Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (3): 184-193.doi: 10.3724/SP.J.1226.2019.00184.

Previous Articles    

Variation and relationship between soil moisture and environmental factors in the source region of the Yangtze River from 2005 to 2016

LingLing Song1,ZongJie Li2,Qing Tian1(),LieFu Wang4,Jing He1,RuiFeng Yuan3,Juan Gui3,BaiJuan Zhang3,YueMin Lv3   

  1. 1. College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China
    2. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth Environmental Science, Lanzhou University, Lanzhou, Gansu 730000, China
    3. Key Laboratory of Ecohydrology of Inland River Basin Gansu/Hydrology and Water Resources Engineering Research Center, Cold and Arid Region Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    4. Tuotuohe Meteorological Station, Geermu, Qinghai 816099, China
  • Received:2018-05-29 Accepted:2018-11-19 Online:2019-06-30 Published:2019-07-01
  • Contact: Qing Tian E-mail:tianqing622@126.com.

Abstract:

This study analyzed soil moisture, soil erosion, and vegetation in the source region of the Yangtze River from 2005 to 2016. We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016. The surface soil moisture was severely affected by seasonal changes in the source region of the Yangtze River, especially in the soil from 0 to 40 cm. However, seasonal variation of soil moisture deeper than 40 cm was different from that in the upper layer. Soil moisture below 40 cm wasn't affected by the seasonal variation. Soil moisture from 0 to 50 cm and the average thickness of wind deposition showed a positive correlation in the study area from 2005 to 2016. For environmental protection in the source region of the Yangtze River, wind deposition played a role in water retention. Similarly, a positive correlation also existed between the average thickness of wind erosion and soil moisture. Deep-soil moisture was the key factor for vegetation structure on the Qinghai-Tibet Plateau. The results are also helpful for further understanding the variation of soil moisture on the Tibetan Plateau and providing a scientific basis for effectively protecting and controlling the ecological environment in the future.

Key words: soil moisture, soil erosion, vegetation, source region of the Yangtze River

Figure 1

Map showing the source region of the Yangtze River"

Figure 2

Annual variation of soil moisture in the study area"

Figure 3

Seasonal variation of soil moisture in the study area"

Figure 4

The relationship between soil moisture and the average thickness of wind deposition"

Figure 5

The relationship between soil moisture and the average thickness of wind erosion"

Figure 6

The relationship between soil moisture and forage grass height"

Figure 7

The relationship between soil moisture and vegetation coverage"

Figure 8

The relationship between soil moisture and the yield of forage grass"

Bubier JL , Frolking S , Crill PM , et al ., 1999. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. Journal of Geophysical Research: Atmospheres, 104(D22): 27683-27692. DOI: org/10.1029/1999JD900219 .
doi: org/10.1029/1999JD900219
Chen Y , Yang K , Qin J , et al ., 2013. Evaluation of AMSR‐E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10): 4466-4475. DOI: org/10.1002/jgrd.50301 .
doi: org/10.1002/jgrd.50301
Cheng GD , Zhao L , 2000. The problems in the development of frozen soil in the Tibetan Plateau. Quaternary Research, 20(6): 521-531. DOI: 10.3969/j.issn.1672-3198.2015.21.109 . (in Chinese)
doi: 10.3969/j.issn.1672-3198.2015.21.109
Cui Y , Long D , Hong Y , et al ., 2016. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543: 242-254. DOI: org/10.1016/j.jhydrol.2016. 10.005 .
doi: org/10.1016/j.jhydrol.2016. 10.005
Fang Y , Qin D , Ding Y , 2011. Frozen soil change and adaptation of animal husbandry: a case of the source regions of Yangtze and Yellow Rivers. Environmental Science & Policy, 14(5): 555-568. DOI: org/10.1016/j.envsci.2011.03.012 .
doi: org/10.1016/j.envsci.2011.03.012
Fu W , Zhao JQ , Du GZ , 2012. Qinhai-Tibet Plateau alpine grassland ecological compensation mechanism research. Ecological economy, 168(10): 153-157. DOI: 10.3969/j.issn.1671-4407.2012.10.032 . (in Chinese)
doi: 10.3969/j.issn.1671-4407.2012.10.032
Gao Q , Guo Y , Xu H , et al ., 2016. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 554: 34-41. DOI: org/10.1016/j.scitotenv.2016.02.131 .
doi: org/10.1016/j.scitotenv.2016.02.131
Hayashi S , Murakami S , Xu KQ , et al ., 2015. Simulation of the reduction of runoff and sediment load resulting from the Gain for Green Program in the Jialingjiang catchment, upper region of the Yangtze River. Journal of Environmental Management, 149: 126-137. DOI: org/10.1016/j.jenvman.2014.10.004 .
doi: org/10.1016/j.jenvman.2014.10.004
Hu P , Liu Q , Heslop D , et al ., 2015. Soil moisture balance and magnetic enhancement in loess-paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau. Earth and Planetary Science Letters, 409: 120-132. DOI: org/10. 10 16/j.epsl.2014.10.035 .
doi: org/10. 10 16/j.epsl.2014.10.035
Li H , Shen W , Zou C , et al ., 2013. Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau. Journal of Hydrology, 479: 215-225. DOI: org/10. 1016/j.jhydrol. 2012.12.002 .
doi: org/10. 1016/j.jhydrol. 2012.12.002
Li L , Dai S , Shen HY , et al ., 2012. The response and trend prediction for surface water resources to climate change in the source region of the Yangtze River. Acta Geographica Sinica, 67(7): 941-950. DOI:10.11821/xb201207007 . (in Chinese)
doi: 10.11821/xb201207007
Li Q , Lu H , Shen C , et al ., 2016. Vegetation successions in response to Holocene climate changes in the central Tibetan Plateau. Journal of Arid Environments, 125: 136-144. DOI: org/10.1016/j.jaridenv.2015.07.010 .
doi: org/10.1016/j.jaridenv.2015.07.010
Li ZX , Qi F , Xiao YG , et al ., 2015. The evolution and environmental significance of glaciochemistry during the ablation period in the north of Tibetan Plateau, China. Quaternary International, 374: 93-109. DOI: org/10.1016/j.quaint. 2014.06.071 .
doi: org/10.1016/j.quaint. 2014.06.071
Liu Q , Du JY , Shi JC , et al ., 2013. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Science China Earth Sciences, 56(12): 2173-2185. DOI: 10.1007/s11430-013-4700-8 .
doi: 10.1007/s11430-013-4700-8
Ma Y , Wang XQ , Zhang B , et al ., 2014. Effects from wind erosion and wind deposition to water and photosynthesis of camel thorn on the southern margin of the Taklimakan desert. Chinese Journal of plant ecology, 38(5): 491-498. DOI: 10.3724/SP.J.1258.2014.00045 . (in Chinese)
doi: 10.3724/SP.J.1258.2014.00045
McGuire AD , Wirth C , Apps M , et al ., 2002. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. Journal of Vegetation Science, 13(3): 301-314. DOI: org/10.1111/j.1654-1103. 2002.tb02055.x .
doi: org/10.1111/j.1654-1103. 2002.tb02055.x
Qi DM , Li YQ , Chen YR , et al ., 2015. The variation characteristics and causes analysis of the runoff in the source region of the Yangtze River under the background of climate change. Journal of Glaclology and Geoccryology, 37(4): 1075-1086. DOI: 10.7522/j.issn.1000-0240.2015.0120 . (in Chinese)
doi: 10.7522/j.issn.1000-0240.2015.0120
Su Z , De RP , Wen J , et al ., 2013. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(11): 5304-5318. DOI: org/10.1002/jgrd.50468 .
doi: org/10.1002/jgrd.50468
Sun S , Chen B , Chen J , et al ., 2016. Comparison of remotely-sensed and modeled soil moisture using CLM4.0 with in situ measurements in the central Tibetan Plateau area. Cold Regions Science and Technology, 129: 31-44. DOI:org/10. 1016/j.coldregions.2016.06.005 .
doi: org/10. 1016/j.coldregions.2016.06.005
Walker DA , Jia GJ , Epstein HE, et al ., 2003. Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: Synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes, 14(2): 103-123. DOI: org/10.1002/ppp.452 .
doi: org/10.1002/ppp.452
Wang K , Wang P , Liu J , et al ., 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau. Boundary-Layer Meteorology, 116(1): 117-129. DOI: 10.1007/s10546-004-7403-z .
doi: 10.1007/s10546-004-7403-z
Wen J , Su Z , 2003. The estimation of soil moisture from ERS wind scatterometer data over the Tibetan plateau. Physics and Chemistry of the Earth, Parts A/B/C, 28(1): 53-61. DOI: org/10.1016/S1474-7065(03)00007-X .
doi: org/10.1016/S1474-7065(03)00007-X
Wu, QB, Shen YP , Shi B , 2003. The relationship between frozen soil, hydrothermal process and ecological environment for cold region in the Qinghai Tibet Plateau. Journal of Glaciology and Geocryology, 25(3): 250-255. DOI: 10.3969/j.issn.1000-0240.2003.03.002 . (in Chinese)
doi: 10.3969/j.issn.1000-0240.2003.03.002
Yang Z , Ouyang H , Zhang X , 2011. Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environmental Earth Sciences, 63(3): 477-488. DOI: 10.1007/s12665-010-0716-y . (in Chinese)
doi: 10.1007/s12665-010-0716-y
Yu G , Brierley G , Huang HQ , et al ., 2014. An environmental gradient of vegetative controls upon channel planform in the source region of the Yangtze and Yellow Rivers. Catena, 119: 143-153. DOI: org/10.1016/j.catena.2014.02.010 .
doi: org/10.1016/j.catena.2014.02.010
Zeng J , Li Z , Chen Q , et al ., 2015. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 163: 91-110. DOI: org/10.1016/j.rse. 2015. 03.008 .
doi: org/10.1016/j.rse. 2015. 03.008
Zhang Y , Dong S , Gao Q , et al ., 2016. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of the Total Environment, 562: 353-363. DOI: org/10.1016/j.scitotenv.2016.03.221 .
doi: org/10.1016/j.scitotenv.2016.03.221
Zhao L , Yang K , Qin J , et al ., 2014. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment, 152: 345-355. DOI: org/10. 1016/j.rse.2014.07.005 .
doi: org/10. 1016/j.rse.2014.07.005
Zhu X , Shao M , Zeng C , et al ., 2016. Application of cosmic-ray neutron sensing to monitor soil water content in an alpine meadow ecosystem on the northern Tibetan Plateau. Journal of Hydrology, 536: 247-254. DOI: org/10.1016/j.jhydrol.2016.02.038 .
doi: org/10.1016/j.jhydrol.2016.02.038
[1] HongWei Wang,Yuan Qi,ChunLin Huang,XiaoYing Li,XiaoHong Deng,JinLong Zhang. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 150-158.
[2] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[3] RuiXia He, HuiJun Jin, XiaoLi Chang, YongPing Wang, LiZhong Wang. Freeze-thaw processes of active-layer soils in the Nanweng'he River National Natural Reserve in the Da Xing'anling Mountains, northern Northeast China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 104-113.
[4] JunZhan Wang, JianJun Qu, LiHai Tan, KeCun Zhang. A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 145-150.
[5] HongYan Bao, Kai Yang, ChengHai Wang. Characteristics of GLDAS soil-moisture data on the Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 127-141.
[6] JiaLi Xie, ChangZhen Yan, ZhiXiang Lu, Sen Li. Remote-sensing data reveals the response of soil erosion intensity to land use change in Loess Plateau,China [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 325-333.
[7] Yang Zhao, Peng Zhang, YiGang Hu, Lei Huang. Effects of artificial vegetation arrangement and structure on the colonization and development of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 343-349.
[8] JunJun Yang, ZhiBin He, WeiJun Zhao, Jun Du, LongFei Chen, Xi Zhu. Assessing artificial neural networks coupled with wavelet analysis for multi-layer soil moisture dynamics prediction [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 116-124.
[9] GuangSheng Liu, GenXu Wang. Influence of short-term experimental warming on heat-water processes of the active layer in a swamp meadow ecosystem of the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 125-134.
[10] Olof Andrén, XueYong Zhao, Thomas Kätterer, Martin Bolinder. Agroecosystem research in Uppsala, Sweden and Naiman, China:Some observations 1987-2014 [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 1-8.
[11] Lei Huang, Peng Zhang, YiGang Hu, Yang Zhao. Soil water deficit and vegetation restoration in the refuse dumps of the Heidaigou open-pit coal mine, Inner Mongolia, China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 22-35.
[12] ChaoFeng Fu, JingBo Zhao, FanMin Mei, TianJie Shao, Jun Zuo. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 675-686.
[13] Pei Liu, PeiJun Du, RuiMei Han, Chao Ma, YouFeng Zou. Modeling spatial and temporal change of soil erosion based on multi-temporal remotely sensed data [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 702-708.
[14] Emmanuel F. Isola, Olusanya A. Olatunji, Akinjide M. Afolabi, Ademayowa A. Omodara. Heavy metal accumulation in the above-ground vegetation and soil around an iron smelting factory in Ile-Ife, southwestern Nigeria [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!