Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (2): 71-82.doi: 10.3724/SP.J.1226.2020.00071.

Previous Articles     Next Articles

Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method

TanGuang Gao1,Jie Liu2,TingJun Zhang1(),ShiChang Kang3,4,ChuanKun Liu2,ShuFa Wang1,Mika Sillanpää5,YuLan Zhang3,4   

  1. 1.Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
    2.Institute of Water Sciences, College of Engineering, Peking University, Beijing 100871, China
    3.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    4.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
    5.Department of Civil and Environmental Engineering Florida International University Miami, FL 33199, USA
  • Received:2019-09-06 Accepted:2020-02-10 Online:2020-04-30 Published:2020-04-27
  • Contact: TanGuang Gao,TingJun Zhang


Understanding the interaction between groundwater and surface water in permafrost regions is essential to study flood frequencies and river water quality, especially in the high latitude/altitude basins. The application of heat tracing method, based on oscillating streambed temperature signals, is a promising geophysical method for identifying and quantifying the interaction between groundwater and surface water. Analytical analysis based on a one-dimensional convective-conductive heat transport equation combined with the fiber-optic distributed temperature sensing method was applied on a streambed of a mountainous permafrost region in the Yeniugou Basin, located in the upper Heihe River on the northern Tibetan Plateau. The results indicated that low connectivity existed between the stream and groundwater in permafrost regions. The interaction between surface water and groundwater increased with the thawing of the active layer. This study demonstrates that the heat tracing method can be applied to study surface water-groundwater interaction over temporal and spatial scales in permafrost regions.

Key words: surface water, groundwater, permafrost, heat tracing method, Tibetan Plateau

Figure 1

(a) Location of the Yeniugou (YNG) Basin in the northern Tibetan Plateau and the hydrometeorological measurement sites (S1, S2, P1, and P2), and the extent of FO-DTS measurement sites at P2 (b) and S1 (c)"

Figure 2

Boxplots of streambed temperature data at depths of 0, 20 cm, and 50 cm of (a) S1, (b) S2, (c) P1, and (d) P2 during July to September 2015"

Figure 3

Soil temperature data from boreholes near the streambed temperature observation sites (P1, P2, and S2) on June 18, August 9-10, and September 25-26 in 2015"

Figure 4

Thermal front velocities and their trends from July to September in 2015 at (a) S1, (b) S2, (c) P1, and (d) P2 along Yeniugou stream. The dashed blue lines represent a thermal front velocity of zero, and the black lines are the best linear fit"

Figure 5

Riverbed temperature variations measured by FO-DTS at (a) P2 from 19:00 September 21 to 03:00 September 23, 2015 and (b) S1 from 15:00 September 23 to 07:00 September 25, 2015"

Figure 6

Temperature variability along the cable obtained by FO-DTS at S1 (a) and P2 (b)"

Figure 7

Stream temperature data at depths of 0 cm, 20 cm, and 50 cm of S1 from July 2015 to July 2016. The blue boxes indicate the abnormal data in the measurement period"

Figure 8

Air temperature recorded at P2 in August 2015. Grey rectangles indicate days without a sinusoidal signal at 50-cm depth"

Figure 9

Thermal front velocity and water level changes at S1 from July to September in 2015"

