Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 343-354.doi: 10.3724/SP.J.1226.2020.00343
Previous Articles Next Articles
ShiYin Liu1,2(),TongHua Wu2,Xin Wang3,XiaoDong Wu2,XiaoJun Yao4,Qiao Liu5,Yong Zhang3,JunFeng Wei3,XiaoFan Zhu2
Allison I, Barry R, Goodison B, 2001. Climate and Cryosphere (CliC) Project Science and Co-ordination Plan (v1.0). WCRP-114 WMO/TD No. 1053. | |
AMAP (Arctic Monitoring and Assessment Programme), 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Oslo, Norway, pp. 269. Accessed on: March 12, 2020. | |
Anttila K, Manninen T, Jaaskelainen E, et al., 2018. The role of climate and land use in the changes in surface albedo prior to snow melt and the timing of melt season of seasonal snow in northern land areas of 40°N-80°N during 1982-2015. Remote Sensing, 10(10): 1-19. | |
Bamber JL, Griggs JA, RTWL Hurkmans, et al., 2013. A new bed elevation dataset for Greenland. Cryosphere, 7(2): 499-510. DOI: 10.5194/tc-7-499-2013.
doi: 10.5194/tc-7-499-2013 |
|
Barber DG, 2017. Arctic sea ice. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. 103-136. | |
Barnes E, 2013. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 40(17): 4734-4739. DOI: 10.1002/grl. 50880.
doi: 10.1002/grl. 50880 |
|
Barry RG, Gan TY, 2011. The Global Cryosphere: Past, Present, and Future. Cambridge University Press. | |
Biemans H, Siderius C, Lutz AF, et al., 2019. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2: 594-601. DOI: 10.1038/s41893-019-0305-3.
doi: 10.1038/s41893-019-0305-3 |
|
Biskaborn BK, Smith SL, Noetzli J, et al., 2019. Permafrost is warming at a global scale. Nature Communications, 10(1): 1-13. DOI: 10.1038/s41467-018-08240-4.
doi: 10.1038/s41467-018-08240-4 |
|
Bormann KJ, Brown RD, Derksen C, et al., 2018. Estimating snow-cover trends from space. Nature Climate Change, 8(11): 924-928. DOI: 10.1038/s41558-018-0318-3.
doi: 10.1038/s41558-018-0318-3 |
|
Brown R, 2017. Arctic terrestrial snow cover in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. 25-64. | |
Che T, Hao XH, Dai LY, et al., 2019. Snow cover variation and its impacts over the Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1247-1253. DOI: 10. 16418/j.issn.1000-3045.2019.11.007.
doi: 10. 16418/j.issn.1000-3045.2019.11.007 |
|
Chen XN, Long D, Liang SL, et al., 2018. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sensing of Environment, 215: 284-299. DOI: 10.1016/j.rse.2018.06.021.
doi: 10.1016/j.rse.2018.06.021 |
|
Cheng GD, Zhao L, Li R, et al., 2019. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 64(27): 2783-2795. DOI: 10.1360/TB-2019-0191.
doi: 10.1360/TB-2019-0191 |
|
Comiso JC, Gersten R, Stock LV, et al., 2017. Positive trend in the Antarctic Sea Ice Cover and associated changes in surface temperature. Journal of Climate, 30(6): 2251-2267. DOI: 10.1175/JCLI-D-16-0408.1.
doi: 10.1175/JCLI-D-16-0408.1 |
|
Comiso JC, Meier WN, Gersten R, 2017. Variability and trends in the Arctic Sea ice cover: Results from different techniques. Journal of Geophysical Research-Oceans, 122(8): 6883-6900. DOI: 10.1002/2017JC012768.
doi: 10.1002/2017JC012768 |
|
Consortium R, 2017. Randolph Glacier Inventory (RGI) - A Dataset of Global Glacier Outlines: Version 6.0, in Technical Report, Global Land Ice Measurements from Space. Boulder, Colorado, USA. Digital Media. | |
Diaz S, Pascual U, Stenseke M, et al., 2018. Assessing nature's contributions to people. Science, 359(6373): 270-272. DOI: 10.1126/science.aap8826.
