Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 430-435.doi: 10.3724/SP.J.1226.2020.00430
Previous Articles Next Articles
Bai H, Xie J, Li D, 2001. The principal feature of Qinghai-Xizang Plateau monsoon variation in 40 years. Plateau Meteorology, 20(1): 22-27. (in Chinese) | |
Bian D, Yang Z, Li L, et al., 2006. The response of lake area change to climate variations in north Tibetan Plateau during last 30 years. Acta Geographica Sinica, 61(5): 510-518. (in Chinese) | |
Crétaux JF, Jelinski W, Calmant S, et al., 2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47(9): 1497-1507. DOI: 10.1016/j.asr. 2011.01.004.
doi: 10.1016/j.asr. 2011.01.004 |
|
Chu D, Pu Q, Wang D, et al., 2012. Water level variations of YamzhoYumco Lake in Tibet and the main driving forces. Journal of Mountain Science, 30(2): 239-247. (in Chinese) | |
Gao L, Liao J, Shen G, 2013. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002-2012). Journal of Applied Remote Sensing, 7(1): 073470. DOI: 10.1117/1.JRS.7.073470.
doi: 10.1117/1.JRS.7.073470 |
|
Ge S, Zonggha, 2005. A preliminary study on the change of lake areas in western Naqu, Tibet. Tibetan Science and Technology, 144: 14-18. (in Chinese) | |
Jacob T, Wahr J, Pfeffer WT, et al., 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482: 514-518. DOI: 10.1038/nature10847.
doi: 10.1038/nature10847 |
|
Kropáček J, Braun A, Kang S, et al., 2012. Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. International Journal of Applied Earth Observation and Geoinformation, 17: 3-11. DOI: 10.1016/j.jag.2011.10.001.
doi: 10.1016/j.jag.2011.10.001 |
|
Lei Y, Yao T, Bird BW, et al., 2013. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. Journal of Hydrology, 483: 61-67. DOI: 10.1016/j.jhydrol.2013.01.003.
doi: 10.1016/j.jhydrol.2013.01.003 |
|
Lei Y, Yao T, Yang K, et al., 2017. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophysical Research Letters, 44: 892-900. DOI: 10.1002/2016GL072062.
doi: 10.1002/2016GL072062 |
|
Li X, Xu H, Sun Y, et al., 2007. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resources Management, 21: 1505-1516. DOI: 10.1007/s11269-006-9096-1.
doi: 10.1007/s11269-006-9096-1 |
|
Liu J, Wang Z, Yu S, et al., 2009. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change, 67: 209-217. DOI: 10.1016/j.gloplacha.2009.03.010.
doi: 10.1016/j.gloplacha.2009.03.010 |
|
Lu A, Yao T, Wang L, et al., 2005. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing. Journal of Glaciology and Geocryology, 27(6): 783-792. (in Chinese) | |
Phan VH, Lindenbergh R, Menenti M, 2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17: 12-22. DOI: 10.1016/j.jag.2011. 09.015.
doi: 10.1016/j.jag.2011. 09.015 |
|
Song C, Huang B, Ke L, et al., 2014. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 514: 131-144. DOI: 10.1016/j.jhydrol.2014. 04.018.
doi: 10.1016/j.jhydrol.2014. 04.018 |
|
Song C, Ye Q, Cheng X, 2015a. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science Bulletin, 60(14): 1287-1297. DOI: 10.1007/s11434-015-0826-8.
doi: 10.1007/s11434-015-0826-8 |
|
Song C, Ye Q, Sheng Y, et al., 2015b. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014. Water, 7(9): 4685-4700. DOI: 10.3390/w7094685.
doi: 10.3390/w7094685 |
|
Wang X, Gong P, Zhao Y, et al., 2013. Water-level changes in China's large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 132: 131-144. DOI: 10. 1016/j.rse.2013.01.005.
doi: 10. 1016/j.rse.2013.01.005 |
|
Wu H, Wang N, Jiang X, et al., 2014. Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for2003-09. Annuals of Glaciology, 55(66): 239-247. DOI: 10.3189/2014AoG66A100.
doi: 10.3189/2014AoG66A100 |
|
Yang K, Yao F, Wang J, et al., 2017. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. Journal of Hydrology, 552: 633-645. DOI: 10.1016/j.jhydrol.2017.07.024.
doi: 10.1016/j.jhydrol.2017.07.024 |
|
Zhang B, Wu Y, Zhu L, et al., 2011. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. Journal of Hydrology, 405: 161-170. DOI: 10. 1016/j.jhydrol.2011.05.018.
doi: 10. 1016/j.jhydrol.2011.05.018 |
|
Zhang G, Xie H, Kang S, et al., 2011. Monitoring lake level changes on the Tibetan plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115: 1733-1742. DOI: 10.1016/j.rse.2011.03.005.
doi: 10.1016/j.rse.2011.03.005 |
|
Zhang G, Yao T, Xie H, et al., 2013. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40: 2125-2130. DOI: 10.1002/grl.50462.
doi: 10.1002/grl.50462 |
|
Zhang G, Yao T, Shum CK, et al., 2017. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters, 44: 5550-5560. DOI: 10.1002/2017GL073773.
doi: 10.1002/2017GL073773 |
|
Zhang G, Chen W, Xie H, 2019. Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46: 13107-13118. DOI: 10.1029/2019GL085032.
doi: 10.1029/2019GL085032 |
|
Zhou S, Kang S, Chen F, et al., 2013. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. Journal of Hydrology, 491: 89-99. DOI: 10.1016/j.jhydrol.2013. 03.030.
doi: 10.1016/j.jhydrol.2013. 03.030 |
[1] | JinLei Chen,Jun Wen,ShiChang Kang,XianHong Meng,XianYu Yang. The evapotranspiration and environmental controls of typical underlying surfaces on the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 53-61. |
[2] | KunXin Wang,YinSheng Zhang,Ning Ma,YanHong Guo,YaoHui Qiang. Cryosphere evapotranspiration in the Tibetan Plateau: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370. |
[3] | PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283. |
[4] | TanGuang Gao,Jie Liu,TingJun Zhang,ShiChang Kang,ChuanKun Liu,ShuFa Wang,Mika Sillanpää,YuLan Zhang. Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 71-82. |
[5] | ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339. |
[6] | Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115. |
[7] | RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492. |
[8] | YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391. |
[9] | HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218. |
[10] | ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125. |
[11] | BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144. |
[12] | SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94. |
[13] | YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579. |
[14] | ShaoYing Wang, Yu Zhang, ShiHua Lyu, LunYu Shang, YouQi Su, HanHui Zhu. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 142-157. |
[15] | LunYu Shang, Yu Zhang, ShiHua Lyu, ShaoYing Wang, YinHuan Ao, SiQiong Luo, ShiQiang Chen. Winter estimation of surface roughness length over eastern Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 151-157. |
|