, University of Lanzhou Technology.
Tong L , Kang SZ , Zhang L , 2007. Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China. Agricultural Water Management, 87(3): 241-250. DOI: 10.1016/j.agwat. 2006.07.013 .
doi: 10.1016/j.agwat. 2006.07.013
Törnqvist R , Jarsjö J , Pietroń J , et al ., 2014. Evolution of the hydro-climate system in the Lake Baikal basin. Journal of Hydrology, 519(27): 1953-1962. DOI: 10.1016/j.jhydrol. 2014.09.074 .
doi: 10.1016/j.jhydrol. 2014.09.074
Vachula RS , Chipman ML , Hu FS , 2017. Holocene climatic change in the Alaskan Arctic as inferred from oxygen-isotope and lake-sediment analyses at Wahoo Lake. Holocene, 27: 1631-1644.
Vance RE , Clague JJ , Mathewes RW , 1993. Holocene paleohydrology of a hypersaline lake in southeastern Alberta. Journal of Paleolimnology, 8(2): 103-120. DOI: 10.1007/BF00119784 .
doi: 10.1007/BF00119784
Wang HY , 1999. Reconstructing Holocene palaeorunoff regimes from palaeoclimate: An initial attempt to apply a climatological approach to palaeohydrology for the north China plain. Chinese Geographical Science, 9(3): 250-257. DOI: 10.1007/s11769-999-0051-y .
doi: 10.1007/s11769-999-0051-y
Wang Y , Li Y , Zhang CQ , 2016. Holocene millennial-scale erosion and deposition processes in the middle reaches of inland drainage basins, arid China. Environmental Earth Sciences, 75(6): 1-15. DOI: 10.1007/s12665-016-5338-6 .
doi: 10.1007/s12665-016-5338-6
Wang ZG , Liu CM , Huang YB , 2003. The theory of SWAT model and its application in Heihe Basin. Progress in Geography, 22(1): 79-86. DOI: 10.11820/dlkxjz.2003.01.010 . (in Chinese)
doi: 10.11820/dlkxjz.2003.01.010
Wang ZG , Liu CM , Zuo QT , et al ., 2002. Methods of constructing distributed Hydrological Model based on DEM. Progress in Geography, 21(5): 430-439. DOI: 10.1080/12265080208422884 . (in Chinese)
doi: 10.1080/12265080208422884
Winchell M , Srinivasan R , Luzio MD , et al ., 2011. ArcSWAT Interface for SWAT 2009 User' Guide. Zhengzhou, Yellow River Conservancy Press.
Wu HQ , Liu SY , Huang Q , et al ., 2015. SWAT model based runoff simulation of Datong river basin. Journal of Northwest A & F University (Natural Science Edition), 43(9): 210-216. DOI: 10.13207/j.cnki.jnwafu.2015.09.030 . (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2015.09.030
Xia ZH , Zhou YH , Xu HM , 2010. Water resources responses to climate changes in Hanjiang river basin based on SWAT model. Resources and Environment in the Yangtze Basin, 19(2): 158-163. (in Chinese)
Xiao XY , Haberle SG , Shen J , et al ., 2014. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quaternary Science Reviews, 86(15): 35-48. DOI: 10.1016/j.quascirev.2013.12.023 .
doi: 10.1016/j.quascirev.2013.12.023
Xue XY , Wang NA , 2008. Paleoclimatic estimate during the special phases of Holocene in Shiyang River Drainage. Journal of Arid Land Resources and Environment, 22(12): 103-107. (in Chinese)
Yaghoubi B , Hosseini SA , Nazif S , 2016. Evaluation of climate change impact on runoff: A case study. Indian Journal of Science and Technology, 9(7): 1-7. DOI: 10.17485/ijst/2016/v9i7/87739 .
doi: 10.17485/ijst/2016/v9i7/87739
Yang DW , Li C , Ni GH , et al ., 2004. Application of a distributed hydrological model to the Yellow River Basin. Acta Geographica Sinica, 59(1): 143-154. DOI: 10.3321/j.issn:0375-5444.2004.01.018 . (in Chinese)
doi: 10.3321/j.issn:0375-5444.2004.01.018
Yang GL , Hao FH , Liu CM , et al ., 2003. The study on baseflow estimation and assessment in SWAT—Luohe Basin as an example. Progress in Geography, 22(5): 1256-1264. DOI: 10.1002/ppap.201400126 . (in Chinese)
doi: 10.1002/ppap.201400126
Yao SH , Zhu ZY , Zhang SW , et al ., 2013. Using SWAT model to simulate the discharge of the river Shandianhe in Inner Mongolia. Journal of Arid Land Resources and Environment, 27(1): 175-180. (in Chinese)
Yao ZJ , Liu ZF , Huang HQ , et al ., 2014. Statistical estimation of the impacts of glaciers and climate change on river runoff in the headwaters of the Yangtze River. Quaternary International, 336(26): 89-97. DOI: 10.1016/j.quaint.2013. 04.026 .
doi: 10.1016/j.quaint.2013. 04.026
Zhang AJ , Zhang C , Fu GB , et al ., 2012a. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resources Management, 26(8): 2199-2217. DOI: 10.1007/s11269-012-0010-8 .
doi: 10.1007/s11269-012-0010-8
Zhang CQ , 2017. Holocene environmental change and carbon cycle in Endorheic Basins—A case study in the Shiyang River Drainage Basin. Dissertation, University of Lanzhou.
Zhang CQ , Li Y , 2016. Verification of watershed vegetation restoration policies, arid China. Scientific Reports, 6: 1-5. DOI: 10.1038/srep30740 .
doi: 10.1038/srep30740
Zhang HC , Ma YZ , Wünnemann B , et al ., 2000. A Holocene climatic record from arid northwestern China. Palaeogeography Palaeoclimatology Palaeoecology, 162(3): 389-401. DOI: 10.1016/S0031-0182(00)00139-5 .
doi: 10.1016/S0031-0182(00)00139-5
Zhang JR , Jia YL , Lai ZP , et al ., 2011. Holocene evolution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating. Holocene, 21: 1261-1268. DOI: 10.1177/0959683611405232 .
doi: 10.1177/0959683611405232
Zhang LY , Pang B , Ma JH , et al ., 2012b. SWAT simulation of runoff in the Gulang river basin. Journal of Beijing Normal University, 48(5): 520-523. (in Chinese)
Zhang XS , Hao FH , Zhang JY , 2004. Study on effect of uncertainty in spatial distribution of rainfall on runoff and sediment modeling. Research of Soil and Water Conservation, 11(1): 9-12. DOI: 10.1300/J064v24n01_09 . (in Chinese)
doi: 10.1300/J064v24n01_09
Zhao Q , Li XM , Wang NA , 2007. Water balance of Shiyang River Drainage during 6700-5800 yr BP. Journal of Arid Land Resources and Environment, 21(6): 84-91. DOI: 10.1016/S1872-5791(07)60044-X . (in Chinese)
doi: 10.1016/S1872-5791(07)60044-X
Zhu Y , Chen FH , Cheng B , et al ., 2002. Pollen assemblage features of modern water samples from the Shiyang River drainage, arid region of China. Acta Botanica Sinica, 44(3): 367-372. DOI: 10.1127/0340-269X/2002/0032-0129 .
doi: 10.1127/0340-269X/2002/0032-0129
Zhu Y , Chen FH , Liu HJ , et al ., 2003. Preliminary studies on the air-borne pollen, in the Shiyang river drainage, arid China. Journal of Lanzhou University, 39(2): 100-105. DOI: 10.1023/A:1022289509702 . (in Chinese)
doi: 10.1023/A:1022289509702
[1] JianPing Qian,JianPing Zhao,Yi Liu,XinLong Feng,DongWei Gui. Simulation and prediction of monthly accumulated runoff, based on several neural network models under poor data availability [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 468-481.
[2] Tanveer Abbas, Ghulam Nabi, Muhammad W. Boota, Fiaz Hussain, Muhammad I. Azam, HuiJun Jin, Muhammad Faisal. Uncertainty analysis of runoff and sedimentation in a forested watershed using sequential uncertainty fitting method [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 297-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!