doi: 10.1126/science.aap8826 |
|
Ding YJ, Zhang SQ, 2015. The hydrological impact of cryosphere water cycle on global-scale water cycle (in Chinese). Chinese Science Bulletin, 60: 593-602. DOI: 10. 1360/N972014-00899.
doi: 10. 1360/N972014-00899 |
|
Ding YJ, Zhang SQ, Zhao L, et al.,2019. Global warming weakening the inherent stability of glaciers and permafrost. Science Bulletin, 64(4): 245-253. DOI: 10.1016/j.scib.2018. 12.028.
doi: 10.1016/j.scib.2018. 12.028 |
|
Du J, Kimball J, Duguay C, et al., 2017. Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11(1): 47-63. DOI: 10. 5194/tc-11-47-2017.
doi: 10. 5194/tc-11-47-2017 |
|
Farinotti D, Huss M, Furst JJ, et al., 2019. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3): 168-173. DOI: 10.1038/s41561-019-0513-5.
doi: 10.1038/s41561-019-0513-5 |
|
Fetterer FK, Knowles WN, Meier M, et al., 2017. Updated daily. Sea Ice Index, Version3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. | |
Fontrodona-Bach A, van der Schrier G, Melsen LA, et al., 2018. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophysical Research Letters, 45(22): 12312-12319. DOI: 10.1029/2018GL079799.
doi: 10.1029/2018GL079799 |
|
Fretwell P, Pritchard HD, Vaughan DG, et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1): 375-393. DOI: 10.5194/tc-7-375-2013.
doi: 10.5194/tc-7-375-2013 |
|
Gao K, Wang HM, Huang S, et al., 2019. Characteristics of frozen soil environment in Mohe-Jiagedaqi section of Sino-Russian crude oil pipeline. Journal of Engineering of Heilongjiang University, 10(2): 8-55. | |
Gu Y, Li P, Liu J, et al., 2020. Analysis on engineering geological survey of Arctic Submarine Cabling Routing. Ocean Development and Management, 37(1): 10-14. | |
Guo L, Wu Y, Zheng H, et al., 2018. Uncertainty and variation of remotely sensed Lake Ice Phenology across the Tibetan Plateau. Remote Sensing, 10(10): 1534. DOI: 10.3390/rs10101534.
doi: 10.3390/rs10101534 |
|
Guo WH, 2019. The Economical Study of Arctic Route under the Emission Reduction Policy. M.S. Thesis. Jimei University. | |
Halfar J, Adey WH, Kronz A, et al., 2013. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proceedings of the National Academy of Sciences of the United States of America, 110(49): 19737-19741. DOI: 10.1073/pnas.1313775110.
doi: 10.1073/pnas.1313775110 |
|
Hjort J, Karjalainen O, Aalto J, et al., 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 9: 5147. DOI: 10.1038/s41467-018-07557-4.
doi: 10.1038/s41467-018-07557-4 |
|
Holland PR, 2014. The seasonality of Antarctic sea ice trends. Geophysical Research Letters, 41(12): 4230-4237. DOI: 10.1002/2014GL060172.
doi: 10.1002/2014GL060172 |
|
Hood E, Battin TJ, Fellman JB, et al., 2015. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8(2): 91-96. DOI: 10.1038/ngeo2331.
doi: 10.1038/ngeo2331 |
|
Hotaling S, Hood E, Hamilton TL, 2017. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environmental Microbiology, 19(8): 2935-2948. DOI: 10.1111/1462-2920.13766.
doi: 10.1111/1462-2920.13766 |
|
Hu ZY, Dietz A, Kuenzer C, 2019. Deriving regional snow line dynamics during the ablation seasons 1984-2018 in European Mountains. Remote Sensing, 11(8): 1-21. DOI: 10. 3390/rs11080933.
doi: 10. 3390/rs11080933 |
|
Hugelius G, Strauss J, Zubrzycki S, et al., 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23): 6573-6593. DOI: 10.5194/bg-11-6573-2014.
doi: 10.5194/bg-11-6573-2014 |
|
Immerzeel WW, Lutz AF, Andrade M, et al., 2020. Importance and vulnerability of the world's water towers. Nature, 577(7790): 364-369. DOI: 10.1038/s41586-019-1822-y.
doi: 10.1038/s41586-019-1822-y |
|
IPCC, 2007. Climate Change2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon SD, Qin M, Manning Z, et al., (eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 996. | |
IPCC, 2013. Climate Change2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). In: Stocker D, Qin GK, Plattner M, et al. (eds). Cambridge, United Kingdom and New York, USA: Cambridge University Press. | |
IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | |
Jin HJ, Yu QH, 2006. Stability of engineering foundations of oil pipelines in permafrost regions: A review. Oil & Gas Storage and Transportation, 25(2): 13-17. | |
Kaab A, Leinss S, Gilbert A, et al., 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11(2): 114-120. DOI: 10.1038/s41561-017-0039-7.
doi: 10.1038/s41561-017-0039-7 |
|
Kang SC, Guo WQ, Zhong XY, et al., 2020. Changes in the mountain cryosphere and their impacts and adaptation measures. Climate Change Research, 16(2): 143-152. DOI: 10. 12006/j.issn.1673-1719.2019.257.
doi: 10. 12006/j.issn.1673-1719.2019.257 |
|
Kinnard C, Zdanowicz CM, Fisher DA, et al., 2011. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479(7374): 509-512. DOI: 10.1038/nature10581.
doi: 10.1038/nature10581 |
|
Kummu M, De Moel H, Salvucci G, et al., 2016. Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th-21st centuries. Environmental Research Letters, 11(3): 034010. DOI: 10.1088/1748-9326/11/3/034010.
doi: 10.1088/1748-9326/11/3/034010 |
|
Lenton TM, Held H, Kriegler E, et al., 2008. Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1786-1793. DOI: 10.1073/pnas.0705414105.
doi: 10.1073/pnas.0705414105 |
|
Liu SY, Zhang Y, Liu Q, et al., 2017. Impact of Climate Change on Glaciers and Its Risk. Beijing: Science Press, pp. 1-256. | |
Lozier M, Li F, Bacon S, et al., 2019. A sea change in our view of overturning in the subpolar North Atlantic. Science, 363(6426): 516-521. DOI: 10.1126/science.aau6592.
doi: 10.1126/science.aau6592 |
|
Ludescher J, Yuan NM, Bunde A, 2019. Detecting the statistical significance of the trends in the Antarctic sea ice extent: an indication for a turning point. Climate Dynamics, 53(1): 237-244. DOI: 10.1007/s00382-018-4579-3.
doi: 10.1007/s00382-018-4579-3 |
|
Luo Y, Wang X, Piao S, et al., 2018. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-North Karakoram. Scientific Reports, 8(1): 16470. DOI: 10.1038/s41598-018-34829-2.
doi: 10.1038/s41598-018-34829-2 |
|
Margesin R, Collins T, 2019. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Applied Microbiology and Biotechnology, 103(6): 2537-2549. DOI: 10.1007/s00253-019-09631-3.
doi: 10.1007/s00253-019-09631-3 |
|
Mo HM, Hong HP, Fan F, 2017. Using remote sensing information to estimate snow hazard and extreme snow load in China. Natural Hazards, 89(1): 1-17. DOI: 10.1007/s11069-017-2939-7.
doi: 10.1007/s11069-017-2939-7 |
|
Mu JX, Li ZQ, Zhang H, et al., 2018. The global glacierized area: current situation and recent change, based on the Randolph Glacier Inventory (RGI6.0) published in 2017. Journal of Glaciology and Geocryology, 40(2): 238-248. DOI: 10.7522/j.issn.1000-0240.2018.0028. (in Chinese)
doi: 10.7522/j.issn.1000-0240.2018.0028. |
|
Mudryk LR, Kushner PJ, Derksen C, et al., 2017. Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44(2): 919-926. DOI: info:doi/10.1002/2016GL071789.
doi: info:doi/10.1002/2016GL071789 |
|
Nations United, 2015. Transforming our world: the 2030 Agenda for Sustainable Development. | |
Niu FJ, Liu MH, Cheng GD, et al., 2015. Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions. Science China: Earth Sciences, 58: 1669-1676. DOI: 10.1007/s11430-015-5063-0.
doi: 10.1007/s11430-015-5063-0 |
|
Onarheim IH, Arthun M, 2017. Toward an ice-free Barents Sea. Geophysical Research Letters, 44(16): 8387-8395. DOI: 10.1002/2017GL074304.
doi: 10.1002/2017GL074304 |
|
Onarheim IH, Eldevik T, Smedsrud LH, et al., 2018. Seasonal and regional manifestation of arctic sea ice loss. Journal of Climate, 31(12): 4917-4932. DOI: 10.1175/JCLI-D-17-0427.1.
doi: 10.1175/JCLI-D-17-0427.1 |
|
Polyak L, Alley RB, Andrews JT, et al., 2010. History of sea ice in the Arctic. Quaternary Science Reviews, 29(15): 1757-1778. DOI: 10.1016/j.quascirev.2010.02.010.
doi: 10.1016/j.quascirev.2010.02.010 |
|
Qin DH, Ding YJ, 2009. Cryospheric changes and their impacts: present, trends and key issues. Advances in Climate Change Research, 5(4): 187-195. DOI: 10.1016/S1003-6326(09)60084-4.
doi: 10.1016/S1003-6326(09)60084-4 |
|
Qin DH, Xiao CD, Ding YJ, et al., 2006. Progress on cryospheric studies by international and Chinese communities and perspectives. Journal of Applied Meteorological Science, 6: 649-656. (in Chinese) | |
Qin DH, Yao TD, Ding YJ, et al., 2017. Introduction to Cryosphere Science. Beijing: Science Press, pp. 1-346. | |
Qin DH, Zhou BT, Xiao CD, 2014. Progress in studies of cryospheric changes and their impacts on climate of China. Acta Meteorologica Sinica, 72(5): 869-879. DOI: CNKI:SUN:QXXW.0.2014-05-005.
doi: CNKI:SUN:QXXW.0.2014-05-005 |
|
Schaefer K, Lantuit H, Romanovsky VE, et al., 2014. The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9(8): 085003. DOI: 10.1088/1748-9326/9/8/085003.
doi: 10.1088/1748-9326/9/8/085003 |
|
Schellekens J, Dutra E, Alberto Martínez-de la T, et al., 2016. A global water resources ensemble of hydrological models: the earth observe tier-1 dataset. Earth System Science Data, 9(2): 1-35. DOI: https://doi.org/10.5194/essd-9-389-2017.
doi: 10.5194/essd-9-389-2017 |
|
Schuur EAG, Abbott B, 2011. Climate change: High risk of permafrost thaw. Nature, 480(7375): 32-33. DOI: 10.1038/480032a.
doi: 10.1038/480032a |
|
Shangguan DH, Liu SY, Ding YJ, et al., 2016. Characterizing the May 2015 Karayaylak glacier surge in the eastern Pamir plateau using remote sensing. Journal of Glaciology, 62(235): 944-953. DOI: 10.1017/jog.2016.81.
doi: 10.1017/jog.2016.81 |
|
Sharma S, Blagrave K, Magnuson J, et al., 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9(3): 227-231. DOI: 10.1038/s41558-018-0393-5.
doi: 10.1038/s41558-018-0393-5 |
|
Shi YF, Cheng GD, 1991. Cryosphere and Global Change. Bulletin of the Chinese Academy of Sciences, 4: 287-291. | |
Sistla SA, Moore JC, Simpson RT, et al., 2013. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497(7451): 615-618. DOI: 10.1038/nature12129.
doi: 10.1038/nature12129 |
|
Stephan G, 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere Discussions, 5(1): 1547-1582. DOI: 10.5194/tcd-5-1547-2011.
doi: 10.5194/tcd-5-1547-2011 |
|
Stroeve J, Notz D, 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13(10): 1-23. DOI: 10.1088/1748-9326/aade56.
doi: 10.1088/1748-9326/aade56 |
|
Takala M, Luojus K, Pulliainen J, et al., 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, 115(12): 3517-3529. DOI: 10.1016/j.rse. 2011.08.014.
doi: 10.1016/j.rse. 2011.08.014 |
|
Vavrus SJ, Wang FY, Martin JE, et al., 2017. Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. Journal of Climate, 30(11): 4317-4333. DOI: 10.1175/JCLI-D-16-0762.1.
doi: 10.1175/JCLI-D-16-0762.1 |
|
Walsh JE, Fetterer F, Stewart JS, et al., 2017. A database for depicting Arctic Sea Ice variations back to 1850. Geographical Review, 107(1): 89-107. DOI: 10.1111/j.1931-0846. 2016.12195.x.
doi: 10.1111/j.1931-0846. 2016.12195.x |
|
Wang SJ, Ding YJ, Xiao CD, 2018. Integrated impacts of cryosphere change on the economic and social system and its adaptive management strategies. Journal of Glaciology and Geocryology, 40(5): 863-874. (in Chinese) | |
Wang SJ, Xiao CD, 2019. Global cryospheric disaster at high risk areas: Impacts and trend. Chinese Science Bulletin, 64: 891-901. DOI: 10.1360/N972018-01124. (in Chinese)
doi: 10.1360/N972018-01124. |
|
Wang TY, Wu TH, Wang P, et al., 2019. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Science of the Total Environment, 650(1): 661-670. DOI: CNKI:SUN:BCDT.0.2018-05-001.
doi: CNKI:SUN:BCDT.0.2018-05-001 |
|
Wu QB, Niu FJ, 2013. Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chinese Science Bulletin, 58: 115-130. DOI: 10.1007/s11434-012-5587-z.
doi: 10.1007/s11434-012-5587-z |
|
Wu TH, Qin YH, Wu XD, et al., 2018. Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980 to 2013. Theoretical and Applied Climatology, 132(3-4): 1187-1199. DOI: 10.1007/s00704-017-2157-y.
doi: 10.1007/s00704-017-2157-y |
|
Xie ZC, 1988. Development of cryosphere science and its basic research problems. Geoscience Information, 4: 17-21. | |
Xu XM, Zhang ZQ, Wu QB, 2017. Simulation of permafrost changes on the Qinghai-Tibet Plateau, China, over the past three decades. International Journal of Digital Earth, 10(5): 522-538. DOI: https://doi.org/10.1080/17538947.2016. 1237571.
doi: 10.1080/17538947.2016. 1237571 |
|
Yang X, Pavelsky T, Allen G, 2020. The past and future of global river ice. Nature, 577(7788): 69-73. DOI: 10.1038/s41586-019-1848-1.
doi: 10.1038/s41586-019-1848-1 |
|
Yao XJ, Liu SY, Sun MP, et al., 2014. Study on the glacial lake outburst flood events in Tibet since the 20th century. Journal of Natural Resources, 29(8): 1377-1390. DOI: 10. 11849/zrzyxb.2014.08.010.
doi: 10. 11849/zrzyxb.2014.08.010 |
|
Yao TD, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667. DOI: 10.1038/nclimate1580.
doi: 10.1038/nclimate1580 |
|
Yao TD, Yu WS, Wu GJ, et al., 2019. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chinese Science Bulletin, 64(27): 2770-2782. | |
Zemp M, Huss M, Thibert E, et al., 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752): 382-386. DOI: 10.1038/s41586-019-1071-0.
doi: 10.1038/s41586-019-1071-0 |
|
Zhang T, Barry RG, Knowles KJ, et al., 2008. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 31(1): 47-68. DOI: 10.1080/10889370802175895.
doi: 10.1080/10889370802175895 |
|
Zhang Z, Liu SY, Wei JF, et al., 2016. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing. Journal of Glaciology and Geocryology, 38(1): 11-20. DOI: 10.7522/j.isnn.1000-0240.2016.0002.
doi: 10.7522/j.isnn.1000-0240.2016.0002 |
|
Zhang ZQ, Wu QB, Xun XY, et al., 2019. Spatial distribution and changes of Xing'an permafrost in China over the past three decades. Quaternary International, 523: 16-24. DOI: 10.1016/j.quaint.2019.06.007.
doi: 10.1016/j.quaint.2019.06.007 |
|
Zhao L, Hu GJ, Zou DF, et al., 2019. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233-1246. DOI: 10.16418/j.issn.1000-3045.2019.11.006.
doi: 10.16418/j.issn.1000-3045.2019.11.006 |
|
Zhao L, Wu X, Wang Z, et al., 2018. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau. Scientific Reports, 8: 3656. DOI: 10.1038/s41598-018-22024-2.
doi: 10.1038/s41598-018-22024-2 |
|
Zhao LT, Xu LX, Gupta PK, 2020. Study on highway route selection in permafrost regions of the Qinghai-Tibet Plateau. Subgrade Engineering, 208: 20-24. DOI: 10.13379/j.issn. 1003-8825.2020.01.05.
doi: 10.13379/j.issn. 1003-8825.2020.01.05 |
|
Zhang T, Roger G, Barry K, et al., 1999. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geography, 23(2): 147-169. DOI: 10.1080/10889370802175895.
doi: 10.1080/10889370802175895 |
|
Zhang T, 2005. Historical overview of permafrost studies in China. Physical Geography, 26(4): 279-298. DOI: https://doi.org/10.2747/0272-3646.26.4.279.
doi: 10.2747/0272-3646.26.4.279 |
|
Zhong XT, Zhang S, Kang K, et al., 2018. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012. Cryosphere, 12(1): 227-245. DOI: 10.5194/tc-12-227-2018.
doi: 10.5194/tc-12-227-2018 |
|
Zhou Y, Guo D, Qiu G, et al., 2000. Geocryology in China. Beijing: Science Press. (in Chinese) | |
Zhu YX, Ding YH, Xu HG, 2007. The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in East China. Acta Meteorologica Sinica, 6: 946-958. DOI: 10.1002/jrs.1570.
doi: 10.1002/jrs.1570 |
[1] | Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52. |
[2] | ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388. |
[3] | SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502. |
[4] | LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326. |
[5] | Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217. |
[6] | YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247. |
[7] | RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492. |
[8] | Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206. |
[9] | QianTao Zhu, WenZhi Zhao, Jian Guo, Hu Liu. Cash gifts, perception of social sphere and distribution of water resources for rural farmers in a typical oasis area in Northwest China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 180-186. |
[10] | ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487. |
[11] | Sanjaya Gurung, Bikas C. Bhattarai, Rijan B. Kayastha, Dorothea Stumm, Sharad P. Joshi, Pradeep K. Mool. Study of annual mass balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang,Nepal [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 311-318. |
[12] | Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226. |
[13] | LiNa Mi, HongLang Xiao, ZhengLiang Yin, ShengChun Xiao. Dynamic evaluation of groundwater resources in Zhangye Basin [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 250-262. |
[14] | FuHui Jian, XiaoYu Song, LiLi Li, WenQi Gao. The evolution and enlightenment of water resources accounting from accounts to balance sheet [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 156-162. |
[15] | Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94. |
|