Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (1): 30-42.doi: 10.3724/SP.J.1226.2021.20032

Previous Articles     Next Articles

Direct incorporation of paraffin wax as phase change material into mass concrete for temperature control: mechanical and thermal properties

Tao Luo1,2,JuanJuan Ma1,Fang Liu1(),MingYi Zhang2,ChaoWei Sun1,YanJun Ji1,XiaoSa Yuan1   

  1. 1.Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi'an, Shaanxi 710123, China
    2.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-06-16 Accepted:2020-10-06 Online:2021-02-28 Published:2021-02-07
  • Contact: Fang Liu E-mail:liufang_winter@163.com
  • Supported by:
    the National Natural Science Foundation of China(51909223);the National Science Fund for Distinguished Young Scholars(41825015);the Natural Science Basic Research Program of Shaanxi(2019JQ-921);the Special research project of the Education Department of Shaanxi Provincial Government(19JK0913);the Special Fund for the Launch of Scientific Research in Xijing University(XJ18T02)

Abstract:

Taking advantage of heat absorbing and releasing capability of phase change material (PCM), Paraffin wax-based concrete was prepared to assess its automatic temperature control performance. The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test. The more Paraffin wax incorporated, the greater loss of the compressive strength and bending strength. Based on the mechanical results, four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties, including thermal conductivity, thermal diffusivity, specific heat capacity, thermal expansion coefficient and adiabatic temperature rise. When the Paraffin wax content increases from 10% to 20%, the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C) to 7.10 kJ/(m·h·°C) and from 3.03×10-3 m2/h to 2.44×10-3 m2/h, respectively. Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10-1 kJ/(kg·°C) to 5.76×10-1 kJ/(kg·°C) and from 9.63×10-6/°C to 14.02×10-6/°C, respectively. The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content. Considering both the mechanical and thermal properties, 15% of Paraffin wax was elected for the mass concrete model test, and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.

Key words: phase change material, Paraffin wax, temperature control, mechanical properties, thermal properties, mass concrete

Table 1

The physical properties of Portland cement"

Density (g/cm3)FinenessSpecific surface area (m2/g)StabilitySetting time (min)
Initial settingFinal setting
3.10≤8.0%0.345Qualified226279

Table 2

The chemical compositions of Portland cement"

CaOSiO2Al2O3Fe2O3MgOSO3AlkaliIgnition loss
61.43%22.81%5.62%3.36%1.35%2.17%0.54%2.60%

Table 3

The physical properties of fly ash"

Fineness (45 μm sieve)Water demand ratioIgnition lossWater contentSO3
9.6%93%4.8%0.5%1.0%

Table 4

The physical properties of Paraffin wax"

No.AppearanceMelting pointOil contentPin-inDensity
54Particles with diameters of 6-8 mm54-56 °C0.5%190.9 g/cm3

Table 5

The reference concrete mix proportion"

Cement (kg/m3)Fly ash (kg/m3)Gravel (kg/m3)Sand (kg/m3)Superplasticizer (kg/m3)Water (kg/m3)
SmallMediumLarge
192484344345776201.44115

Figure 1

A MTS universal testing machine"

Figure 2

The compressive strength test"

Figure 3

The four-point bending strength test"

Figure 4

An integrated thermal physical analyzer"

Figure 5

Testing setups for various thermal properties"

Figure 6

The molds for model test"

Figure 7

Location of thermometers within the mold"

Table 6

The mix proportion of concrete with various PCM contents"

PCM content

Cement

(kg/m3)

Fly ash

(kg/m3)

Gravel (kg/m3)

Sand

(kg/m3)

Superplasticizer (kg/m3)

Water

(kg/m3)

Paraffin wax

(kg/m3)

SmallMediumLarge
10%192484344345775581.4411521
20%192484344345774961.4411542
30%192484344345774341.4411563
40%192484344345773721.4411584
50%192484344345773101.44115105
60%192484344345772481.44115126
70%192484344345771861.44115148

Figure 8

The compressive strength and strength loss ratio versus Paraffin wax content"

Figure 9

The four-point bending strength and strength loss ratio versus Paraffin wax content"

Table 7

The mix proportions of PCM concrete for thermal tests"

PCM content

Cement

(kg/m3)

Fly ash

(kg/m3)

Gravel (kg/m3)

Sand

(kg/m3)

Superplasticizer (kg/m3)

Water

(kg/m3)

Paraffin wax

(kg/m3)

SmallMediumLarge
10%192484344345775581.4411521
15%192484344345775271.4411532
20%192484344345774961.4411542

Figure 10

The thermal conductivity versus Paraffin wax content"

Figure 11

The thermal diffusivity versus Paraffin wax content"

Figure 12

The specific heat capacity versus Paraffin wax content"

Figure 13

The thermal expansion coefficient versus Paraffin wax content"

Figure 14

The adiabatic temperature rise"

Figure 15

The temperature control model tests of mass PCM concrete and the reference concrete"

Figure 16

The thermometer labels in two models"

Figure 17

Variation of temperature with time at selected locations"

Figure 18

The temperature distribution in section 1"

Figure 19

The temperature distribution in section 2"

Arora A, Sant G, Neithalath N, 2017. Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cement and Concrete Composites, 81: 11-24. DOI: 10.1016/j.cemconcomp.2017.04.006.
doi: 10.1016/j.cemconcomp.2017.04.006
Berardi U, Gallardo AA, 2019. Properties of concretes enhanced with phase change materials for building applications. Energy and Buildings, 199: 402-414. DOI: 10.1016/j.enbuild.2019.07.014.
doi: 10.1016/j.enbuild.2019.07.014
Briffaut M, Benboudjema F, Torrenti JM, et al., 2012. Effects of early-age thermal behavior on damage risks in massive concrete structures. European Journal of Environmental and Civil Engineering, 16: 589-605. DOI: 10.1080/19648189.2012.668016.
doi: 10.1080/19648189.2012.668016
Cabeza LF, Castellón C, Nogués M, et al., 2007. Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings, 39(2): 113-119. DOI: 10.1016/j.enbuild.2006.03.030.
doi: 10.1016/j.enbuild.2006.03.030
Chen C, Guo H, Liu Y, et al., 2008. A new kind of phase change material (PCM) for energy-storing wallboard. Energy and Buildings, 40(5): 882-890. DOI: 10.1016/j.enbuild.2007.07.002.
doi: 10.1016/j.enbuild.2007.07.002
Chen C, Ling H, Zhai Z, et al., 2018. Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy, 216(15): 602-612. DOI: 10.1016/j.apenergy.2018.02.130.
doi: 10.1016/j.apenergy.2018.02.130
Chen DH, Won M, 2007. Field Investigations of Cracking on Concrete Pavements. Journal of Performance of Constructed Facilities, 21(6): 450-458. DOI: 10.1061/(ASCE)0887-3828(2007)21:6(450).
doi: 10.1061/(ASCE)0887-3828(2007)21:6(450
Cheng J, Li TC, Liu X, et al., 2016. A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures. International Journal of Numerical and Analytical Methods, 40(4): 487-508. DOI: 10.1002/nag.2409.
doi: 10.1002/nag.2409
Cunha S, Aguiar J, Ferreira V, et al., 2015. Mortars based in different binders with incorporation of phase-change materials: physical and mechanical properties. European Journal of Environmental and Civil Engineering, 19(10): 1216-1233. DOI: 10.1080/19648189.2015.1008651.
doi: 10.1080/19648189.2015.1008651
D'Alessandro A, Pisello AL, Fabiani C, et al., 2018. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy, 212: 1448-1461. DOI: 10.1016/j.apenergy.2018.01.014.
doi: 10.1016/j.apenergy.2018.01.014
Drissi S, Ling TC, Mo KH, et al., 2019. A review of microencapsulated and composite phase change materials: alteration of strength and thermal properties of cement-based materials. Renewable and Sustainable Energy Reviews, 110: 467-484. DOI: 10.1016/j.rser.2019.04.072.
doi: 10.1016/j.rser.2019.04.072
Eddhahak-Ouni A, Drissi S, Colin J, et al., 2014. Experimental and multiscale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated phase change materials (PCMs). Applied Thermal Engineering, 64(1-2): 32-39. DOI: 10.1016/j.applthermaleng. 2013.11.050.
doi: 10.1016/j.applthermaleng. 2013.11.050
Entrop AG, Brouwers HJH, AHME Reinders, 2011. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses. Solar Energy, 85(5): 1007-1020. DOI: 10.1016/j.solener.2011.02.017.
doi: 10.1016/j.solener.2011.02.017
Esen M, Ayhan T, 1996. Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Conversion and Management, 37(12): 1775-1785. DOI: 10.1016/0196-8904(96)00035-0.
doi: 10.1016/0196-8904(96)00035-0
Esen M, Durmus A, Durmus A, 1998. Geometric design of solar aided latent heat store depending on various parameters and phase change materials. Solar Energy, 62(1): 19-28. DOI: 10.1016/S0038-092X(97)00104-7.
doi: 10.1016/S0038-092X(97)00104-7
Farah S, Biwole PH, Fardoun F, 2018. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. Applied Energy, 217: 390-408. DOI: 10. 1016/j.apenergy.2018.02.119.
doi: 10. 1016/j.apenergy.2018.02.119
Farnam Y, Esmaeeli HS, Zavattieri PD, et al., 2017. Incorporating phase change materials in concrete pavement to melt snow and ice. Cement and Concrete Composites, 84: 134-145. DOI: 10.1016/j.cemconcomp.2017.09.002.
doi: 10.1016/j.cemconcomp.2017.09.002
Feldman D, Banu D, Hawes D, et al., 1991. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials, 22 (2-3): 231-242. DOI: 10.1016/0165-1633(91)90021-C.
doi: 10.1016/0165-1633(91)90021-C
Fernandes F, Manari S, Aguayo M, et al., 2014. On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cement and Concrete Composites, 51: 14-26. DOI: 10.1016/j.cemconcomp.2014.03.003.
doi: 10.1016/j.cemconcomp.2014.03.003
Guo C, Zeng M, Lu F, et al., 2017. Correlation Analysis of Transient Heat Transfer Characteristics for Air Precooling Aggregate. Journal of Thermal Science, 26: 144-152.
Hassan A, Mourad AHI, Rashid Y, et al., 2019. Thermal and structural performance of geopolymer concrete containing phase change material encapsulated in expanded clay. Energy and Buildings, 191: 72-81. DOI: 10.1016/j.enbuild. 2019.03.005.
doi: 10.1016/j.enbuild. 2019.03.005
Hawes DW, Banu D, Feldman D, 1989. Latent heat storage in concrete. Solar Energy Materials, 19(3-5): 335-348. DOI: 10.1016/0165-1633(89)90014-2.
doi: 10.1016/0165-1633(89)90014-2
Hunger M, Entrop AG, Mandilaras I, et al., 2009. The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10): 731-743. DOI: 10.1016/j.cemconcomp.2009.08.002.
doi: 10.1016/j.cemconcomp.2009.08.002
Jin KK, Kook HK, Joo KY, 2001. Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Computers & Structures, 79(2): 163-171. DOI: 10.1016/S0045-7949(00)00128-0.
doi: 10.1016/S0045-7949(00)00128-0
Kim YR, Khil BS, Jang SJ, et al., 2015. Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete. Thermochimica Acta, 613: 100-107. DOI: 10.1016/j.tca.2015. 05.025.
doi: 10.1016/j.tca.2015. 05.025
Li X, Sanjayan JG, Wilson JL, 2014. Fabrication and stability of form-stable diatomite/paraffin phase change material composites. Energy and Buildings, 76: 284-294. DOI: 10. 1016/j.enbuild.2014.02.082.
doi: 10. 1016/j.enbuild.2014.02.082
Liu X, Zhang C, Chang X, et al., 2015. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering, 78: 449-459. DOI: 10.1016/j.applthermaleng.2014.12.050.
doi: 10.1016/j.applthermaleng.2014.12.050
Nagano K, Takeda S, Mochida T, et al., 2006. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage-heat response in small scale experiments. Energy and Buildings, 38(5): 436-446. DOI: 10.1016/j.enbuild.2005. 07.010.
doi: 10.1016/j.enbuild.2005. 07.010
Navarro L, de Gracia A, Colclough S, et al., 2016. Thermal energy storage in building integrated thermal systems: a review. Part1. active storage systems. Renewable Energy, 88: 526-547. DOI: 10.1016/j.renene.2015.11.040.
doi: 10.1016/j.renene.2015.11.040
Ouyang J, Chen X, Huangfu Z, et al., 2019. Application of distributed temperature sensing for cracking control of mass concrete. Construction and Building Materials, 197: 778-791. DOI: 10.1016/j.conbuildmat.2018.11.221.
doi: 10.1016/j.conbuildmat.2018.11.221
Pasupathy A, Athanasius L, Velraj R, et al., 2008b. Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Applied Thermal Engineering, 28(5-6): 556-565. DOI: 10.1016/j.applthermaleng.2007.04.016.
doi: 10.1016/j.applthermaleng.2007.04.016
Pasupathy A, Velraj R, Seeniraj RV, 2008a. Phase change material based building architecture for thermal management in residential and commercial establishments. Renewable and Sustainable Energy Reviews, 12(1): 39-64. DOI: 10.1016/j.rser.2006.05.010.
doi: 10.1016/j.rser.2006.05.010
Peippo K, Kauranen P, Lund PD, 1991. A multicomponent PCM wall optimized for passive solar heating. Energy and Buildings, 17(4): 259-270. DOI: 10.1016/0378-7788(91)90009-R.
doi: 10.1016/0378-7788(91)90009-R
Qu Y, Chen J, Liu L, et al., 2020. Study on properties of phase change foam concrete block mixed with paraffin/fumed silica composite phase change material. Renew Energy, 150: 1127-1135. DOI: 10.1016/j.renene.2019.10.073.
doi: 10.1016/j.renene.2019.10.073
Šavija B, Schlangen E, 2016. Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: theoretical considerations. Construction and Building Materials, 126: 332-344. DOI: 10.1016/j.conbuildmat.2016. 09.046.
doi: 10.1016/j.conbuildmat.2016. 09.046
Soares N, Costa JJ, Gaspar AR, et al., 2013. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. Energy and Buildings, 59: 82-103. DOI: 10.1016/j.enbuild.2012.12.042.
doi: 10.1016/j.enbuild.2012.12.042
Tzivanidis C, Antonopoulos KA, Kravvaritis ED, 2012. Parametric analysis of space cooling systems based on night ceiling cooling with PCM-embedded piping. International Journal of Energy Research, 36(1): 18-35. DOI: 10.1002/er.1777.
doi: 10.1002/er.1777
Ünal O, Uygunoğlu T, Yildiz A, 2007. Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, 42(2): 584-590. DOI: 10.1016/j.buildenv.2005.09.024.
doi: 10.1016/j.buildenv.2005.09.024
Wang R, Ren M, Gao X, et al., 2018. Preparation and properties of fatty acids based thermal energy storage aggregate concrete. Construction and Building Materials, 165: 1-10. DOI: 10.1016/j.conbuildmat.2018.01.034.
doi: 10.1016/j.conbuildmat.2018.01.034
Wei Z, Falzone G, Wang B, et al., 2017. The durability of cementitious composites containing microencapsulated phase change materials. Cement and Concrete Composites, 81: 66-76. DOI: 10.1016/j.cemconcomp.2017.04.010.
doi: 10.1016/j.cemconcomp.2017.04.010
Xie H, Chen Y, 2005. Influence of the different pipe cooling scheme on temperature distribution in RCC arch dams. Communications in Numerical Methods in Engineering, 21(12): 769-778. DOI: 10.1002/cnm.793.
doi: 10.1002/cnm.793
Xie, J, Wang W, Liu J, et al., 2018. Thermal performance analysis of PCM wallboards for building application based on numerical simulation. Solar Energy, 162: 533-540. DOI: 10.1016/j.solener.2018.01.069.
doi: 10.1016/j.solener.2018.01.069
Yang H, Wang Y, Zhou S, 2007. Anti-crack performance of low-heat Portland cement concrete. Journal of Wuhan University of Technology-Materials Science Edition, 22(3): 555-559. DOI: 10.1007/s11595-006-3555-7.
doi: 10.1007/s11595-006-3555-7
Yang J, Hu Y, Zuo Z, et al., 2012. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering, 35: 145-156. DOI: 10.1016/j.applthermaleng.2011.10.016.
doi: 10.1016/j.applthermaleng.2011.10.016
Zhou H, Pan Z, Liang Z, et al., 2019. Temperature Field Reconstruction of Concrete Dams based on Distributed Optical Fiber Monitoring Data. KSCE Journal of Civil Engineering, 23(5): 1911-1922. DOI: 10.1007/s12205-019-0787-6.
doi: 10.1007/s12205-019-0787-6
Zhu N, Ma Z, Wang S, 2009. Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Conversion and Management, 50(12): 3169-3181. DOI: 10.1016/j.enconman.2009.08.019.
doi: 10.1016/j.enconman.2009.08.019
Zhu Q, Xu X, Wang J, et al., 2014. Development of dynamic simplified thermal models of active pipe-embedded building envelopes using genetic algorithm. International Journal of Thermal Sciences, 76: 258-272. DOI: 10.1016/j.ijthermalsci.2013.09.008.
doi: 10.1016/j.ijthermalsci.2013.09.008
[1] WenQiang Zhang,YongHong Niu. Numerical simulations on cutting of frozen soil using HJC Model [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 134-143.
[2] QianMi Yu, JianKun Liu, JingYu Liu, DingJun Lv, TengFei Wang. Experimental study of the effects of non-uniformly distributed fine soil on mechanical properties of Shenyang-Dandong Railway coarse-grained soil [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 503-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .