Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 343-354.doi: 10.3724/SP.J.1226.2020.00343

Previous Articles     Next Articles

Changes in the global cryosphere and their impacts: A review and new perspective

ShiYin Liu1,2(),TongHua Wu2,Xin Wang3,XiaoDong Wu2,XiaoJun Yao4,Qiao Liu5,Yong Zhang3,JunFeng Wei3,XiaoFan Zhu2   

  1. 1.Institute of International Rivers and Eco-security and Yunnan Key Lab of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, Yunnan 650500, China
    2.Cryosphere Research Station on the Qinghai-Tibetan Planteau State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    3.School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
    4.College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
    5.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
  • Received:2020-07-29 Accepted:2020-11-03 Online:2020-12-31 Published:2021-01-14
  • Contact: ShiYin Liu
  • Supported by:
    Yunnan University(YJRC3201702);the National Natural Science Foundation of China(41761144075);the Ministry of Science and Technology(2013FY111400)


As one of the five components of Earth's climatic system, the cryosphere has been undergoing rapid shrinking due to global warming. Studies on the formation, evolution, distribution and dynamics of cryospheric components and their interactions with the human system are of increasing importance to society. In recent decades, the mass loss of glaciers, including the Greenland and Antarctic ice sheets, has accelerated. The extent of sea ice and snow cover has been shrinking, and permafrost has been degrading. The main sustainable development goals in cryospheric regions have been impacted. The shrinking of the cryosphere results in sea-level rise, which is currently affecting, or is soon expected to affect, 17 coastal megacities and some small island countries. In East Asia, South Asia and North America, climate anomalies are closely related to the extent of Arctic sea ice and snow cover in the Northern Hemisphere. Increasing freshwater melting from the ice sheets and sea ice may be one reason for the slowdown in Atlantic meridional overturning circulation in the Arctic and Southern Oceans. The foundations of ports and infrastructure in the circum-Arctic permafrost regions suffer from the consequences of permafrost degradation. In high plateaus and mountainous regions, the cryosphere's shrinking has led to fluctuations in river runoff, caused water shortages and increased flooding risks in certain areas. These changes in cryospheric components have shown significant heterogeneity at different temporal and spatial scales. Our results suggest that the quantitative evaluation of future changes in the cryosphere still needs to be improved by enhancing existing observations and model simulations. Theoretical and methodological innovations are required to strengthen social economies' resilience to the impact of cryospheric change.

Key words: cryospheric change, sea-level rise, water resources, climate change

Figure 1

Distribution of global cryospheric elements, based on RGI (Randolph Glacier Inventory Version 6) glacier inventories, sea-ice (1978-2019) and maximum snow extent (2000-2019) at NSIDC (national snow and ice data center), and Gruber's (2012) permafrost distribution data (based on permafrost zonation index (PZI))"

Table 1

Global cryosphere distribution statistics (% of the total, with latitudinal bands, taking geographic unit completeness into account)"

LatitudeGlaciers excluding ice sheetsPermafrost3*Snow coverSea ice5*Ice sheet7*
Snow water equivalent4*Range6*

Figure 2

Spatial distribution of various global cryospheric hazards (redrawn from Wang and Xiao, 2019)"

Figure 3

Risk map of the infrastructure in northern Hemisphere (after Hjort et al., 2018)"

