Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (1): 30-42.doi: 10.3724/SP.J.1226.2021.20032
Previous Articles Next Articles
Tao Luo1,2,JuanJuan Ma1,Fang Liu1(),MingYi Zhang2,ChaoWei Sun1,YanJun Ji1,XiaoSa Yuan1
Arora A, Sant G, Neithalath N, 2017. Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cement and Concrete Composites, 81: 11-24. DOI: 10.1016/j.cemconcomp.2017.04.006.
doi: 10.1016/j.cemconcomp.2017.04.006 |
|
Berardi U, Gallardo AA, 2019. Properties of concretes enhanced with phase change materials for building applications. Energy and Buildings, 199: 402-414. DOI: 10.1016/j.enbuild.2019.07.014.
doi: 10.1016/j.enbuild.2019.07.014 |
|
Briffaut M, Benboudjema F, Torrenti JM, et al., 2012. Effects of early-age thermal behavior on damage risks in massive concrete structures. European Journal of Environmental and Civil Engineering, 16: 589-605. DOI: 10.1080/19648189.2012.668016.
doi: 10.1080/19648189.2012.668016 |
|
Cabeza LF, Castellón C, Nogués M, et al., 2007. Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings, 39(2): 113-119. DOI: 10.1016/j.enbuild.2006.03.030.
doi: 10.1016/j.enbuild.2006.03.030 |
|
Chen C, Guo H, Liu Y, et al., 2008. A new kind of phase change material (PCM) for energy-storing wallboard. Energy and Buildings, 40(5): 882-890. DOI: 10.1016/j.enbuild.2007.07.002.
doi: 10.1016/j.enbuild.2007.07.002 |
|
Chen C, Ling H, Zhai Z, et al., 2018. Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy, 216(15): 602-612. DOI: 10.1016/j.apenergy.2018.02.130.
doi: 10.1016/j.apenergy.2018.02.130 |
|
Chen DH, Won M, 2007. Field Investigations of Cracking on Concrete Pavements. Journal of Performance of Constructed Facilities, 21(6): 450-458. DOI: 10.1061/(ASCE)0887-3828(2007)21:6(450).
doi: 10.1061/(ASCE)0887-3828(2007)21:6(450 |
|
Cheng J, Li TC, Liu X, et al., 2016. A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures. International Journal of Numerical and Analytical Methods, 40(4): 487-508. DOI: 10.1002/nag.2409.
doi: 10.1002/nag.2409 |
|
Cunha S, Aguiar J, Ferreira V, et al., 2015. Mortars based in different binders with incorporation of phase-change materials: physical and mechanical properties. European Journal of Environmental and Civil Engineering, 19(10): 1216-1233. DOI: 10.1080/19648189.2015.1008651.
doi: 10.1080/19648189.2015.1008651 |
|
D'Alessandro A, Pisello AL, Fabiani C, et al., 2018. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy, 212: 1448-1461. DOI: 10.1016/j.apenergy.2018.01.014.
doi: 10.1016/j.apenergy.2018.01.014 |
|
Drissi S, Ling TC, Mo KH, et al., 2019. A review of microencapsulated and composite phase change materials: alteration of strength and thermal properties of cement-based materials. Renewable and Sustainable Energy Reviews, 110: 467-484. DOI: 10.1016/j.rser.2019.04.072.
doi: 10.1016/j.rser.2019.04.072 |
|
Eddhahak-Ouni A, Drissi S, Colin J, et al., 2014. Experimental and multiscale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated phase change materials (PCMs). Applied Thermal Engineering, 64(1-2): 32-39. DOI: 10.1016/j.applthermaleng. 2013.11.050.
doi: 10.1016/j.applthermaleng. 2013.11.050 |
|
Entrop AG, Brouwers HJH, AHME Reinders, 2011. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses. Solar Energy, 85(5): 1007-1020. DOI: 10.1016/j.solener.2011.02.017.
doi: 10.1016/j.solener.2011.02.017 |
|
Esen M, Ayhan T, 1996. Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Conversion and Management, 37(12): 1775-1785. DOI: 10.1016/0196-8904(96)00035-0.
doi: 10.1016/0196-8904(96)00035-0 |
|
Esen M, Durmus A, Durmus A, 1998. Geometric design of solar aided latent heat store depending on various parameters and phase change materials. Solar Energy, 62(1): 19-28. DOI: 10.1016/S0038-092X(97)00104-7.
doi: 10.1016/S0038-092X(97)00104-7 |
|
Farah S, Biwole PH, Fardoun F, 2018. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. Applied Energy, 217: 390-408. DOI: 10. 1016/j.apenergy.2018.02.119.
doi: 10. 1016/j.apenergy.2018.02.119 |
|
Farnam Y, Esmaeeli HS, Zavattieri PD, et al., 2017. Incorporating phase change materials in concrete pavement to melt snow and ice. Cement and Concrete Composites, 84: 134-145. DOI: 10.1016/j.cemconcomp.2017.09.002.
doi: 10.1016/j.cemconcomp.2017.09.002 |
|
Feldman D, Banu D, Hawes D, et al., 1991. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials, 22 (2-3): 231-242. DOI: 10.1016/0165-1633(91)90021-C.
doi: 10.1016/0165-1633(91)90021-C |
|
Fernandes F, Manari S, Aguayo M, et al., 2014. On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cement and Concrete Composites, 51: 14-26. DOI: 10.1016/j.cemconcomp.2014.03.003.
doi: 10.1016/j.cemconcomp.2014.03.003 |
|
Guo C, Zeng M, Lu F, et al., 2017. Correlation Analysis of Transient Heat Transfer Characteristics for Air Precooling Aggregate. Journal of Thermal Science, 26: 144-152. | |
Hassan A, Mourad AHI, Rashid Y, et al., 2019. Thermal and structural performance of geopolymer concrete containing phase change material encapsulated in expanded clay. Energy and Buildings, 191: 72-81. DOI: 10.1016/j.enbuild. 2019.03.005.
doi: 10.1016/j.enbuild. 2019.03.005 |
|
Hawes DW, Banu D, Feldman D, 1989. Latent heat storage in concrete. Solar Energy Materials, 19(3-5): 335-348. DOI: 10.1016/0165-1633(89)90014-2.
doi: 10.1016/0165-1633(89)90014-2 |
|
Hunger M, Entrop AG, Mandilaras I, et al., 2009. The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10): 731-743. DOI: 10.1016/j.cemconcomp.2009.08.002.
doi: 10.1016/j.cemconcomp.2009.08.002 |
|
Jin KK, Kook HK, Joo KY, 2001. Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Computers & Structures, 79(2): 163-171. DOI: 10.1016/S0045-7949(00)00128-0.
doi: 10.1016/S0045-7949(00)00128-0 |
|
Kim YR, Khil BS, Jang SJ, et al., 2015. Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete. Thermochimica Acta, 613: 100-107. DOI: 10.1016/j.tca.2015. 05.025.
doi: 10.1016/j.tca.2015. 05.025 |
|
Li X, Sanjayan JG, Wilson JL, 2014. Fabrication and stability of form-stable diatomite/paraffin phase change material composites. Energy and Buildings, 76: 284-294. DOI: 10. 1016/j.enbuild.2014.02.082.
doi: 10. 1016/j.enbuild.2014.02.082 |
|
Liu X, Zhang C, Chang X, et al., 2015. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering, 78: 449-459. DOI: 10.1016/j.applthermaleng.2014.12.050.
doi: 10.1016/j.applthermaleng.2014.12.050 |
|
Nagano K, Takeda S, Mochida T, et al., 2006. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage-heat response in small scale experiments. Energy and Buildings, 38(5): 436-446. DOI: 10.1016/j.enbuild.2005. 07.010.
doi: 10.1016/j.enbuild.2005. 07.010 |
|
Navarro L, de Gracia A, Colclough S, et al., 2016. Thermal energy storage in building integrated thermal systems: a review. Part1. active storage systems. Renewable Energy, 88: 526-547. DOI: 10.1016/j.renene.2015.11.040.
doi: 10.1016/j.renene.2015.11.040 |
|
Ouyang J, Chen X, Huangfu Z, et al., 2019. Application of distributed temperature sensing for cracking control of mass concrete. Construction and Building Materials, 197: 778-791. DOI: 10.1016/j.conbuildmat.2018.11.221.
doi: 10.1016/j.conbuildmat.2018.11.221 |
|
Pasupathy A, Athanasius L, Velraj R, et al., 2008b. Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Applied Thermal Engineering, 28(5-6): 556-565. DOI: 10.1016/j.applthermaleng.2007.04.016.
doi: 10.1016/j.applthermaleng.2007.04.016 |
|
Pasupathy A, Velraj R, Seeniraj RV, 2008a. Phase change material based building architecture for thermal management in residential and commercial establishments. Renewable and Sustainable Energy Reviews, 12(1): 39-64. DOI: 10.1016/j.rser.2006.05.010.
doi: 10.1016/j.rser.2006.05.010 |
|
Peippo K, Kauranen P, Lund PD, 1991. A multicomponent PCM wall optimized for passive solar heating. Energy and Buildings, 17(4): 259-270. DOI: 10.1016/0378-7788(91)90009-R.
doi: 10.1016/0378-7788(91)90009-R |
|
Qu Y, Chen J, Liu L, et al., 2020. Study on properties of phase change foam concrete block mixed with paraffin/fumed silica composite phase change material. Renew Energy, 150: 1127-1135. DOI: 10.1016/j.renene.2019.10.073.
doi: 10.1016/j.renene.2019.10.073 |
|
Šavija B, Schlangen E, 2016. Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: theoretical considerations. Construction and Building Materials, 126: 332-344. DOI: 10.1016/j.conbuildmat.2016. 09.046.
doi: 10.1016/j.conbuildmat.2016. 09.046 |
|
Soares N, Costa JJ, Gaspar AR, et al., 2013. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. Energy and Buildings, 59: 82-103. DOI: 10.1016/j.enbuild.2012.12.042.
doi: 10.1016/j.enbuild.2012.12.042 |
|
Tzivanidis C, Antonopoulos KA, Kravvaritis ED, 2012. Parametric analysis of space cooling systems based on night ceiling cooling with PCM-embedded piping. International Journal of Energy Research, 36(1): 18-35. DOI: 10.1002/er.1777.
doi: 10.1002/er.1777 |
|
Ünal O, Uygunoğlu T, Yildiz A, 2007. Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, 42(2): 584-590. DOI: 10.1016/j.buildenv.2005.09.024.
doi: 10.1016/j.buildenv.2005.09.024 |
|
Wang R, Ren M, Gao X, et al., 2018. Preparation and properties of fatty acids based thermal energy storage aggregate concrete. Construction and Building Materials, 165: 1-10. DOI: 10.1016/j.conbuildmat.2018.01.034.
doi: 10.1016/j.conbuildmat.2018.01.034 |
|
Wei Z, Falzone G, Wang B, et al., 2017. The durability of cementitious composites containing microencapsulated phase change materials. Cement and Concrete Composites, 81: 66-76. DOI: 10.1016/j.cemconcomp.2017.04.010.
doi: 10.1016/j.cemconcomp.2017.04.010 |
|
Xie H, Chen Y, 2005. Influence of the different pipe cooling scheme on temperature distribution in RCC arch dams. Communications in Numerical Methods in Engineering, 21(12): 769-778. DOI: 10.1002/cnm.793.
doi: 10.1002/cnm.793 |
|
Xie, J, Wang W, Liu J, et al., 2018. Thermal performance analysis of PCM wallboards for building application based on numerical simulation. Solar Energy, 162: 533-540. DOI: 10.1016/j.solener.2018.01.069.
doi: 10.1016/j.solener.2018.01.069 |
|
Yang H, Wang Y, Zhou S, 2007. Anti-crack performance of low-heat Portland cement concrete. Journal of Wuhan University of Technology-Materials Science Edition, 22(3): 555-559. DOI: 10.1007/s11595-006-3555-7.
doi: 10.1007/s11595-006-3555-7 |
|
Yang J, Hu Y, Zuo Z, et al., 2012. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering, 35: 145-156. DOI: 10.1016/j.applthermaleng.2011.10.016.
doi: 10.1016/j.applthermaleng.2011.10.016 |
|
Zhou H, Pan Z, Liang Z, et al., 2019. Temperature Field Reconstruction of Concrete Dams based on Distributed Optical Fiber Monitoring Data. KSCE Journal of Civil Engineering, 23(5): 1911-1922. DOI: 10.1007/s12205-019-0787-6.
doi: 10.1007/s12205-019-0787-6 |
|
Zhu N, Ma Z, Wang S, 2009. Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Conversion and Management, 50(12): 3169-3181. DOI: 10.1016/j.enconman.2009.08.019.
doi: 10.1016/j.enconman.2009.08.019 |
|
Zhu Q, Xu X, Wang J, et al., 2014. Development of dynamic simplified thermal models of active pipe-embedded building envelopes using genetic algorithm. International Journal of Thermal Sciences, 76: 258-272. DOI: 10.1016/j.ijthermalsci.2013.09.008.
doi: 10.1016/j.ijthermalsci.2013.09.008 |
[1] | WenQiang Zhang,YongHong Niu. Numerical simulations on cutting of frozen soil using HJC Model [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 134-143. |
[2] | QianMi Yu, JianKun Liu, JingYu Liu, DingJun Lv, TengFei Wang. Experimental study of the effects of non-uniformly distributed fine soil on mechanical properties of Shenyang-Dandong Railway coarse-grained soil [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 503-512. |
|