Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (2): 127-141.doi: 10.3724/SP.J.1226.2017.00127

Previous Articles    

Characteristics of GLDAS soil-moisture data on the Tibet Plateau

HongYan Bao, Kai Yang, ChengHai Wang   

  1. Key Laboratory of Arid Climate Change and Disaster Reduction of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
  • Received:2016-09-07 Revised:2017-02-13 Published:2018-11-23
  • Contact: ChengHai Wang, College of Atmospheric Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Tel: +86-931-8914115; Fax: 86-931-8914115; E-mail:
  • Supported by:
    This work is supported by the National Science Foundation of China (Nos. 91437217, 41275061, 41471034, and 41661144017) and the China National Basic Research Program (2013CBA01800).

Abstract: In this paper, the applicability of soil-moisture (SM) datasets of GLDAS (Global Land Data Assimilation System) in an alpine region (Tibet Plateau, TP) is investigated. The relations and discrepancies between the GLDAS-NOAH SM (0~10 cm) and the observations are compared; the possible reasons for errors over the TP are explored. The results show that GLDAS SM biases mainly show up in errors of values in the nonfrozen period (April to October) and changes of SM along with the temperature, especially during the freezing-thawing process in the frozen period (November to March). The biases of GLDAS SM in the nonfrozen period are mainly caused by the GLDAS precipitation-forcing data. The errors of GLDAS SM in the frozen period are speculated to be induced by the freeze-thaw parameterization scheme in the land-surface model.

Key words: soil moisture, GLDAS, Tibet Plateau, error analysis

An ZS, Kutzbach JE, Prell WL, et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411(6833): 62- 66. DOI: 10.1038/35075035.
Bengtsson L, 2010. The global atmospheric water cycle. Environmental Research Letters, 5(2): 025202. DOI: 10.1088/1748-9 326/5/2/025002.
Chahine MT, 1992. The hydrological cycle and its influence on climate. Nature, 359(6394): 373- 380. DOI: 10.1038/359373a0.
Chen BL, 2014. A study of land surface energy and water in soil freezing and thawing process and impact on regional climate of the TP.
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. (in Chinese)
Chen SJ, Guan XD, Huang JP, et al., 2013. Analysis of response of soil moisture to climate change in semi-arid Loess Plateau in China based on GLDAS data. Journal of Arid Meteorology, 31(4):641- 649.
Chen Y, Yang K, Qin J, et al., 2013. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10): 4466- 4475. DOI: 10.1002/jgrd.50301.
Dirmeyer PA, Schlosser CA, Brubaker KL, 2009. Precipitation, recycling, and land memory: An integrated analysis. Journal of Hydrometeorology, 10(1): 278- 288. DOI: 10.1175/2008JHM1016.1.
Dominguez F, Kumar P, Liang XZ, et al., 2006. Impact of atmospheric moisture storage on precipitation recycling. Journal of Climate, 19(8): 1513- 1530. DOI: 10.1175/JCLI3691.1.
Fu X, Wang B, 2014. Reliability evaluation of soil moisture and land surface temperature simulated by Global Land Data Assimilation System (GLDAS) using AMSR-E data. In: SPIE Asia Pacific Remote Sensing. International Society for Optics and Photonics, 92650O-92650O-5.
Ghazanfari S, Pande S, Hashemy M, et al., 2013. Diagnosis of GLDAS LSM based aridity index and dryland identification. Journal of Environmental Management, 119: 162- 172. DOI: 10.1016/j.jenvman.2013.01.040.
Gong YF, Ji LR, Duan TY, 2004. Precipitation character of rainy season of Qinghai-Xizang Plateau and onset over East Asia Monsoon.Plateau Meteorology, 23(3): 313- 322.
Guo WD, Ma ZG, Wang HJ, 2007. Soil moisture—An important factor of seasonal precipitation prediction and its application. Climatic and Environmental Research, 12(1): 20- 28.
Guo YP, Wang CH, 2014. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. Journal of Hydrology, 517(2): 826- 835. DOI: 10.1016/j.jhydrol.2014.06.006.
Guo ZR, Xing EC, Nie ZL, et al., 2002. Analysis on the characteristics of soil moisture transfer during freezing and thawing period. Advances in Water Science, 13(3): 298- 302.
He H, Mcginnis JW, Song Z, et al., 1987. Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Monthly Weather Review, 115(9): 1966- 1995.
Huang JP, Yi YH, 1991. Inversion of a nonlinear dynamical model from the observation. Science in China (Series B), 34(10):1246- 1246.
Ji L, Senay GB, Verdin JP, 2014. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products.AGU Fall Meeting Abstracts, 16(6): 150731131106004. DOI:10.1175/JHM-D-14-0230.1.
Koster RD, Dirmeyer PA, Hahmann AN, et al., 2002. Comparing the degree of land-atmosphere interaction in four atmospheric general circulation models. Journal of Hydrometeorology, 3(3): 363- 375.DOI: 10.1175/1525-7541(2002)003 < 0363:CTDOLA > 2.0.CO;2.
Li Y, Liu X, Li WP, 2012. Numerical simulation of land surface process at different underlying surfaces in Tibetan Plateau. Plateau Meteorology, 31(3): 581- 591.
Liu C, Yu Y, Xie J, et al., 2015. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau. Plateau Meteorology, 34: 653- 665.
Liu QC, 2006. The relationship between East Asia winter monsoon and the temperature and precipitation over Tibet Plateau. Qinghai Meteorology, 3: 2- 5.
Liu XD, Luo SW, Qian YF, 1989. Numerical simulations of influences of different thermal characteristics on ground surface of Tibet Plateau on the over SE-Aisia. Plateau Meteorology, 8(3):205- 216.
Ma ZG, Fu ZB, Xie L, et al., 2001. Some problems the study on the relationship between soil moisture and climatic change. Advance in Earth Sciences, 16(4): 563- 566.
Ma ZG, Wei HL, Fu ZB, 2015. Progress in the research in the relationship between soil moisture and climate change. Advance in Earth Sciences, 14(3): 88- 94.
Namias J, 1958. Persistence of mid-tropospheric circulation between adjacent months and seasons. Rossby Memorial Volume, Rockefeller Institute Press and Oxford University Press, pp. 240- 248.
Namias J, 1963. Surface-atmosphere interactions as fundamental causes of droughts and other climatic fluctuations. Arid Zone Research, 20: 345- 359.
Park J, Choi M, 2014. Estimation of evapotranspiration from groundbased meteorological data and global land data assimilation system(GLDAS). Stochastic Environmental Research and Risk Assessment, 29(8): 1963- 1992. DOI: 10.1007/s00477-014-1004-2.
Rodell M, Houser PR, Jambor U, et al., 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381- 394.
Rowntree PR, Bolton JA, 1983. Simulation of the atmospheric response to soil moisture anomalies over Europe. Quarterly Journal of the Royal Meteorological Society, 109(461): 501- 526.
Seneviratne SI, Corti T, Davin EL, et al., 2010. Investigatingsoil moisture-climate interactions in a changing climate: A review. EarthScience Reviews, 99(3- 4): 125- 161. DOI: 10.1016/j.earscirev.2010.02.004.
Shukla J, Mintz Y, 1982. Influence of land-surface evapotranspiration on the earth's climate. Science, 215(4539): 1498- 1501.
Spennemann PC, Rivera JA, Saulo AC, et al., 2015. A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America. Journal of Hydrometeorology, 16(1): 158- 171. DOI: 10.1175/JHM-D-13-0190.1.
Walker J, Rowntree PR, 1977. The effect of soil moisture on circulation and rainfall in a tropical model. Quarterly Journal of the Royal Meteorological Society, 103(435): 29- 46.
Wang CH, Dong WJ, Wei ZG, 2001. The feature of seasonal frozen soil in Qinghai-Tibet Plateau. Acta Geographica Sinica, 56(5):523- 531.
Wang CH, Guo YP, 2012. Precipitable water conversion rates over the QinghaiXizang (Tibet) Plateau: changing characteristics with global warming. Hydrological Processes, 26(10): 1509- 1516. DOI:10.1002/hyp.8246.
Wang CH, Huang B, Pan BT, 2010. Simulating and analyzing energy balance in Qilian Mountains. Journal of Glaciology and Geocryology, 32(1): 78- 82.
Wang CH, Li Y, Wang Y, 2015. Impacts of interdecadal variability of circulation and winter monsoon on winter snowfall over the Tibetan Plateau. Climatic and Environmental Research, 20(4):421- 432.
Wang CH, Shang DC, 2007. Effect of the variation of the soil temperature and moisture in the transition from dry season to wet season over northern Tibet Pleteau. Plateau Meteorology, 26(4): 677- 685.
Wang CH, Shi R, Zuo HC, 2008. Analysis on simulation of characteristic of land surface in western Qinghai-Xizang Plateau during frozen and thawing. Plateau Meteorology, 27(2): 239- 248.
Wang L, Wen J, Wei ZG, et al., 2008. Soil moisture over the west of northwest China and its response to climate. Plateau Meteorology, 27(6): 1257- 1266.
Wang R, Li WP, Liu X, et al., 2009. Simulation of the impacts of spring soil moisture over the Tibetan Plateau on summer precipitation in China. Plateau Meteorology, 28(6): 1233- 1241.
Wang W, Wang XJ, Wang P, 2014. Assessing the applicability of GLDAS monthly precipitation data in China. Advances in Water Science, 25(6): 769- 778.
Wang XJ, Wang W, Wang P, 2014. Assessing the applicability of GLDAS monthly temperature data in China. Water Resources and Power, 11: 003.
Xu XZ, Wang JC, Zhang LX, 2001. Physics of Frozen Soils. Beijing Publishing House. (in Chinese)
Yang K, Wang CH, Bao HY, 2016. Contribution of soil moisture variability to summer precipitation in the Northern Hemisphere. Journal of Geophysical Research: Atmosphere, 121(12): 108- 124.DOI:10.1002/2016JD025644.
Yang P, Chen YN, 2015. An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, central Asia. Quaternary International, 358:106- 112. DOI: 10.1016/j.quaint.2014.09.077.
Yang SF, Liu ZH, Yan Y, et al., 2008. Preliminary study on soil humidity and its relationships with soil temperature and air temperature in snow melting season. Arid Zone Research, 25(5): 642- 646.
Yeh TC, Wetherald RT, Manabe S, 1984. The effect of soil moisture on the short-term climate and hydrology change-A numerical experiment. Monthly Weather Review, 112(3): 474- 490.
Yu L, Wang CH, 2012. The simulation and revision of sil moisture over Tibetan Plateau. Acta Physica Sinica, 61(2): 531- 538. DOI:10.1109/ICECC.2011.6066563.
Zaitchik BF, Rodell M, Olivera F, 2010. Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Re
sources Research, 46(6):2840- 2849. DOI: 10.1029/2009WR007811.
Zhang J, Li DL, Wang W, 2008. Influence of terrain on precipitation in Qinghai-Tibet Plateau during summer monsoon. Geographic Science, 28(2): 235- 240.
Zhang YF, Wang XP, Pan YX, et al., 2011. The dependence of surface albedo on soil moisture in an arid desert area. Journal of Desert Research, 31(5): 1141- 1148.
Zheng QL, Wang SS, 2001. Numerical study of the effects of dynamic and thermodynamic of Qinghai-Xizang Plateau on Tropical Atmopheric circulation in summer. Plateau Meteorology, 20(1):14- 21.
[1] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[2] JunZhan Wang, JianJun Qu, LiHai Tan, KeCun Zhang. A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 145-150.
Full text



No Suggested Reading articles found!