Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 371-379.doi: 10.3724/SP.J.1226.2020.00371

Previous Articles     Next Articles

Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances

ZhiGuo Rao(),YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang   

  1. College of Resources and Environmental Sciences, Hunan Normal University, Changsha, Hunan 410081, China
  • Received:2020-07-02 Accepted:2020-10-29 Online:2020-12-31 Published:2021-01-14
  • Contact: ZhiGuo Rao
  • Supported by:
    the National Science Foundation of China(41772373);the Hunan Provincial Natural Science foundation of China(2018JJ1017);the National Key R&D Program of China(2018YFA0606404);the Construction Program for First-Class Disciplines (Geography) of Hunan Province, China(5010002)


Holocene δ18O records from various archives (ice cores, cave stalagmites, and peat sediments) from the Xinjiang region of northwestern China, in arid central Asia (ACA), are all derived ultimately from local precipitation δ18O (δ18Op). Nevertheless, they have been proposed as indicators of different climatic parameters, such as wetness and temperature changes. This article summarizes previously reported records of moisture sources for the Xinjiang region and the results of modern observations conducted at an ice core site and a peat site in the Altai Mountains. The findings are used to propose that the overall positive trends in Holocene δ18O records from the various archives from the Xinjiang region primarily reflect the Holocene's long-term warming trend. It is concluded that more site-specific modern observations are needed to further elucidate the environmental significance of Holocene δ18O records from this region, especially for the separation of different seasonal temperature signals present within δ18O records.

Key words: arid central Asia, precipitation δ18O, Holocene temperature history, ice core, stalagmite, peat

Figure 1

Locations of the study sites. (1) Western Belukha Plateau (WBP; Aizen et al., 2016). (2) Big Black peatland (BBP; Xu et al., 2019). (3) Sahara sand peatland (SSP; Rao et al., 2020). (4) Kesang Cave (Cheng et al., 2012). (5) Baluk Cave (Liu et al.,2019). (6) Tonnel?naya Cave (Cheng et al., 2016b). (7) Fedchenko glacier (Aizen et al., 2009). (8) Kinderlinskaya Cave (Baker et al., 2017). (9) Lena River Delta (Meyer et al., 2015). (10-12) Shar-khana, Gurvan Ze'zerd, and Lovon Chombo Caves (Vaks et al., 2013; stalagmite growth in these three caves only occurred at about 400 ka B.P. during the past 500 ka). The red dashed line represents the modern northern limit of the Asian summer monsoon (Chen et al., 2008); the area enclosed by the purple dashed line is arid central Asia (Chen et al., 2019); the blue and green dashed lines represent the northern limits of the Asian summer monsoon during the last interglacial period and the Holocene Optimum period, respectively (Dong et al., 1998)"

Table 1

Location information of the study sites"

Site codeLocationLongitudeLatitudeAltitude
1Western Belukha Plateau (WBP)86°33′E49°48′N4,115 m
2Big Black peatland (BBP)87°11′E48°40′N2,168 m
3Sahara sand peatland (SSP)88°21′46.78″E48°6′46.70″N2,446 m
4Kesang Cave81°45′E42°52′N2,070 m
5Baluk Cave84°44′E42°26′N2,752 m
6Tonnel?naya Cave67°14′E38°24′N3,226 m
7Fedchenko glacier72°15′E38°15′E5,206/5,365 m
8Kinderlinskaya Cave56°54′E52°12′N240 m
9Lena River Delta125°00′-127°15′E72°00′-72°45′N25 m
10Shar-khana Cave45°35′23.1″E108°19′18.8″E1,200 m
11Gurvan Ze'zerd Cave42°30′15.7″E107°27′00.1″E1,075 m
12Lovon Chombo Cave42°35′18.4″E107°49′32.0″E1,195 m

Figure 2

Comparison of relevant Holocene δ18O records. (a) Kesang stalagmite δ18O record (Cheng et al., 2012); (b) Tonnel'naya stalagmite δ18O record (Cheng et al., 2016b); (c) Kesang stalagmite δ18O record (Cai et al., 2017); (d) Baluk stalagmite δ18O record (Liu et al., 2019, 2020); (e) WBP ice core δ18O record (Aizen et al., 2016); (f) BBP peat α-cellulose δ18O record (Xu et al., 2019); (g) SSP peat α-cellulose δ18O record (Rao et al., 2020); (h) Kinderlinskaya stalagmite δ18O record (Baker et al., 2017); (i) Lena River Delta ice wedge δ18O record (Meyer et al., 2015). The different colored lines in a-d represent δ18O data from different stalagmite samples"

Figure 3

Results of hydrological observations during the summer of 2017 in the SSP in the Altai Mountains (Plot 1 and Plot 2 are two representative sites in the wetland). The trends of water table change in Plot 1 and Plot 2 are consistent with those of the inlet water and outlet water of the wetland. Summer rainfall events are indicated by the vertical blue bars. The timing and corresponding water table fluctuations of the rainfall events (precipitation amount >10 mm) are indicated by vertical gray dashed lines. The rapid increase and decrease of the water table during these rainfall events indicate the fast drainage of summer rainfall in the wetland (Shi et al., 2019)"