Allison I, Barry R, Goodison B, 2001. Climate and Cryosphere (CliC) Project Science and Co-ordination Plan (v1.0). WCRP-114 WMO/TD No. 1053.
AMAP (Arctic Monitoring and Assessment Programme), 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Oslo, Norway, pp. 269. Accessed on: March 12, 2020.
Anttila K, Manninen T, Jaaskelainen E, et al., 2018. The role of climate and land use in the changes in surface albedo prior to snow melt and the timing of melt season of seasonal snow in northern land areas of 40°N-80°N during 1982-2015. Remote Sensing, 10(10): 1-19.
Bamber JL, Griggs JA, RTWL Hurkmans, et al., 2013. A new bed elevation dataset for Greenland. Cryosphere, 7(2): 499-510. DOI: 10.5194/tc-7-499-2013.
doi: 10.5194/tc-7-499-2013
Barber DG, 2017. Arctic sea ice. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. 103-136.
Barnes E, 2013. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 40(17): 4734-4739. DOI: 10.1002/grl. 50880.
doi: 10.1002/grl. 50880
Barry RG, Gan TY, 2011. The Global Cryosphere: Past, Present, and Future. Cambridge University Press.
Biemans H, Siderius C, Lutz AF, et al., 2019. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2: 594-601. DOI: 10.1038/s41893-019-0305-3.
doi: 10.1038/s41893-019-0305-3
Biskaborn BK, Smith SL, Noetzli J, et al., 2019. Permafrost is warming at a global scale. Nature Communications, 10(1): 1-13. DOI: 10.1038/s41467-018-08240-4.
doi: 10.1038/s41467-018-08240-4
Bormann KJ, Brown RD, Derksen C, et al., 2018. Estimating snow-cover trends from space. Nature Climate Change, 8(11): 924-928. DOI: 10.1038/s41558-018-0318-3.
doi: 10.1038/s41558-018-0318-3
Brown R, 2017. Arctic terrestrial snow cover in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. 25-64.
Che T, Hao XH, Dai LY, et al., 2019. Snow cover variation and its impacts over the Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1247-1253. DOI: 10. 16418/j.issn.1000-3045.2019.11.007.
doi: 10. 16418/j.issn.1000-3045.2019.11.007
Chen XN, Long D, Liang SL, et al., 2018. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sensing of Environment, 215: 284-299. DOI: 10.1016/j.rse.2018.06.021.
doi: 10.1016/j.rse.2018.06.021
Cheng GD, Zhao L, Li R, et al., 2019. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 64(27): 2783-2795. DOI: 10.1360/TB-2019-0191.
doi: 10.1360/TB-2019-0191
Comiso JC, Gersten R, Stock LV, et al., 2017. Positive trend in the Antarctic Sea Ice Cover and associated changes in surface temperature. Journal of Climate, 30(6): 2251-2267. DOI: 10.1175/JCLI-D-16-0408.1.
doi: 10.1175/JCLI-D-16-0408.1
Comiso JC, Meier WN, Gersten R, 2017. Variability and trends in the Arctic Sea ice cover: Results from different techniques. Journal of Geophysical Research-Oceans, 122(8): 6883-6900. DOI: 10.1002/2017JC012768.
doi: 10.1002/2017JC012768
Consortium R, 2017. Randolph Glacier Inventory (RGI) - A Dataset of Global Glacier Outlines: Version 6.0, in Technical Report, Global Land Ice Measurements from Space. Boulder, Colorado, USA. Digital Media.
Diaz S, Pascual U, Stenseke M, et al., 2018. Assessing nature's contributions to people. Science, 359(6373): 270-272. DOI: 10.1126/science.aap8826.
doi: 10.1126/science.aap8826
Ding YJ, Zhang SQ, 2015. The hydrological impact of cryosphere water cycle on global-scale water cycle (in Chinese). Chinese Science Bulletin, 60: 593-602. DOI: 10. 1360/N972014-00899.
doi: 10. 1360/N972014-00899
Ding YJ, Zhang SQ, Zhao L, et al.,2019. Global warming weakening the inherent stability of glaciers and permafrost. Science Bulletin, 64(4): 245-253. DOI: 10.1016/j.scib.2018. 12.028.
doi: 10.1016/j.scib.2018. 12.028
Du J, Kimball J, Duguay C, et al., 2017. Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11(1): 47-63. DOI: 10. 5194/tc-11-47-2017.
doi: 10. 5194/tc-11-47-2017
Farinotti D, Huss M, Furst JJ, et al., 2019. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3): 168-173. DOI: 10.1038/s41561-019-0513-5.
doi: 10.1038/s41561-019-0513-5
Fetterer FK, Knowles WN, Meier M, et al., 2017. Updated daily. Sea Ice Index, Version3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center.
Fontrodona-Bach A, van der Schrier G, Melsen LA, et al., 2018. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophysical Research Letters, 45(22): 12312-12319. DOI: 10.1029/2018GL079799.
doi: 10.1029/2018GL079799
Fretwell P, Pritchard HD, Vaughan DG, et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1): 375-393. DOI: 10.5194/tc-7-375-2013.
doi: 10.5194/tc-7-375-2013
Gao K, Wang HM, Huang S, et al., 2019. Characteristics of frozen soil environment in Mohe-Jiagedaqi section of Sino-Russian crude oil pipeline. Journal of Engineering of Heilongjiang University, 10(2): 8-55.
Gu Y, Li P, Liu J, et al., 2020. Analysis on engineering geological survey of Arctic Submarine Cabling Routing. Ocean Development and Management, 37(1): 10-14.
Guo L, Wu Y, Zheng H, et al., 2018. Uncertainty and variation of remotely sensed Lake Ice Phenology across the Tibetan Plateau. Remote Sensing, 10(10): 1534. DOI: 10.3390/rs10101534.
doi: 10.3390/rs10101534
Guo WH, 2019. The Economical Study of Arctic Route under the Emission Reduction Policy. M.S. Thesis. Jimei University.
Halfar J, Adey WH, Kronz A, et al., 2013. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proceedings of the National Academy of Sciences of the United States of America, 110(49): 19737-19741. DOI: 10.1073/pnas.1313775110.
doi: 10.1073/pnas.1313775110
Hjort J, Karjalainen O, Aalto J, et al., 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 9: 5147. DOI: 10.1038/s41467-018-07557-4.
doi: 10.1038/s41467-018-07557-4
Holland PR, 2014. The seasonality of Antarctic sea ice trends. Geophysical Research Letters, 41(12): 4230-4237. DOI: 10.1002/2014GL060172.
doi: 10.1002/2014GL060172
Hood E, Battin TJ, Fellman JB, et al., 2015. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8(2): 91-96. DOI: 10.1038/ngeo2331.
doi: 10.1038/ngeo2331
Hotaling S, Hood E, Hamilton TL, 2017. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environmental Microbiology, 19(8): 2935-2948. DOI: 10.1111/1462-2920.13766.
doi: 10.1111/1462-2920.13766
Hu ZY, Dietz A, Kuenzer C, 2019. Deriving regional snow line dynamics during the ablation seasons 1984-2018 in European Mountains. Remote Sensing, 11(8): 1-21. DOI: 10. 3390/rs11080933.
doi: 10. 3390/rs11080933
Hugelius G, Strauss J, Zubrzycki S, et al., 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23): 6573-6593. DOI: 10.5194/bg-11-6573-2014.
doi: 10.5194/bg-11-6573-2014
Immerzeel WW, Lutz AF, Andrade M, et al., 2020. Importance and vulnerability of the world's water towers. Nature, 577(7790): 364-369. DOI: 10.1038/s41586-019-1822-y.
doi: 10.1038/s41586-019-1822-y
IPCC, 2007. Climate Change2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon SD, Qin M, Manning Z, et al., (eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 996.
IPCC, 2013. Climate Change2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). In: Stocker D, Qin GK, Plattner M, et al. (eds). Cambridge, United Kingdom and New York, USA: Cambridge University Press.
IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
Jin HJ, Yu QH, 2006. Stability of engineering foundations of oil pipelines in permafrost regions: A review. Oil & Gas Storage and Transportation, 25(2): 13-17.
Kaab A, Leinss S, Gilbert A, et al., 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11(2): 114-120. DOI: 10.1038/s41561-017-0039-7.
doi: 10.1038/s41561-017-0039-7
Kang SC, Guo WQ, Zhong XY, et al., 2020. Changes in the mountain cryosphere and their impacts and adaptation measures. Climate Change Research, 16(2): 143-152. DOI: 10. 12006/j.issn.1673-1719.2019.257.
doi: 10. 12006/j.issn.1673-1719.2019.257
Kinnard C, Zdanowicz CM, Fisher DA, et al., 2011. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479(7374): 509-512. DOI: 10.1038/nature10581.
doi: 10.1038/nature10581
Kummu M, De Moel H, Salvucci G, et al., 2016. Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th-21st centuries. Environmental Research Letters, 11(3): 034010. DOI: 10.1088/1748-9326/11/3/034010.
doi: 10.1088/1748-9326/11/3/034010
Lenton TM, Held H, Kriegler E, et al., 2008. Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1786-1793. DOI: 10.1073/pnas.0705414105.
doi: 10.1073/pnas.0705414105
Liu SY, Zhang Y, Liu Q, et al., 2017. Impact of Climate Change on Glaciers and Its Risk. Beijing: Science Press, pp. 1-256.
Lozier M, Li F, Bacon S, et al., 2019. A sea change in our view of overturning in the subpolar North Atlantic. Science, 363(6426): 516-521. DOI: 10.1126/science.aau6592.
doi: 10.1126/science.aau6592
Ludescher J, Yuan NM, Bunde A, 2019. Detecting the statistical significance of the trends in the Antarctic sea ice extent: an indication for a turning point. Climate Dynamics, 53(1): 237-244. DOI: 10.1007/s00382-018-4579-3.
doi: 10.1007/s00382-018-4579-3
Luo Y, Wang X, Piao S, et al., 2018. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-North Karakoram. Scientific Reports, 8(1): 16470. DOI: 10.1038/s41598-018-34829-2.
doi: 10.1038/s41598-018-34829-2
Margesin R, Collins T, 2019. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Applied Microbiology and Biotechnology, 103(6): 2537-2549. DOI: 10.1007/s00253-019-09631-3.
doi: 10.1007/s00253-019-09631-3
Mo HM, Hong HP, Fan F, 2017. Using remote sensing information to estimate snow hazard and extreme snow load in China. Natural Hazards, 89(1): 1-17. DOI: 10.1007/s11069-017-2939-7.
doi: 10.1007/s11069-017-2939-7
Mu JX, Li ZQ, Zhang H, et al., 2018. The global glacierized area: current situation and recent change, based on the Randolph Glacier Inventory (RGI6.0) published in 2017. Journal of Glaciology and Geocryology, 40(2): 238-248. DOI: 10.7522/j.issn.1000-0240.2018.0028. (in Chinese)
doi: 10.7522/j.issn.1000-0240.2018.0028.
Mudryk LR, Kushner PJ, Derksen C, et al., 2017. Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44(2): 919-926. DOI: info:doi/10.1002/2016GL071789.
doi: info:doi/10.1002/2016GL071789
Nations United, 2015. Transforming our world: the 2030 Agenda for Sustainable Development.
Niu FJ, Liu MH, Cheng GD, et al., 2015. Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions. Science China: Earth Sciences, 58: 1669-1676. DOI: 10.1007/s11430-015-5063-0.
doi: 10.1007/s11430-015-5063-0
Onarheim IH, Arthun M, 2017. Toward an ice-free Barents Sea. Geophysical Research Letters, 44(16): 8387-8395. DOI: 10.1002/2017GL074304.
doi: 10.1002/2017GL074304
Onarheim IH, Eldevik T, Smedsrud LH, et al., 2018. Seasonal and regional manifestation of arctic sea ice loss. Journal of Climate, 31(12): 4917-4932. DOI: 10.1175/JCLI-D-17-0427.1.
doi: 10.1175/JCLI-D-17-0427.1
Polyak L, Alley RB, Andrews JT, et al., 2010. History of sea ice in the Arctic. Quaternary Science Reviews, 29(15): 1757-1778. DOI: 10.1016/j.quascirev.2010.02.010.
doi: 10.1016/j.quascirev.2010.02.010
Qin DH, Ding YJ, 2009. Cryospheric changes and their impacts: present, trends and key issues. Advances in Climate Change Research, 5(4): 187-195. DOI: 10.1016/S1003-6326(09)60084-4.
doi: 10.1016/S1003-6326(09)60084-4
Qin DH, Xiao CD, Ding YJ, et al., 2006. Progress on cryospheric studies by international and Chinese communities and perspectives. Journal of Applied Meteorological Science, 6: 649-656. (in Chinese)
Qin DH, Yao TD, Ding YJ, et al., 2017. Introduction to Cryosphere Science. Beijing: Science Press, pp. 1-346.
Qin DH, Zhou BT, Xiao CD, 2014. Progress in studies of cryospheric changes and their impacts on climate of China. Acta Meteorologica Sinica, 72(5): 869-879. DOI: CNKI:SUN:QXXW.0.2014-05-005.
doi: CNKI:SUN:QXXW.0.2014-05-005
Schaefer K, Lantuit H, Romanovsky VE, et al., 2014. The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9(8): 085003. DOI: 10.1088/1748-9326/9/8/085003.
doi: 10.1088/1748-9326/9/8/085003
Schellekens J, Dutra E, Alberto Martínez-de la T, et al., 2016. A global water resources ensemble of hydrological models: the earth observe tier-1 dataset. Earth System Science Data, 9(2): 1-35. DOI:
doi: 10.5194/essd-9-389-2017
Schuur EAG, Abbott B, 2011. Climate change: High risk of permafrost thaw. Nature, 480(7375): 32-33. DOI: 10.1038/480032a.
doi: 10.1038/480032a
Shangguan DH, Liu SY, Ding YJ, et al., 2016. Characterizing the May 2015 Karayaylak glacier surge in the eastern Pamir plateau using remote sensing. Journal of Glaciology, 62(235): 944-953. DOI: 10.1017/jog.2016.81.
doi: 10.1017/jog.2016.81
Sharma S, Blagrave K, Magnuson J, et al., 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9(3): 227-231. DOI: 10.1038/s41558-018-0393-5.
doi: 10.1038/s41558-018-0393-5
Shi YF, Cheng GD, 1991. Cryosphere and Global Change. Bulletin of the Chinese Academy of Sciences, 4: 287-291.
Sistla SA, Moore JC, Simpson RT, et al., 2013. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497(7451): 615-618. DOI: 10.1038/nature12129.
doi: 10.1038/nature12129
Stephan G, 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere Discussions, 5(1): 1547-1582. DOI: 10.5194/tcd-5-1547-2011.
doi: 10.5194/tcd-5-1547-2011
Stroeve J, Notz D, 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13(10): 1-23. DOI: 10.1088/1748-9326/aade56.
doi: 10.1088/1748-9326/aade56
Takala M, Luojus K, Pulliainen J, et al., 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, 115(12): 3517-3529. DOI: 10.1016/j.rse. 2011.08.014.
doi: 10.1016/j.rse. 2011.08.014
Vavrus SJ, Wang FY, Martin JE, et al., 2017. Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. Journal of Climate, 30(11): 4317-4333. DOI: 10.1175/JCLI-D-16-0762.1.
doi: 10.1175/JCLI-D-16-0762.1
Walsh JE, Fetterer F, Stewart JS, et al., 2017. A database for depicting Arctic Sea Ice variations back to 1850. Geographical Review, 107(1): 89-107. DOI: 10.1111/j.1931-0846. 2016.12195.x.
doi: 10.1111/j.1931-0846. 2016.12195.x
Wang SJ, Ding YJ, Xiao CD, 2018. Integrated impacts of cryosphere change on the economic and social system and its adaptive management strategies. Journal of Glaciology and Geocryology, 40(5): 863-874. (in Chinese)
Wang SJ, Xiao CD, 2019. Global cryospheric disaster at high risk areas: Impacts and trend. Chinese Science Bulletin, 64: 891-901. DOI: 10.1360/N972018-01124. (in Chinese)
doi: 10.1360/N972018-01124.
Wang TY, Wu TH, Wang P, et al., 2019. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Science of the Total Environment, 650(1): 661-670. DOI: CNKI:SUN:BCDT.0.2018-05-001.
doi: CNKI:SUN:BCDT.0.2018-05-001
Wu QB, Niu FJ, 2013. Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chinese Science Bulletin, 58: 115-130. DOI: 10.1007/s11434-012-5587-z.
doi: 10.1007/s11434-012-5587-z
Wu TH, Qin YH, Wu XD, et al., 2018. Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980 to 2013. Theoretical and Applied Climatology, 132(3-4): 1187-1199. DOI: 10.1007/s00704-017-2157-y.
doi: 10.1007/s00704-017-2157-y
Xie ZC, 1988. Development of cryosphere science and its basic research problems. Geoscience Information, 4: 17-21.
Xu XM, Zhang ZQ, Wu QB, 2017. Simulation of permafrost changes on the Qinghai-Tibet Plateau, China, over the past three decades. International Journal of Digital Earth, 10(5): 522-538. DOI: 1237571.
doi: 10.1080/17538947.2016. 1237571
Yang X, Pavelsky T, Allen G, 2020. The past and future of global river ice. Nature, 577(7788): 69-73. DOI: 10.1038/s41586-019-1848-1.
doi: 10.1038/s41586-019-1848-1
Yao XJ, Liu SY, Sun MP, et al., 2014. Study on the glacial lake outburst flood events in Tibet since the 20th century. Journal of Natural Resources, 29(8): 1377-1390. DOI: 10. 11849/zrzyxb.2014.08.010.
doi: 10. 11849/zrzyxb.2014.08.010
Yao TD, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667. DOI: 10.1038/nclimate1580.
doi: 10.1038/nclimate1580
Yao TD, Yu WS, Wu GJ, et al., 2019. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chinese Science Bulletin, 64(27): 2770-2782.
Zemp M, Huss M, Thibert E, et al., 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752): 382-386. DOI: 10.1038/s41586-019-1071-0.
doi: 10.1038/s41586-019-1071-0
Zhang T, Barry RG, Knowles KJ, et al., 2008. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 31(1): 47-68. DOI: 10.1080/10889370802175895.
doi: 10.1080/10889370802175895
Zhang Z, Liu SY, Wei JF, et al., 2016. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing. Journal of Glaciology and Geocryology, 38(1): 11-20. DOI: 10.7522/j.isnn.1000-0240.2016.0002.
doi: 10.7522/j.isnn.1000-0240.2016.0002
Zhang ZQ, Wu QB, Xun XY, et al., 2019. Spatial distribution and changes of Xing'an permafrost in China over the past three decades. Quaternary International, 523: 16-24. DOI: 10.1016/j.quaint.2019.06.007.
doi: 10.1016/j.quaint.2019.06.007
Zhao L, Hu GJ, Zou DF, et al., 2019. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233-1246. DOI: 10.16418/j.issn.1000-3045.2019.11.006.
doi: 10.16418/j.issn.1000-3045.2019.11.006
Zhao L, Wu X, Wang Z, et al., 2018. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau. Scientific Reports, 8: 3656. DOI: 10.1038/s41598-018-22024-2.
doi: 10.1038/s41598-018-22024-2
Zhao LT, Xu LX, Gupta PK, 2020. Study on highway route selection in permafrost regions of the Qinghai-Tibet Plateau. Subgrade Engineering, 208: 20-24. DOI: 10.13379/j.issn. 1003-8825.2020.01.05.
doi: 10.13379/j.issn. 1003-8825.2020.01.05
Zhang T, Roger G, Barry K, et al., 1999. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geography, 23(2): 147-169. DOI: 10.1080/10889370802175895.
doi: 10.1080/10889370802175895
Zhang T, 2005. Historical overview of permafrost studies in China. Physical Geography, 26(4): 279-298. DOI:
doi: 10.2747/0272-3646.26.4.279
Zhong XT, Zhang S, Kang K, et al., 2018. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012. Cryosphere, 12(1): 227-245. DOI: 10.5194/tc-12-227-2018.
doi: 10.5194/tc-12-227-2018
Zhou Y, Guo D, Qiu G, et al., 2000. Geocryology in China. Beijing: Science Press. (in Chinese)
Zhu YX, Ding YH, Xu HG, 2007. The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in East China. Acta Meteorologica Sinica, 6: 946-958. DOI: 10.1002/jrs.1570.
doi: 10.1002/jrs.1570
[1] Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52.
[2] ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388.
[3] SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502.
[4] LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326.
[5] Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217.
[6] YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247.
[7] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[8] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[9] QianTao Zhu, WenZhi Zhao, Jian Guo, Hu Liu. Cash gifts, perception of social sphere and distribution of water resources for rural farmers in a typical oasis area in Northwest China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 180-186.
[10] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[11] Sanjaya Gurung, Bikas C. Bhattarai, Rijan B. Kayastha, Dorothea Stumm, Sharad P. Joshi, Pradeep K. Mool. Study of annual mass balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang,Nepal [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 311-318.
[12] Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226.
[13] LiNa Mi, HongLang Xiao, ZhengLiang Yin, ShengChun Xiao. Dynamic evaluation of groundwater resources in Zhangye Basin [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 250-262.
[14] FuHui Jian, XiaoYu Song, LiLi Li, WenQi Gao. The evolution and enlightenment of water resources accounting from accounts to balance sheet [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 156-162.
[15] Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94.
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .