Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (3): 151-161.doi: 10.3724/SP.J.1226.2022.21061.


Litter decomposition in fragile ecosystems: A review

Hao Qu1(),XueYong Zhao2,XiaoAn Zuo1,ShaoKun Wang1,XuJun Ma1,Xia Tang2,XinYuan Wang3,Eduardo Medina-Roldán4()   

  1. 1.Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    3.Ecological Environmental Supervision and Administration Bureau of Gansu Province, Lanzhou, Gansu 730020, China
    4.Institute of BioEconomy - National Research Council (IBE-CNR), Sesto Fiorentino 50019, Italy
  • Received:2021-08-19 Accepted:2022-03-28 Online:2022-06-30 Published:2022-07-04
  • Contact: Hao Qu,Eduardo Medina-Roldán
  • Supported by:
    This work was supported by the Key Research and Development Plan of Ning Xia Province, China (Grant No. 2020BBF02003), the National Natural Science Foundation of China (Grant No. 41877540), the Visiting Scholar Research Program of China Scholarship Council (Grant No. 201804910131), and the Second Tibetan Plateau Scientific Expedition and Research program (2019QZKK0305).


As a linkage between plants and soil, litter decomposition and its effect on nutrient recirculation have an important ecological significance as they contribute to soil structure improvement and the restoration of degraded ecosystems. Fragile ecosystems in arid regions (both hot and cold) are depleted in soil organic matter, and as a result of various factors their circulation of material and energy is slower. Here we discuss how litter decomposition is necessary to maintain the stability of fragile ecosystems. We reviewed research on litter decomposition carried out in arid regions. Our objective in this review is to outline how litter decomposition, and the subsequent buildup of organic matter in soil, is a key process determining the stability of fragile ecosystems. Our review shows that existing studies have focused on the influence of single ecological factors on litter decomposition and nutrient cycling, and highlights how the exploration of interactions among factors determining litter decomposition is still lacking. This interaction is a key aspect, since in the real world, decomposition and nutrient return to soil of litter products is affected by multiple factors. We propose a network setup on a cross-regional scale using standardized methods (e.g., the tea bag method) to understand litter decomposition and nutrient return in fragile ecosystems. Such a unique network could contribute to establish predictive models suitable for litter decomposition and nutrient return in these areas, and thus could provide theoretical and practical support for regional ecological protection and high-quality development.

Key words: litter mass loss, fragile ecosystems, arid, semi-arid, hot-deserts, cold-deserts

Figure 1

Different stages of litter decomposition. Phase I: the early phase of decomposition; Phase II: the late phase of decomposition; HLQ designates the quotient between holocellulose and lignin plus holocellulose (Coqteaux et al., 1995)"

Table 1

Litter decomposition rates in selected literature from fragile ecosystems and alpine ecosystems"

Ecosystem typeLitter typeConditionk value (mean ±dispersion unit/year)Half-life (time for litter to reach 50% of mass loss)Reference
Shortgrass steppe (cold-semiarid)A mix of native grass species such as Bouteloua gracilis and Stipa comataHigh carbon: nitrogen ratio litter subjected to non UV-B filtered radiation0.23±0.023.0 aBrandet al., 2007
Shortgrass steppe (cold-semiarid)A mix of native grass species such as Bouteloua gracilis and Stipa comataLitter subjected to reduced precipitation and UV-B filtered radiation0.12±0.025.7 aBrandet al., 2007
Alpine grasslandLitter from low quality species Festuca paniculataLitter in areas where the snowpack is blown-off by wind in winter0.027±0.00325 aSacconeet al., 2013
Alpine grasslandLitter from high quality species Dactylis glomerataLitter in areas where the snowpack accumulates and thickens in winter0.17±0.054.0 aSacconeet al., 2013
Semiarid temperate shrub-steppe (semi-arid cold)Litter from herbivores-palatable Bromus pictusLitter in litterbags which exclude soil macrofauna0.14±0.014.9 aAraujoet al., 2012

Figure 2

A number of fragile ecosystems. (a) Mu Us Sands; (b) Horqin Sandy Land; (c) Urat Desert Steppe; (d) Tengger Desert. G are large bare-soil gap spaces among plants makes soil surface susceptible to erosion; U are large tracts of un-vegetated surfaces contribute to soil/sand particle redistribution and surface instability. (Photographs' credits: Hao Qu)"

Figure 3

Effects of snow manipulation ((a) UV-B exposure (Bokhorst et al., 2013)); ((b) freeze-thaw (Lin et al., 2018)); ((c) precipitation changes (Wu et al., 2010b)) and ((d) on litter decomposition (Qu et al., 2020)). FF: fir forest; BF: birch forest; Treatment 1: decreased precipitation amount by 2/3 in the growth season (May 1 to August 31); Treatment 2: increased precipitation interval in the early stage of growth season (May 1 to June 30); control: natural precipitation"

Aanderud ZT, Jones SE, Schoolmaster DR, et al., 2013. Sensitivity of soil respiration and microbial communities to altered snowfall. Soil Biology and Biochemistry, 57: 217-227. DOI: 10.1016/j.soilbio.2012.07.022 .
doi: 10.1016/j.soilbio.2012.07.022
Aerts R, 2006. The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94(4): 713-724. DOI: 10.1111/j.1365-2745.2006.01142.x .
doi: 10.1111/j.1365-2745.2006.01142.x
Aerts R, De Caluwe H, Beltman B, 2003. Plant community mediated vs nutritional controls on litter decomposition rates in grasslands. Ecology, 84(12): 3198-3208. DOI: 10.1890/02-0712 .
doi: 10.1890/02-0712
Araujo PI, Yahdjian L, Austin AT, 2012. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia, 168 (1): 221-230. DOI: 10.1007/s00442-011-2063-4 .
doi: 10.1007/s00442-011-2063-4
Austin AT, Vivanco L, 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442(7102): 555-558. DOI: 10.1038/nature05038 .
doi: 10.1038/nature05038
Austin AT, Ballaré CL, 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107(10): 4618-4622. DOI: 10.1073/pnas.0909396107 .
doi: 10.1073/pnas.0909396107
Bai YF, Li LH, Li X, et al., 2000. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities. Acta Phytoecologica Sinica, 24(6): 674-679. DOI: 10.1088/0256-307X/17/9/008. (in Chinese)
doi: 10.1088/0256-307X/17/9/008.
Baptist F, Yoccoz NG, Choler P, 2010. Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328(s1-2): 397-410. DOI: 10.1007/s11104-009-0119-6 .
doi: 10.1007/s11104-009-0119-6
Becker JN, Kuzyakov Y, 2018. Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index. Land Degradation and Development, 29(8): 2321-2329. DOI: 10.1002/ldr.2982 .
doi: 10.1002/ldr.2982
Berg B, 1986. Nutrient release from litter and humus in coniferous forest soils—a mini review. Scandinavian Journal of Forest Research, 1(1-4): 359-369. DOI: 10.1080/02827588609382428 .
doi: 10.1080/02827588609382428
Bokhorst S, Metcalfe DB, Wardle DA, 2013. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology and Biochemistry, 62: 157-164. DOI: 10.1016/j.soilbio. 2013.03.016 .
doi: 10.1016/j.soilbio. 2013.03.016
Bonan GB, Hartman MD, Parton WJ, et al., 2013. Evaluating litter decomposition in Earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). Global Change Biology, 19(3): 957-974. DOI: 10.1111/gcb.12031 .
doi: 10.1111/gcb.12031
Brandt LA, King JY, Milchunas DG, 2007. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology, 13(10): 2193-2205. DOI: 10.1111/j.1365-2486.2007.01428.x .
doi: 10.1111/j.1365-2486.2007.01428.x
Brandt LA, King JY, Hobbie SE, et al., 2010. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems, 13(5): 765-781. DOI: 10.1007/s10021-010-9353-2 .
doi: 10.1007/s10021-010-9353-2
Cai T, Zhang C, Huang Y, et al., 2015. Effects of different straw mulch modes on soil water storage and water use efficiency of spring maize (Zea mays L) in the Loess Plateau of China. Plant Soil and Environment, 61(6): 253-259. DOI: 10.17221/76/2015-PSE .
doi: 10.17221/76/2015-PSE
Carbognani M, Petraglia A, Tomaselli M, 2014. Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant and Soil, 376(1-2): 277-290. DOI: 10.1007/s11104-013-1982-8 .
doi: 10.1007/s11104-013-1982-8
Chapin FS, Matson PA, Vitousek PM, 2011. Principles of Terrestrial Ecosystem Ecology. Springer Science & Business Media. DOI: 10.1007/978-1-4419-9504-9 .
doi: 10.1007/978-1-4419-9504-9
Chen S, Lin G, Huang J, et al., 2009. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15(10): 2450-2461. DOI: 10.1111/j.1365-2486.2009.01879.x .
doi: 10.1111/j.1365-2486.2009.01879.x
Clein JS, Schimel JP, 1994. Reduction in microbial activity in birch litter due to drying and rewetting event. Soil Biology and Biochemistry, 26(3): 403-406. DOI: 10.1016/0038-0717(94)90290-9 .
doi: 10.1016/0038-0717(94)90290-9
Coqteaux MM, Bottner P, Berg B, 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10(2): 63-66. DOI: 10.1016/s0169-5347(00)88978-8 .
doi: 10.1016/s0169-5347(00)88978-8
Cornelissen JHC, Van BPM, Aerts R, et al., 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 10(7): 619-627. DOI: 10.1111/j.1461-0248.2007. 01051.x .
doi: 10.1111/j.1461-0248.2007. 01051.x
Cornwell WK, Cornelissen JH, Amatangelo K, et al., Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10): 1065-1071. DOI: 10.1111/j.1461-0248.2008.01219.x .
doi: 10.1111/j.1461-0248.2008.01219.x
Currie WS, Harmon ME, Burke IC, et al., 2010. Cross‐biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Global Change Biology, 16(6): 1744-1761. DOI: 10.1111/j.1365-2486.2009.02086.x .
doi: 10.1111/j.1365-2486.2009.02086.x
David JF, Gillon D, 2009. Combined effects of elevated temperatures and reduced leaf litter quality on the life-history parameters of a saprophagous macroarthropod . Global Change Biology, 15(1): 156-165. DOI: 10.1111/j.1365-2486.2008.01711.x .
doi: 10.1111/j.1365-2486.2008.01711.x
Edwards AC, Scalenghe R, Freppaz M, 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International, 162: 172-181. DOI: 10.1016/j.quaint.2006.10.027 .
doi: 10.1016/j.quaint.2006.10.027
Elumeeva TG, Onipchenko VG, Akhmetzhanova AA, et al., 2018. Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus: The results of a tea bag burial experiment. Journal of Mountain Science, 15(8): 1633-1641. DOI: 10.1007/s11629-018-4960-z .
doi: 10.1007/s11629-018-4960-z
Eriksson M, Ka JO, Mohn WW, 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in arctic tundra soil. Applied and Environmental Microbiology, 67(11): 5107-5112. DOI: 10.1128/AEM.67.11.5107-5112.2001 .
doi: 10.1128/AEM.67.11.5107-5112.2001
Feng X, Nielsen LL, Simpson MJ, 2007. Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biology and Biochemistry, 39(8): 2027-2037. DOI: 10.1016/j.soilbio.2007.03.003 .
doi: 10.1016/j.soilbio.2007.03.003
Franklin HM, Chen C, Carroll AR, et al., 2020. Leaf litter of two riparian tree species has contrasting effects on nutrients leaching from soil during large rainfall events. Plant and Soil, 457 (1-2): 389-406. DOI: 10.1007/s11104-020-04721-y .
doi: 10.1007/s11104-020-04721-y
Freppaz M, Williams BL, Edwards AC, et al., 2007. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Applied Soil Ecology, 35(1): 247-255. DOI: 10.1016/j.apsoil.2006. 03.012 .
doi: 10.1016/j.apsoil.2006. 03.012
Gallo ME, Sinsabaugh RL, Cabaniss SE, 2006. The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology, 34(1): 82-91. DOI: 10.1016/j.apsoil.2005.12.006 .
doi: 10.1016/j.apsoil.2005.12.006
Gavazov KS, 2010. Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337(s1-2): 19-32. DOI: 10.1007/s11104-010-0477-0 .
doi: 10.1007/s11104-010-0477-0
Henry HAL, 2007. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biology and Biochemistry, 39(5): 977-986. DOI: 10.1016/j.soilbio.2006.11.017 .
doi: 10.1016/j.soilbio.2006.11.017
Hobbie SE, Chapin FS, 1996. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35(2): 327-338. DOI: 10.1007/BF02179958 .
doi: 10.1007/BF02179958
Huang YX, Martin J, Lechowicz, et al., 2016. The underlying basis for the tradeoff between leaf size and leafing intensity. Functional Ecology, 30(2): 199-205. DOI: 10.1111/1365-2435.12491 .
doi: 10.1111/1365-2435.12491
IPCC, 2014. Intergovernmental Panel on Climate Change.
Jia Y, Kong X, Weiser MD, et al., 2015. Sodium limits litter decomposition rates in a subtropical forest: additional tests of the sodium ecosystem respiration hypothesis. Applied Soil Ecology, 93: 98-104. DOI: 10.1016/j.apsoil.2015.04.012 .
doi: 10.1016/j.apsoil.2015.04.012
Joseph G, Henry HAL, 2008. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. Soil Biology and Biochemistry, 40(7): 1947-1953. DOI: 10.1016/j.soilbio.2008.04.007 .
doi: 10.1016/j.soilbio.2008.04.007
Keuskamp J, Dingemans BJJ, Sanden T, et al., 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4(11): 1070-1075. DOI: 10.1111/2041-210X.12097 .
doi: 10.1111/2041-210X.12097
Killingbeck KT, 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77(6): 1716-1727. DOI: 10.5007/2175-7925.2011v24n2p91 .
doi: 10.5007/2175-7925.2011v24n2p91
Köchy M, Wilson SD, 1997. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology, 78(3): 732-739. DOI: 10.1890/0012-9658(1997)078 .
doi: 10.1890/0012-9658(1997)078
Konestabo HS, Michelsen A, Holmstrup M, 2007. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Applied Soil Ecology, 36(2-3): 136-146. DOI: 10.1016/j.apsoil. 2007.01.003 .
doi: 10.1016/j.apsoil. 2007.01.003
Kreyling J, Haei M, Laudon H, 2013. Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93(4): 427-433. DOI: 10.4141/cjss2012-025 .
doi: 10.4141/cjss2012-025
Li H, Wu F, Yang W, et al., 2016. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7(2): 27. DOI: 10.3390/f7020027 .
doi: 10.3390/f7020027
Li RP, Shi HB, Akae T, et al., 2007. Characteristics of air temperature and water-salt transfer during freezing and thawing period. Transactions of the Chinese Society of Agricultural Engineering, 23(4): 70-74. DOI: 10.3969/j.issn.1002-6819.2007.4.013. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2007.4.013.
Li YQ, Zhao HL, Zhao XY, et al., 2007. Effects of Desertification on Litter Decomposition in Horqin Sandy Land. Journal of Soil and Water Conservation, 21(5): 64-67. DOI: 10.3321/j.issn:1009-2242.2007.05.016. (in Chinese)
doi: 10.3321/j.issn:1009-2242.2007.05.016.
Lin CF, Gao R, Chen GS, et al., 2007. Research progress of litter decomposition model in forest ecosystem. Journal of Fujian Forestry Science and Technology, 34(3): 227-233. DOI: 10.3969/j.issn.1002-7351.2007.03.056. (in Chinese)
doi: 10.3969/j.issn.1002-7351.2007.03.056.
Lin Y, Karlen SD, Ralph J, et al., 2018. Short-term facilitation of microbial litter decomposition by ultraviolet radiation. Science of the Total Environment, 615(1): 838-848. DOI: 10.1016/j.scitotenv.2017.09.239 .
doi: 10.1016/j.scitotenv.2017.09.239
Liu S, Yu GR, Qian ZS, et al., 2009. The thawing-freezing processes and soil moisture distribution of the steppe in central Mongolian Plateau. Acta Pedologica Sinica, 46(1): 46-51. DOI: 10.3321/j.issn:0564-3929.2009.01.007. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2009.01.007.
Liu SR, Hu RG, Cai GC, 2012. Effects of enhanced UV-B radiation on terrestrial ecosystem carbon cycle: A review. Chinese Journal of Applied Ecology, 23(7): 1992-1998. DOI: 10.1007/s11783-011-0280-z. (in Chinese)
doi: 10.1007/s11783-011-0280-z.
Liu Q, Yan CR, Zhang YQ, et al., 2012. Variation of precipitation and temperature in Yellow River basin during the Last 50 Years. Chinese Journal of Agrometeorology, 33(4): 475-480. DOI: 10.3969/j.issn.1000-6362.2012.04.001. (in Chinese)
doi: 10.3969/j.issn.1000-6362.2012.04.001.
Luo C, Xu G, Chao Z, 2009. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Global Change Biology, 16(5): 1606-1617. DOI: 10.1111/j.1365-2486.2009. 02026.x .
doi: 10.1111/j.1365-2486.2009. 02026.x
Ma Y, Filley TR, Szlavecz K, et al., 2014. Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biology and Biochemistry, 69: 212-222. DOI: 10.1016/j.soilbio.2013.10.043 .
doi: 10.1016/j.soilbio.2013.10.043
Parton W, Silver WL, Burke IC, et al., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810): 361-364. DOI: 10.1126/science.1134853 .
doi: 10.1126/science.1134853
Petraglia A, Cacciatori C, Chelli S, et al., 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435: 187-200. DOI: 10. 1007/s11104-018-3889-x .
doi: 10. 1007/s11104-018-3889-x
Pucheta E, Llanos M, Meglioli C, et al., 2006. Litter decomposition in a sandy Monte desert of Western Argentina: Influences of vegetation patches and summer rainfall. Austral Ecology, 31(7): 808-816. DOI: 10.1111/j.1442-9993.2006. 01635.x .
doi: 10.1111/j.1442-9993.2006. 01635.x
Qu H, Pan CC, Zhao XY, et al., 2019. Initial lignin content is an indicator of predicting leaf litter decomposition and the mixed effects of two perennial gramineous plants in a desert steppe: A 5-year long-term study. Land Degradation and Development, 30(14): 1645-1654. DOI: 10.1002/ldr.3343 .
doi: 10.1002/ldr.3343
Qu H, Zhao X, Lian J, et al., 2020. Increasing precipitation interval has more impacts on litter mass loss than decreasing precipitation amount in desert steppe. Frontiers in Environmental Science, 8: 88. DOI: 10.3389/fenvs. 2020.00088 .
doi: 10.3389/fenvs. 2020.00088
Qu H, Zhao XY, Zhao HL, et al., 2010. Litter decomposition rates of three shrub species in Horqin Sandy Land and their relationship with key meteorological factors. Journal of Desert Research, 30(4): 844-849. DOI: 10.1097/MOP. 0b013e3283423f35. (in Chinese)
doi: 10.1097/MOP. 0b013e3283423f35.
Robinson CH, 2002. Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242(1): 65-81. DOI: 10.1023/A:1019681606112 .
doi: 10.1023/A:1019681606112
Rodtassana C, Tanner EVJ, 2018. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects. Ecology, 99(3): 735-742. DOI: 10.1002/ecy.2143 .
doi: 10.1002/ecy.2143
Rowland L, da Costa ACL, Oliveira AAR, et al., 2018. Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics. Journal of Ecology, 106(4): 1673-1682. DOI: 10.1111/1365-2745.12931 .
doi: 10.1111/1365-2745.12931
Saccone P, Morin S, Baptist F, et al., 2013. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363(1-2): 215-229. DOI: 10.1007/s11104-012-1307-3 .
doi: 10.1007/s11104-012-1307-3
Schwinning S, Sala OE, Loik ME, et al., 2004. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141(2): 191-193. DOI: 10.1007/s00442-004-1683-3 .
doi: 10.1007/s00442-004-1683-3
Seelen LMS, Flaim G, Keuskamp J, 2019. An affordable and reliable assessment of aquatic decomposition: tailoring the tea bag index to surface waters. Water Research, 151(MAR.15): 31-43. DOI: 10.1016/j.watres.2018.11.081 .
doi: 10.1016/j.watres.2018.11.081
Shaver GR, Canadell J, Chapin III FS, et al., 2000. Global warming and terrestrial ecosystems: A conceptual frame-work for analysis. BioScience, 50(10): 871-882. DOI: 10. 1641/0006-3568(2000)050 .
doi: 10. 1641/0006-3568(2000)050
Shibata H, Hasegawa Y, Watanabe T, et al., 2013. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116(1-3): 69-82. DOI: 10.1007/s10533-013-9882-9 .
doi: 10.1007/s10533-013-9882-9
Song X, Jiang H, Zhang Z, et al., 2014. Interactive effects of elevated UV-B radiation and N deposition on decomposition of Moso bamboo litter. Soil Biology and Biochemistry, 69: 11-16. DOI: 10.1016/j.soilbio.2013.10.036 .
doi: 10.1016/j.soilbio.2013.10.036
Song XZ, Zhang HL, Chang SX, et al., 2012. Elevated UV-B radiation increased the decomposition of Cinnamomum camphora and Cyclobalanopsis glauca leaf litter in subtropical China. Journal of Soils and Sediments, 12(3): 307-311. DOI: 10.1007/s11368-011-0451-3 .
doi: 10.1007/s11368-011-0451-3
Soong JL, Parton WJ, Calderon F, et al., 2015. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124(1-3): 27-44. DOI: 10.1007/s10533-015-0079-2 .
doi: 10.1007/s10533-015-0079-2
Sulkava P, Huhta V, 2003. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralization in boreal forest soil. Applied Soil Ecology, 22(3): 225-239. DOI: 10.1016/S0929-1393(02)00155-5 .
doi: 10.1016/S0929-1393(02)00155-5
Sun H, Qin JH, Wu Y, 2008. Freeze-thaw cycles and their impacts on ecological process: a review. Soils, 40(4): 505-509. DOI: 10.3321/j.issn:0253-9829.2008.04.001 .
doi: 10.3321/j.issn:0253-9829.2008.04.001
Steinberger Y, Whitford WG, 1988. Decomposition process in Negev ecosystems. Oecologia, 75(1): 61-66. DOI: 10.1007/BF00378814 .
doi: 10.1007/BF00378814
Uchida M, Mo W, Nakatsubo T, et al., 2005. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and Forest Meteorology, 134(1-4): 102-109. DOI: 10.1016/j.agrformet.2005.11.003 .
doi: 10.1016/j.agrformet.2005.11.003
Vitousek PM, 1994. Beyond global warming: Ecology and global change. Ecology, 75(7): 1861-1876. DOI: 10.2307/1941591 .
doi: 10.2307/1941591
Wang FY, 1989. Review on the study of forest litterfall. Advances in Ecology, 6(2): 82-89. (in Chinese)
Wang G, Post WM, Mayes MA, 2013. Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses. Ecological Applications, 23(1): 255-272. DOI: 10.1890/12-0681.1 .
doi: 10.1890/12-0681.1
Wang SJ, Ruan HH, 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biology and Biochemistry, 41(5): 891-897. DOI: 10.1016/j.soilbio.2008.12.016 .
doi: 10.1016/j.soilbio.2008.12.016
Wang XB, Cai DX, Hoogmoed WB, et al., 2007. Developments in conservation tillage in rainfed regions of North China. Soil and Tillage Research, 93(2): 239-250. DOI: 10.1016/j.still.2006.05.005 .
doi: 10.1016/j.still.2006.05.005
Wu F, Yang W, Zhang J, et al., 2010a. Fine root decomposition in two subalpine forests during the freeze-thaw season. Canadian Journal of Forest Research, 40(2): 298-307. DOI: 10.1139/X09-194 .
doi: 10.1139/X09-194
Wu F, Yang W, Zhang J, et al., 2010b. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36(1): 135-140. DOI: 10.1016/j.actao.2009. 11.002 .
doi: 10.1016/j.actao.2009. 11.002
Wu GL, Zhang MQ, Liu Y, et al., 2020. Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem. Geoderma, 374(2): 114429. DOI: 10.1016/j.geoderma.2020.114429 .
doi: 10.1016/j.geoderma.2020.114429
Wu QQ, 2018. Effects of snow depth manipulation on the releases of carbon, nitrogen and phosphorus from the foliar litter of two temperate tree species. Science of the Total Environment, 643: 1357-1365. DOI: 10.1016/j.scitotenv.2018. 06.308 .
doi: 10.1016/j.scitotenv.2018. 06.308
Wu QQ, 2020. Short-and long-term effects of snow-depth on Korean Pine and Mongolian oak litter decomposition in northeastern China. Ecosystems, 23: 662-674. DOI: 10. 1007/s10021-019-00429-y .
doi: 10. 1007/s10021-019-00429-y
Yang SZ, Jin HJ, 2008. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost. Acta Ecologica Sinica, 28(10): 5065-5074. DOI: 10.3321/j.issn:1000-0933. 2008.10.054. (in Chinese)
doi: 10.3321/j.issn:1000-0933. 2008.10.054.
Yang WQ, Deng RJ, Zhang J, 2007. Forest litter decomposition and its responses to global climate change. Chinese Journal of Applied Ecology, 18(12): 2889-2895. DOI: CNKI:SUN:YYSB.0.2007-12-039. (in Chinese)
doi: CNKI:SUN:YYSB.0.2007-12-039.
Yu G, Wang S, Chen P, et al., 2005. Isotope tracer approaches in soil organic carbon cycle research. Advances in Earth Science, 20(5): 568-577. DOI: CNKI:SUN:DXJZ.0.2005-05-013. (in Chinese)
doi: CNKI:SUN:DXJZ.0.2005-05-013.
Zhang B, Wang HL, Yao SH, et al., 2013. Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana . Soil Biology and Biochemistry, 57: 556-567. DOI: 10. 1016/j.soilbio.2012.07.024 .
doi: 10. 1016/j.soilbio.2012.07.024
Zhao HM, Huang G, Ma J, et al., 2012. Responses of surface litter decomposition to seasonal water addition in desert. Chinese Journal of Plant Ecology, 36(6): 471. DOI: 10. 3724/SP.J.1258.2012.00471. (in Chinese)
doi: 10. 3724/SP.J.1258.2012.00471.
Zhao XY, Cui JY, Zhang TH, 1999. Estimation and dynamic modeling of wheat litter production in desertified arable land in Horqin Sandy Land. Journal of Desert Research, 19(s1): 103-106. DOI: CNKI:SUN:ZGSS.0.1999-S1-023. (in Chinese)
doi: CNKI:SUN:ZGSS.0.1999-S1-023.
Zheng JQ, Guo RH, Li DS, et al., 2016. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest. Journal of Beijing Forestry University, 38(4): 21-28. DOI: 10.13332/j.1000-1522.20150464. (in Chinese)
doi: 10.13332/j.1000-1522.20150464.
Zhong HP, Du ZC, 1997. The relationship between the climatic factors and the litter decomposition of Trifolium pratense, Dactylis glomerata in mountains of eastern Sichuan. Grassland of China, 6(4): 29-32. DOI: CNKI:SUN:ZGCD. 0.1997-06-006. (in Chinese)
doi: CNKI:SUN:ZGCD. 0.1997-06-006.
Zhu JX, 2011. Response of Litter Decomposition in Subalpine Forests to Seasonal Freezing and Thawing. Doctoral Dissertation, Sichuan Agricultural University. (in Chinese)
[1] LiPing Li,ChunYan Zhang,Eimear Nic Lughadha,Tarciso C. C. Leão,Kate Hardwick,YaoMin Zheng,HuaWei Wan,Ming Ma,Nurbay Abudusalih,Hai Ying,Pu Zhen,JiangShan Lai,ZhanFeng Shen,Liu Li,Tuo Wang,YangMing Jiang,HuiHui Zhao,QingJie Liu. Geographic range size patterns across plants and animals of Xinjiang, China [J]. Sciences in Cold and Arid Regions, 2022, 14(1): 54-67.
[2] Stuart A. Harris. Cryogenic wedges on the NE Qinghai-Tibet and Ordos Plateaus: Their characteristics, origin and OSL dating [J]. Sciences in Cold and Arid Regions, 2021, 13(6): 463-473.
[3] YongTao Zhao,YunFa Miao,Yan Lei,XianYong Cao,MingXing Xiang. Progress, problems and prospects of palynology in reconstructing environmental change in inland arid areas of Asia [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 271-291.
[4] Sindikubwabo Celestin,Qi Feng,RuoLin Li,WenJu Cheng,Jian Ma,Habiyakare Telesphore,Nzabarinda Vincent. Temporal changes in seasonal precipitation over the Sahara Desert from 1979 to 2016 [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 220-233.
[5] WeiCheng Luo,WenZhi Zhao,Bing Liu,Heng Ren. Changes in morphology and soil nutrient patterns of nebkhas in arid regions along a precipitation gradient [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 256-267.
[6] ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379.
[7] PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283.
[8] Hu Liu,Lin Li,SiJia Wang,QiYue Yang,WenZhi Zhao. Soil-moisture dynamics and tree-water status in a Picea crassifolia forest, Qilian Mountains, China [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 34-46.
[9] YueDan Zhao,XingDong He,Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao. Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 371-381.
[10] YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247.
[11] CuiHua Huang,Fei Peng,Itaru Shibata,Jun Luo,Xian Xue,Kinya Akashi,Atsushi Tsunekawa,Tao Wang. Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 81-92.
[12] MengQi Li, XingDong He, XiangXiang Yang, YueDan Zhao, YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340-346.
[13] XinPing Wang, YaFeng Zhang, Rui Hu, YanXia Pan, HaoJie Xu, Wei Shi, YanXia Jin, Hiroshi Yasuda. Revisit of event-based rainfall characteristics at Shapotou area in northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484.
Full text



No Suggested Reading articles found!