Figure 4

Comparison of the SSP peat α-cellulose δ13C summer temperature record (a; Rao et al., 2019a) and the WBP ice core δ18O warm-season mean temperature record (b; Aizen et al., 2016). The squares with error bars represent the absolute dating results of the two records"

Aizen VB, Aizen E, Fujita K, et al., 2005. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia. Journal of Glaciology, 51(175): 637-654. DOI: 10.3189/172756505781829034.
doi: 10.3189/172756505781829034
Aizen VB, Mayewski PA, Aizen EM, et al., 2009. Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. Journal of Glaciology, 55(190): 275-291. DOI: 10.3189/002214309788608787.
doi: 10.3189/002214309788608787
Aizen EM, Aizen VB, Takeuchi N, et al., 2016. Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. Journal of Glaciology, 62(233): 411-439. DOI: 10.1017/jog.2016.34.
doi: 10.1017/jog.2016.34
Baker JL, Lachniet MS, Chervyatsova O, et al., 2017. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nature Geoscience, 10: 430-435. DOI: 10.1038/NGEO2953.
doi: 10.1038/NGEO2953
Butzin M, Werner M, Masson-Delmotte V, et al., 2014. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmospheric Chemistry and Physics, 14: 5853-5869. DOI: 10.5194/acp-14-5853-2014.
doi: 10.5194/acp-14-5853-2014
Cai YJ, Chiang JCH, Breitenbach SFM, et al., 2017. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quaternary Science Reviews, 158: 15-28. DOI: 10.1016/j.quascirev.2016.12.014.
doi: 10.1016/j.quascirev.2016.12.014
Chen FH, Yu ZC, Yang ML, et al., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27: 351-364. DOI: 10.1016/j.quascirev.2007.10.017.
doi: 10.1016/j.quascirev.2007.10.017
Chen FH, Chen JH, Huang W, et al., 2019. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth Science Reviews, 192: 337-354. DOI: 10.1016/j.earscirev.2019.03.005.
doi: 10.1016/j.earscirev.2019.03.005
Cheng H, Zhang PZ, Spötl C, et al., 2012. The climatic cyclicity in semiarid-arid Central Asia over the past 500,000 years. Geophysical Research Letters, 39: L01705. DOI: 10.1029/2011GL050202.
doi: 10.1029/2011GL050202
Cheng H, Edwards RL, Sinha A, et al., 2016a. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534: 640-646. DOI: 10.1038/nature18591.
doi: 10.1038/nature18591
Cheng H, Spötl C, Breitenbach SFM, et al., 2016b. Climate variations of Central Asia on orbital to millennial timescales. Scientific Reports, 6: 36975. DOI: 10.1038/srep36975.
doi: 10.1038/srep36975
Dansgaard W, 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468. DOI: 10.3402/tellusa.v16i4.8993.
doi: 10.3402/tellusa.v16i4.8993
Dong GR, Wang GY, Li XZ, et al., 1998. Palaeomonsoon vicissitudes in eastern desert region of China since last interglacial period. Science in China (Series D), 41(2): 215-224. DOI: 10.1007/bf02932443.
doi: 10.1007/bf02932443
Goldsmith Y, Broecker WS, Xu H, et al., 2017. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1817-1821. DOI: 10.1073/pnas.1616708114.
doi: 10.1073/pnas.1616708114
Grootes PM, Stuiver M, White JWC, et al., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455): 552-554. DOI: 10.1038/366552a0.
doi: 10.1038/366552a0
Han ST, Yuan YJ, 1990. The sequence of paleoclimatic variation of Balikun Lake of Xinjiang in the past 35000 years. Acta Geographica Sinica, 45(3): 350-362. (in Chinese)
Henderson K, Laube A, Gäggeler HW, et al., 2006. Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai. Journal of Geophysical Research, 111: D03104. DOI: 10.1029/2005JD005819.
doi: 10.1029/2005JD005819
Lan JH, Xu H, Lang YC, et al., 2020. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age. Geology, 48(4): 307-312. DOI: 10.1130/G46811.1.
doi: 10.1130/G46811.1
Li JJ, 1990. The patterns of environmental changes since late Pleistocene in northwestern China. Quaternary Science, 3: 197-204. (in Chinese)
Liu XK, Rao ZG, Shen CC, et al., 2019. Holocene solar activity imprint on centennial-to multidecadal-scale hydroclimatic oscillations in Arid Central Asia. Journal of Geophysical Research: Atmospheres, 124: 2562-2573. DOI: 10.1029/2018JD029699.
doi: 10.1029/2018JD029699
Liu XK, Liu JB, Shen CC, et al., 2020. Inconsistency between records of δ18O and trace element ratios from stalagmites: Evidence for increasing mid-late Holocene moisture in arid central Asia. The Holocene, 30(3): 369-379. DOI: 10.1177/0959683619887431.
doi: 10.1177/0959683619887431
Malygina NS, Eirich AN, Papina TS, 2016. Isotopic composition of winter precipitation in Altai foothills. IOP Conference Series: Earth and Environmental Science, 48: 012011. DOI: 10.1088/1755-1315/48/1/012011.
