Sciences in Cold and Arid Regions ›› 2016, Vol. 8 ›› Issue (2): 116-124.doi: 10.3724/SP.J.1226.2016.00116
• ARTICLES • Previous Articles
JunJun Yang1, ZhiBin He1, WeiJun Zhao2,3, Jun Du1, LongFei Chen1, Xi Zhu1
Al-Hamdan OZ, Cruise JF, 2010. Soil moisture profile development from surface observations by principle of maximum entropy. Journal of Hydrologic Engineering, 15(5):327-337. DOI:10.1061/(asce)he.1943-5584.0000196. Brown ME, Lary DJ, Vrieling A, et al., 2008. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS. International Journal of Remote Sensing, 29(24):7141-7158. DOI:10.1080/01431160802238435. Chen M, Willgoose GR, Saco PM, 2014. Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D.Hydrological Processes, 28(2):171-185. DOI:10.1002/hyp.9518. Coifman RR, Wickerhauser MV, 1992. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 38(2):713-718. DOI:10.1109/18.119732. Deng JQ, Chen XM, Du ZJ, et al., 2011. Soil water simulation and predication using stochastic models based on LS-SVM for red soil region of China. Water Resources Management, 25(11):2823-2836. DOI:10.1007/s11269-011-9840-z. Dreyfus G, 2005. Neural Networks Methodology and applications.ESPCI, Laboratoire d'Electronique 10 rue Vauquelin 75005 Paris, France. Dumedah G, Walker JP, Chik L, 2014. Assessing artificial neural networks and statistical methods for infilling missing soil moisture records. Journal of Hydrology, 515:330-344. DOI:10.1016/j.jhydrol.2014.04.068. Elshorbagy A, Parasuraman K, 2008. On the relevance of using artificial neural networks for estimating soil moisture content.Journal of Hydrology, 362(1-2):1-18. DOI:10.1016/j.jhydrol.2008.08.012. Haykin S, 1999. Neural networks:A Comprehensive Foundation(2nd Edition). Sai PrintoPack Pvt. Ltd., Pearson Education(Singapore) Pte. Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110092, India. He ZB, Wen XH, Liu H, et al., 2014. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509:379-386. DOI:10.1016/j.jhydrol.2013.11.054. He ZB, Zhao WZ, Liu H, et al., 2012. The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range:A case study in northwestern China's Qilian Mountains. Journal of Hydrology, 420:183-190. DOI:10.1016/j.j.hydrol.2011.11.056. Karul C, Soyupak S, Cilesiz AF, et al., 2000. Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134(2-3):145-152. DOI:10.1016/s0304-3800(00)00360-4. Klemas V, Finkl CW, Kabbara N, 2014. Remote sensing of soil moisture:An overview in relation to coastal soils. Journal of Coastal Research, 30(4):685-696. DOI:10.2112/jcoastres-d-13-00072.1. Kokaly RF, Clark RN, 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67(3):267-287. DOI:10.1016/s0034-4257(98)00084-4. Latt ZZ, Wittenberg H, 2014. Improving flood forecasting in a developing country:A comparative study of stepwise multiple linear regression and artificial neural network. Water Resources Management, 28(8):2109-2128. DOI:10.1007/s11269-014-0600-8. Legates DR, McCabe GJ, 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1):233-241.DOI:10.1029/1998wr900018. Messer SR, Agzarian J, Abbott D, 2001. Optimal wavelet denoising for phonocardiograms. Microelectronics Journal, 32(12):931-941. DOI:10.1016/s0026-2692(01)00095-7. Moriasi DN, Arnold JG, Van Liew MW, et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3):885-900. Qin J, Liang SL, Yang K, et al., 2009. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. Journal of Geophysical Research-Atmospheres, 114:D15103. DOI:10.1029/2008jd011358. Rumelhart DE, Hinton GE, Williams RJ, 1986. Learning representations by back-propagating errors. Nature, 323(6088):533-536. Sang YF, 2012. A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resources Management, 26(11):3345-3365. DOI:10.1007/s11269-012-0075-4. Sang YF, Wang D, 2008. Wavelets selection method in hydrologic series wavelet analysis. Journal of Hydraulic Engineering, 39(3):295-300, 306. Sang YF, Wang D, Wu JC, et al., 2009. Entropy-based wavelet de-noising method for time series analysis. Entropy, 11(4):1123-1147. DOI:10.3390/e11041123. Tiwari MK, Song KY, Chatterjee C, et al., 2013. Improving reliability of river flow forecasting using neural networks, wavelets and self-organising maps. Journal of Hydroinformatics, 15(2):486-502. DOI:10.2166/hydro.2012.130. Wofsy SC, Goulden ML, Munger JW, et al., 1993. Net exchange of CO2 in a midlatitude forest. Science, 260(5112):1314-1317.DOI:10.1126/science.260.5112.1314. Wu SH, Jansson PE, 2013. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem. Hydrology and Earth System Sciences, 17(2):735-749. DOI:10.5194/hess-17-735-2013. Yu ZB, Liu D, Lu HS, et al., 2012. A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. Journal of Hydrology, 475:53-64. DOI:10.1016/j.jhydrol.2012.08.034. |
No related articles found! |
|