Abbott BW, Jones JB, 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology, 21: 4570-4587. DOI: 10.1111/gcb.13069.
doi: 10.1111/gcb.13069
Bense VF, Ferguson G, Kooi H, 2009. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophysical Research Letters, 36. DOI: 10.1029/2009gl039225.
doi: 10.1029/2009gl039225
Bense VF, Kooi H, Ferguson G, et al., 2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. Journal of Geophysical Research, 117: F03036. DOI: 10.1029/2011jf002143.
doi: 10.1029/2011jf002143
Bi Y, Xie H, Huang C, et al., 2015. Snow cover variations and controlling factors at Upper Heihe River Basin, Northwestern China. Remote Sensing, 7: 6741-6762. DOI: 10.3390/rs70606741.
doi: 10.3390/rs70606741
Brown J, Hinkel K, Nelson F, 2000. The circumpolar active layer monitoring (calm) program: Research designs and initial results 1. Polar Geography, 24: 166-258. DOI: 10.1080/10889370009377698.
doi: 10.1080/10889370009377698
Carey SK, Boucher JL, Duarte CM, 2013. Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada). Hydrogeological Journal, 21: 67-77. DOI: 10.1007/s10040-012-0920-9.
doi: 10.1007/s10040-012-0920-9
Chasmer L, Hopkinson C, 2016. Threshold loss of discontinuous permafrost and landscape evolution. Global Change Biology, 23(7): 2672-2686. DOI: 10.1111/gcb.13537.
doi: 10.1111/gcb.13537
Cheng G, Jin H, 2013. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeological Journal, 21: 5-23. DOI: 10.1007/s10040-012-0927-2.
doi: 10.1007/s10040-012-0927-2
Cheng G, Li X, Zhao W, et al., 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Reviews, 1: 413-428. DOI: 10.1093/nsr/nwu017.
doi: 10.1093/nsr/nwu017
Constantz J, 2008. Heat as a tracer to determine streambed water exchanges. Water Resource Research, 44: W00D10. DOI: 10.1029/2008wr006996.
doi: 10.1029/2008wr006996
Constantz J, Eddy-Miller CA, Wheeler JD, et al., 2013. Streambed exchanges along tributary streams in humid watersheds. Water Resource Research, 49: 2197-2204. DOI: 10.1002/wrcr.20194.
doi: 10.1002/wrcr.20194
Cuo L, Zhang Y, Gao Y, et al., 2013. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. Journal of Hydrology, 502: 37-52. DOI: 10.1016/j.jhydrol.2013.08.003.
doi: 10.1016/j.jhydrol.2013.08.003
Evans SG, Ge S, Liang S, 2015. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resource Research, 51: 9564-9576. DOI: 10.1002/2015wr017732.
doi: 10.1002/2015wr017732
Gao T, Zhang T, Cao L, et al., 2016. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Regions Science and Technology, 126: 36-43. DOI: 10.1016/j.coldregions.2016.03.007.
doi: 10.1016/j.coldregions.2016.03.007
Ge S, McKenzie J, Voss C, et al., 2011. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophysical Research Letters, 38: L14402. DOI: 10.1029/2011gl047911.
doi: 10.1029/2011gl047911
Gordon RP, Lautz LK, Briggs MA, et al., 2012. Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. Journal of Hydrology, 420-421: 142-158. DOI: 10.1016/j.jhydrol.2011.11.053.
doi: 10.1016/j.jhydrol.2011.11.053
Goto S, Yamano M, Kinoshita M, 2005. Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface. Journal of Geophysical Research, 110:B01106. DOI: 10.1029/2004JB003419.
doi: 10.1029/2004JB003419
Grenier C, Anbergen H, Bense V, et al., 2018. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. Advances in Water Resources, 114: 196-218. DOI: 10.1016/j.advwatres.2018.02.001
doi: 10.1016/j.advwatres.2018.02.001
Hatch CE, Fisher AT, Revenaugh JS, et al., 2006. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resource Research, 42: W10410. DOI: 10.1029/2005wr004787.
doi: 10.1029/2005wr004787
Hatch CE, Fisher AT, Ruehl CR, et al., 2010. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. Journal of Hydrology, 389: 276-288. DOI: 10.1016/j.jhydrol.2010.05.046.
doi: 10.1016/j.jhydrol.2010.05.046
Huai B, Li Z, Sun M, et al., 2014. RS analysis of glaciers change in the Heihe River Basin in the last 50 years. Acta Geographica Sinica, 69: 365-376. DOI: 10.11821/dlxb 201403008.
doi: 10.11821/dlxb 201403008
Immerzeel V, Lutz AF, Andrade M, et al., 2019. Importance and vulnerability of the world’s water towers. Nature. DOI: 10.1038/s41586-019-1822-y.
doi: 10.1038/s41586-019-1822-y
Irvine DJ, Briggs MA, Lautz LK, et al., 2017. Using diurnal temperature signals to infer vertical groundwater-surface water exchange. Groundwater, 55: 10-26. DOI: 10.1111/gwat.12459.
doi: 10.1111/gwat.12459
Keery J, Binley A, Crook N, et al., 2007. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series. Journal of Hydrology, 336: 1-16. DOI: 10.1016/j.jhydrol.2006.12.003.
doi: 10.1016/j.jhydrol.2006.12.003
Koch JC, Kikuchi CP, Wickland KP, et al., 2014. Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resource Research, 50: 8141-8158. DOI: 10.1002/2014wr015586.
doi: 10.1002/2014wr015586
Krause S, Blume T, Cassidy N, 2012. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients. Hydrology and Earth System Science, 16: 1775-1792. DOI: 10. 5194/hess-16-1775-2012.
doi: 10. 5194/hess-16-1775-2012
Krause S, Hannah D, Blume T, 2011. Heat transport patterns at pool-riffle sequences of an UK lowland stream. Ecohydrology, 4: 549-563. DOI: 10.1002/eco.199.
doi: 10.1002/eco.199
Kurylyk BL, MacQuarrie KTB, McKenzie JM, 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth Science Reviews, 138: 313-334. DOI: 10.1016/j.earscirev.2014.06.006.
doi: 10.1016/j.earscirev.2014.06.006
Lauer F, Frede HG, Breuer L, 2013. Uncertainty assessment of quantifying spatially concentrated groundwater discharge to small streams by distributed temperature sensing. Water Resource Research, 49: 400-407. DOI:10.1029/2012wr012537.
doi: 10.1029/2012wr012537
Lautz LK, 2012. Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records. Journal of Hydrology, 464-465: 199-215. DOI: 10.1016/j.jhydrol.2012.07.006.
doi: 10.1016/j.jhydrol.2012.07.006
Li Z, Qi F, Song Y, et al., 2016a. Stable isotope composition of precipitation in the south and north slopes of Wushaoling Mountain, northwestern China. Atmospheric Research, 182: 87-101. DOI: 10.1016/j.atmosres.2016.07.023.
doi: 10.1016/j.atmosres.2016.07.023
Li Z, Qi F, Wang QJ, et al., 2016b. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China. Global Planetary Change, 136: 41-51. DOI: 10.1016/j.gloplacha.2015.12.002.
doi: 10.1016/j.gloplacha.2015.12.002
Liu C, Liu J, Wang XS, et al., 2016. Analysis of groundwater-lake interaction by distributed temperature sensing in Badain Jaran Desert, Northwest China. Hydrological Processes, 30: 1330-1341. DOI: 10.1002/hyp.10705.
doi: 10.1002/hyp.10705
Liu JS, Xie J, Gong TL, et al., 2011. Impacts of winter warming and permafrost degradation on water variability, upper Lhasa River, Tibet. Quaternary International, 244: 178-184. DOI: 10.1016/j.quaint.2010.12.018.
doi: 10.1016/j.quaint.2010.12.018
McCallum AM, Andersen MS, Rau GC, et al., 2012. A 1-D analytical method for estimating surface water-groundwater interactions and effective thermal diffusivity using temperature time series. Water Resource Research, 48: W11532. DOI: 10.1029/2012wr012007.
doi: 10.1029/2012wr012007
Quinton W, Baltzer J, 2013. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeological Journal, 21: 201-220. DOI: 10.1007/s10040-012-0935-2.
doi: 10.1007/s10040-012-0935-2
Rau GC, Andersen MS, McCallum AM, et al., 2010. Analytical methods that use natural heat as a tracer to quantify surface water-groundwater exchange, evaluated using field temperature records. Hydrogeological Journal, 18: 1093-1110. DOI: 10.1007/s10040-010-0586-0.
doi: 10.1007/s10040-010-0586-0
Rau GC, Andersen MS, McCallum AM, et al., 2014. Heat as a tracer to quantify water flow in near-surface sediments. Earth Science Reviews, 129: 40-58. DOI: 10.1016/j.earscirev.2013.10.015.
doi: 10.1016/j.earscirev.2013.10.015
Rau GC, Cuthbert MO, McCallum AM, et al., 2015. Assessing the accuracy of 1-D analytical heat tracing for estimating near-surface sediment thermal diffusivity and water flux under transient conditions. Journal of Geophysical Research- Earth Surface, 120: 1551-1573. DOI: 10.1002/2015jf003466.
doi: 10.1002/2015jf003466
Rose L, Krause S, Cassidy NJ, 2013. Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing. Water Resource Research, 49: 1741-1745. DOI: 10.1002/wrcr.20144.
doi: 10.1002/wrcr.20144
Selker JS, Thevenaz L, Huwald H, et al., 2006. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resource Research, 42: W12202. DOI: 10.1029/2006wr 005326.
doi: 10.1029/2006wr 005326
Stallman RW, 1965. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. Journal of Geophysical Research, 70: 2821-2827. DOI: 10.1029/JZ070i012p02821.
doi: 10.1029/JZ070i012p02821
Stonestrom DA, Constantz J, 2003. Heat as A Tool for Studying The Movement of Ground Water Near Streams. US Dept. of the Interior, US Geological Survey.
Suzuki S, 1960. Percolation measurements based on heat flow through soil with special reference to paddy fields. Journal of Geophysical Research, 65: 2883-2885. DOI: 10.1029/JZ065i009p02883.
doi: 10.1029/JZ065i009p02883
Tyler SW, Selker JS, Hausner MB, et al., 1960. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resource Research, 45: W00D23. DOI: 10.1029/2008wr007052.
doi: 10.1029/2008wr007052
Walvoord MA, Kurylyk BL, 2016. Hydrologic impacts of thawing permafrost-a review. Vadose Zone Journal, 15(6):DOI: 10.2136/vzj2016.01.0010.
Walvoord MA, Voss CI, Wellman TP, 2012. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resource Research, 48:W07524. DOI: 10.1029/2011wr011595.
doi: 10.1029/2011wr011595
Wang Q, Zhang T, Wu J, et al., 2013. Investigation on Permafrost Distribution over the Upper Reaches of the Heihe River in the Qilian Mountains. Journal of Glaciology and Geocryology, 35: 19-29. DOI: 10.7522/j.issn.1000-0240. 2013.0003.
doi: 10.7522/j.issn.1000-0240. 2013.0003
Wang T, 2006. 1:4000000 Map of the Glaciers, Frozen Ground and Deserts in China. Science Press, Beijing.
Webb BW, Hannah DM, Moore RD, et al., 2008. Recent advances in stream and river temperature research. Hydrological Processes, 22: 902-918. DOI: 10.1002/hyp.6994.
doi: 10.1002/hyp.6994
Wellman TP, Voss CI, Walvoord MA, 2013. Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeological Journal, 21: 281-298. DOI: 10. 1007/s10040-012-0941-4.
doi: 10. 1007/s10040-012-0941-4
Woo MK, 2012. Permafrost hydrology. Springer Science & Business Media, Berlin, Germany. DOI: 10.1007/978-3-642-23462-0.
doi: 10.1007/978-3-642-23462-0
Yao TD, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2: 663-667. DOI: 10.1038/nclimate1580.
doi: 10.1038/nclimate1580
Ye BS, Yang DQ, Zhang ZL, et al., 2009. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. Journal of Geophysical Research -Atmosphere, 114: D07102. DOI: 10.1029/2008jd010537.
doi: 10.1029/2008jd010537
[1] YanHu Mu,MingTang Chai,GuoYu Li,Wei Ma,Fei Wang,YaPeng Cao. Thermal influence of ponding and buried warm-oil pipelines on permafrost: a case study of the China-Russia Crude Oil Pipeline [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 59-70.
[2] ShanShan Chen,ShuYing Zang,Li Sun. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 1-11.
[3] MingTang Chai,YanHu Mu,GuoYu Li,Wei Ma,Fei Wang. Relationship between ponding and topographic factors along the China-Russia Crude Oil Pipeline in permafrost regions [J]. Sciences in Cold and Arid Regions, 2019, 11(6): 419-427.
[4] ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339.
[5] Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115.
[6] HaiYang Xi,JingTian Zhang,Qi Feng,Lu Zhang,JianHua Si,TengFei Yu. How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 62-80.
[7] Wei Cao,Yu Sheng,Ji Chen,JiChun Wu. Applying the AHP-FUZZY method to evaluate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau: a case study of Chaidaer-Muli Railway [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 447-457.
[8] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[9] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391.
[10] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[11] ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125.
[12] BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144.
[13] JianKun Liu, TengFei Wang, Zhi Wen. Research on pile performance and state-of-the-art practice in cold regions [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 1-11.
[14] SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94.
[15] YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579.
Full text



No Suggested Reading articles found!