doi: 10.1088/1755-1315/48/1/012011
Meyer H, Opel T, Laepple T, et al., 2015. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nature Geoscience, 8: 122-125. DOI: 10.1038/NGEO2349.
doi: 10.1038/NGEO2349
North Greenland Ice Core Project members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005): 147-151. DOI: 10.1038/nature02805.
doi: 10.1038/nature02805
Rao ZG, Huang C, Xie LH, et al., 2019a. Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record. Quaternary Science Reviews, 203: 56-67. DOI: 10.1016/j.quascirev. 2018.11.010.
doi: 10.1016/j.quascirev. 2018.11.010
Rao ZG, Wu DD, Shi FX, et al., 2019b. Reconciling the 'westerlies' and 'monsoon' models: A new hypothesis for the Holocene moisture evolution of the Xinjiang region, NW China. Earth Science Reviews, 191: 263-272. DOI: 10.1016/j.earscirev.2019.03.002.
doi: 10.1016/j.earscirev.2019.03.002
Rao ZG, Shi FX, Li YX, et al., 2020. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia. Quaternary Science Reviews, 232: 106217. DOI: 10.1016/j.quascirev.2020.106217.
doi: 10.1016/j.quascirev.2020.106217
Rozanski K, Araguás-Araguás L, Gonfiantini R, 1992. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science, 258(5084): 981-985. DOI: 10.1126/science.258.5084.981.
doi: 10.1126/science.258.5084.981
Rudaya N, Tarasov P, Dorofeyuk N, et al., 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quaternary Science Reviews, 28: 540-554. DOI: 10. 1016/j.quascirev.2008.10.013.
doi: 10. 1016/j.quascirev.2008.10.013
Seierstad IK, Abbott PM, Bigler M, et al., 2014. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews, 106: 29-46. DOI: 10. 1016/j.quascirev.2014.10.032.
doi: 10. 1016/j.quascirev.2014.10.032
Shi FX, Rao ZG, Cao JT, et al., 2019. Meltwater is the dominant water source controlling α-cellulose δ18O in a vascular-plant-dominated alpine peatland in the Altai Mountains, Central Asia. Journal of Hydrology, 572: 192-205. DOI: 10.1016/j.jhydrol.2019.02.030.
doi: 10.1016/j.jhydrol.2019.02.030
Tian LD, Yao TD, MacClune K, et al., 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research, 112: D10112. DOI: 10.1029/2006JD007718.
doi: 10.1029/2006JD007718
Vaks A, Gutareva OS, Breitenbanch SFM, et al., 2013. Speleothems reveal 500,000-year history of Siberian Permafrost. Science, 340(6129): 183-186. DOI: 10.1126/science. 1228729.
doi: 10.1126/science. 1228729
Wang SJ, Zhang MJ, Hughes CE, et al., 2016. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, central Asia. Tellus B: Chemical and Physical Meteorology, 68(1): 289-299. DOI: 10.3402/tellusb.v68.26206.
doi: 10.3402/tellusb.v68.26206
Wang SJ, Zhang MJ, Crawford J, et al., 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research: Atmospheres, 122: 2667-2682. DOI: 10.1002/2015JD024626.
doi: 10.1002/2015JD024626
Wang YJ, Cheng H, Edwards RL, et al., 2001. A high-resolution absolute-dated Late Pleistocene Monsoon record from Hulu Cave, China. Science, 294: 2345-2348. DOI: 10.1126/science.1064618.
doi: 10.1126/science.1064618
Wang YJ, Cheng H, Edwards RL, et al., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090-1093. DOI: 10.1038/nature06692.
doi: 10.1038/nature06692
Wu DD, Cao JT, Jia GD, et al., 2020. Peat brGDGTs-based Holocene temperature history of the Altai mountains in arid central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109464. DOI: 10.1016/j.palaeo.2019.109464.
doi: 10.1016/j.palaeo.2019.109464
Xu H, Zhou KE, Lan JH, et al., 2019. Arid Central Asia saw mid-Holocene drought. Geology, 47: 255-258. DOI: 10. 1130/G45686.1.
doi: 10. 1130/G45686.1
Yang SL, Ding ZL, Li YY, et al., 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America, 112(43): 13178-13183. DOI: 10.1073/pnas.1504688112.
doi: 10.1073/pnas.1504688112
[1] WeiZhen Sun, XiaoQing Cui, GuangMing Yu. Source and environmental significance of oxalate in Laohugou Glacier No. 12, Qilian Mountains, Western China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 126-133.
[2] JianZhong Xu, Amanda Grannas, CunDe Xiao, ZhiHeng Du, Amanda Willoughby, Patrick Hatcher, YanQing An. High-resolution mass spectrometric characterization of dissolved organic matter from warm and cold periods in the NEEM ice core [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 38-46.
[3] WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006 [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 367-377.
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .