Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (3): 151-161.doi: 10.3724/SP.J.1226.2022.21061.
Hao Qu1(),XueYong Zhao2,XiaoAn Zuo1,ShaoKun Wang1,XuJun Ma1,Xia Tang2,XinYuan Wang3,Eduardo Medina-Roldán4(
)
Aanderud ZT, Jones SE, Schoolmaster DR, et al., 2013. Sensitivity of soil respiration and microbial communities to altered snowfall. Soil Biology and Biochemistry, 57: 217-227. DOI: 10.1016/j.soilbio.2012.07.022 .
doi: 10.1016/j.soilbio.2012.07.022 |
|
Aerts R, 2006. The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94(4): 713-724. DOI: 10.1111/j.1365-2745.2006.01142.x .
doi: 10.1111/j.1365-2745.2006.01142.x |
|
Aerts R, De Caluwe H, Beltman B, 2003. Plant community mediated vs nutritional controls on litter decomposition rates in grasslands. Ecology, 84(12): 3198-3208. DOI: 10.1890/02-0712 .
doi: 10.1890/02-0712 |
|
Araujo PI, Yahdjian L, Austin AT, 2012. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia, 168 (1): 221-230. DOI: 10.1007/s00442-011-2063-4 .
doi: 10.1007/s00442-011-2063-4 |
|
Austin AT, Vivanco L, 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442(7102): 555-558. DOI: 10.1038/nature05038 .
doi: 10.1038/nature05038 |
|
Austin AT, Ballaré CL, 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107(10): 4618-4622. DOI: 10.1073/pnas.0909396107 .
doi: 10.1073/pnas.0909396107 |
|
Bai YF, Li LH, Li X, et al., 2000. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities. Acta Phytoecologica Sinica, 24(6): 674-679. DOI: 10.1088/0256-307X/17/9/008. (in Chinese)
doi: 10.1088/0256-307X/17/9/008. |
|
Baptist F, Yoccoz NG, Choler P, 2010. Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328(s1-2): 397-410. DOI: 10.1007/s11104-009-0119-6 .
doi: 10.1007/s11104-009-0119-6 |
|
Becker JN, Kuzyakov Y, 2018. Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index. Land Degradation and Development, 29(8): 2321-2329. DOI: 10.1002/ldr.2982 .
doi: 10.1002/ldr.2982 |
|
Berg B, 1986. Nutrient release from litter and humus in coniferous forest soils—a mini review. Scandinavian Journal of Forest Research, 1(1-4): 359-369. DOI: 10.1080/02827588609382428 .
doi: 10.1080/02827588609382428 |
|
Bokhorst S, Metcalfe DB, Wardle DA, 2013. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology and Biochemistry, 62: 157-164. DOI: 10.1016/j.soilbio. 2013.03.016 .
doi: 10.1016/j.soilbio. 2013.03.016 |
|
Bonan GB, Hartman MD, Parton WJ, et al., 2013. Evaluating litter decomposition in Earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). Global Change Biology, 19(3): 957-974. DOI: 10.1111/gcb.12031 .
doi: 10.1111/gcb.12031 |
|
Brandt LA, King JY, Milchunas DG, 2007. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology, 13(10): 2193-2205. DOI: 10.1111/j.1365-2486.2007.01428.x .
doi: 10.1111/j.1365-2486.2007.01428.x |
|
Brandt LA, King JY, Hobbie SE, et al., 2010. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems, 13(5): 765-781. DOI: 10.1007/s10021-010-9353-2 .
doi: 10.1007/s10021-010-9353-2 |
|
Cai T, Zhang C, Huang Y, et al., 2015. Effects of different straw mulch modes on soil water storage and water use efficiency of spring maize (Zea mays L) in the Loess Plateau of China. Plant Soil and Environment, 61(6): 253-259. DOI: 10.17221/76/2015-PSE .
doi: 10.17221/76/2015-PSE |
|
Carbognani M, Petraglia A, Tomaselli M, 2014. Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant and Soil, 376(1-2): 277-290. DOI: 10.1007/s11104-013-1982-8 .
doi: 10.1007/s11104-013-1982-8 |
|
Chapin FS, Matson PA, Vitousek PM, 2011. Principles of Terrestrial Ecosystem Ecology. Springer Science & Business Media. DOI: 10.1007/978-1-4419-9504-9 .
doi: 10.1007/978-1-4419-9504-9 |
|
Chen S, Lin G, Huang J, et al., 2009. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15(10): 2450-2461. DOI: 10.1111/j.1365-2486.2009.01879.x .
doi: 10.1111/j.1365-2486.2009.01879.x |
|
Clein JS, Schimel JP, 1994. Reduction in microbial activity in birch litter due to drying and rewetting event. Soil Biology and Biochemistry, 26(3): 403-406. DOI: 10.1016/0038-0717(94)90290-9 .
doi: 10.1016/0038-0717(94)90290-9 |
|
Coqteaux MM, Bottner P, Berg B, 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10(2): 63-66. DOI: 10.1016/s0169-5347(00)88978-8 .
doi: 10.1016/s0169-5347(00)88978-8 |
|
Cornelissen JHC, Van BPM, Aerts R, et al., 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 10(7): 619-627. DOI: 10.1111/j.1461-0248.2007. 01051.x .
doi: 10.1111/j.1461-0248.2007. 01051.x |
|
Cornwell WK, Cornelissen JH, Amatangelo K, et al., Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10): 1065-1071. DOI: 10.1111/j.1461-0248.2008.01219.x .
doi: 10.1111/j.1461-0248.2008.01219.x |
|
Currie WS, Harmon ME, Burke IC, et al., 2010. Cross‐biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Global Change Biology, 16(6): 1744-1761. DOI: 10.1111/j.1365-2486.2009.02086.x .
doi: 10.1111/j.1365-2486.2009.02086.x |
|
David JF, Gillon D, 2009. Combined effects of elevated temperatures and reduced leaf litter quality on the life-history parameters of a saprophagous macroarthropod . Global Change Biology, 15(1): 156-165. DOI: 10.1111/j.1365-2486.2008.01711.x .
doi: 10.1111/j.1365-2486.2008.01711.x |
|
Edwards AC, Scalenghe R, Freppaz M, 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International, 162: 172-181. DOI: 10.1016/j.quaint.2006.10.027 .
doi: 10.1016/j.quaint.2006.10.027 |
|
Elumeeva TG, Onipchenko VG, Akhmetzhanova AA, et al., 2018. Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus: The results of a tea bag burial experiment. Journal of Mountain Science, 15(8): 1633-1641. DOI: 10.1007/s11629-018-4960-z .
doi: 10.1007/s11629-018-4960-z |
|
Eriksson M, Ka JO, Mohn WW, 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in arctic tundra soil. Applied and Environmental Microbiology, 67(11): 5107-5112. DOI: 10.1128/AEM.67.11.5107-5112.2001 .
doi: 10.1128/AEM.67.11.5107-5112.2001 |
|
Feng X, Nielsen LL, Simpson MJ, 2007. Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biology and Biochemistry, 39(8): 2027-2037. DOI: 10.1016/j.soilbio.2007.03.003 .
doi: 10.1016/j.soilbio.2007.03.003 |
|
Franklin HM, Chen C, Carroll AR, et al., 2020. Leaf litter of two riparian tree species has contrasting effects on nutrients leaching from soil during large rainfall events. Plant and Soil, 457 (1-2): 389-406. DOI: 10.1007/s11104-020-04721-y .
doi: 10.1007/s11104-020-04721-y |
|
Freppaz M, Williams BL, Edwards AC, et al., 2007. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Applied Soil Ecology, 35(1): 247-255. DOI: 10.1016/j.apsoil.2006. 03.012 .
doi: 10.1016/j.apsoil.2006. 03.012 |
|
Gallo ME, Sinsabaugh RL, Cabaniss SE, 2006. The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology, 34(1): 82-91. DOI: 10.1016/j.apsoil.2005.12.006 .
doi: 10.1016/j.apsoil.2005.12.006 |
|
Gavazov KS, 2010. Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337(s1-2): 19-32. DOI: 10.1007/s11104-010-0477-0 .
doi: 10.1007/s11104-010-0477-0 |
|
Henry HAL, 2007. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biology and Biochemistry, 39(5): 977-986. DOI: 10.1016/j.soilbio.2006.11.017 .
doi: 10.1016/j.soilbio.2006.11.017 |
|
Hobbie SE, Chapin FS, 1996. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35(2): 327-338. DOI: 10.1007/BF02179958 .
doi: 10.1007/BF02179958 |
|
Huang YX, Martin J, Lechowicz, et al., 2016. The underlying basis for the tradeoff between leaf size and leafing intensity. Functional Ecology, 30(2): 199-205. DOI: 10.1111/1365-2435.12491 .
doi: 10.1111/1365-2435.12491 |
|
IPCC, 2014. Intergovernmental Panel on Climate Change. | |
Jia Y, Kong X, Weiser MD, et al., 2015. Sodium limits litter decomposition rates in a subtropical forest: additional tests of the sodium ecosystem respiration hypothesis. Applied Soil Ecology, 93: 98-104. DOI: 10.1016/j.apsoil.2015.04.012 .
doi: 10.1016/j.apsoil.2015.04.012 |
|
Joseph G, Henry HAL, 2008. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. Soil Biology and Biochemistry, 40(7): 1947-1953. DOI: 10.1016/j.soilbio.2008.04.007 .
doi: 10.1016/j.soilbio.2008.04.007 |
|
Keuskamp J, Dingemans BJJ, Sanden T, et al., 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4(11): 1070-1075. DOI: 10.1111/2041-210X.12097 .
doi: 10.1111/2041-210X.12097 |
|
Killingbeck KT, 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77(6): 1716-1727. DOI: 10.5007/2175-7925.2011v24n2p91 .
doi: 10.5007/2175-7925.2011v24n2p91 |
|
Köchy M, Wilson SD, 1997. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology, 78(3): 732-739. DOI: 10.1890/0012-9658(1997)078 .
doi: 10.1890/0012-9658(1997)078 |
|
Konestabo HS, Michelsen A, Holmstrup M, 2007. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Applied Soil Ecology, 36(2-3): 136-146. DOI: 10.1016/j.apsoil. 2007.01.003 .
doi: 10.1016/j.apsoil. 2007.01.003 |
|
Kreyling J, Haei M, Laudon H, 2013. Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93(4): 427-433. DOI: 10.4141/cjss2012-025 .
doi: 10.4141/cjss2012-025 |
|
Li H, Wu F, Yang W, et al., 2016. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7(2): 27. DOI: 10.3390/f7020027 .
doi: 10.3390/f7020027 |
|
Li RP, Shi HB, Akae T, et al., 2007. Characteristics of air temperature and water-salt transfer during freezing and thawing period. Transactions of the Chinese Society of Agricultural Engineering, 23(4): 70-74. DOI: 10.3969/j.issn.1002-6819.2007.4.013. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2007.4.013. |
|
Li YQ, Zhao HL, Zhao XY, et al., 2007. Effects of Desertification on Litter Decomposition in Horqin Sandy Land. Journal of Soil and Water Conservation, 21(5): 64-67. DOI: 10.3321/j.issn:1009-2242.2007.05.016. (in Chinese)
doi: 10.3321/j.issn:1009-2242.2007.05.016. |
|
Lin CF, Gao R, Chen GS, et al., 2007. Research progress of litter decomposition model in forest ecosystem. Journal of Fujian Forestry Science and Technology, 34(3): 227-233. DOI: 10.3969/j.issn.1002-7351.2007.03.056. (in Chinese)
doi: 10.3969/j.issn.1002-7351.2007.03.056. |
|
Lin Y, Karlen SD, Ralph J, et al., 2018. Short-term facilitation of microbial litter decomposition by ultraviolet radiation. Science of the Total Environment, 615(1): 838-848. DOI: 10.1016/j.scitotenv.2017.09.239 .
doi: 10.1016/j.scitotenv.2017.09.239 |
|
Liu S, Yu GR, Qian ZS, et al., 2009. The thawing-freezing processes and soil moisture distribution of the steppe in central Mongolian Plateau. Acta Pedologica Sinica, 46(1): 46-51. DOI: 10.3321/j.issn:0564-3929.2009.01.007. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2009.01.007. |
|
Liu SR, Hu RG, Cai GC, 2012. Effects of enhanced UV-B radiation on terrestrial ecosystem carbon cycle: A review. Chinese Journal of Applied Ecology, 23(7): 1992-1998. DOI: 10.1007/s11783-011-0280-z. (in Chinese)
doi: 10.1007/s11783-011-0280-z. |
|
Liu Q, Yan CR, Zhang YQ, et al., 2012. Variation of precipitation and temperature in Yellow River basin during the Last 50 Years. Chinese Journal of Agrometeorology, 33(4): 475-480. DOI: 10.3969/j.issn.1000-6362.2012.04.001. (in Chinese)
doi: 10.3969/j.issn.1000-6362.2012.04.001. |
|
Luo C, Xu G, Chao Z, 2009. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Global Change Biology, 16(5): 1606-1617. DOI: 10.1111/j.1365-2486.2009. 02026.x .
doi: 10.1111/j.1365-2486.2009. 02026.x |
|
Ma Y, Filley TR, Szlavecz K, et al., 2014. Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biology and Biochemistry, 69: 212-222. DOI: 10.1016/j.soilbio.2013.10.043 .
doi: 10.1016/j.soilbio.2013.10.043 |
|
Parton W, Silver WL, Burke IC, et al., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810): 361-364. DOI: 10.1126/science.1134853 .
doi: 10.1126/science.1134853 |
|
Petraglia A, Cacciatori C, Chelli S, et al., 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435: 187-200. DOI: 10. 1007/s11104-018-3889-x .
doi: 10. 1007/s11104-018-3889-x |
|
Pucheta E, Llanos M, Meglioli C, et al., 2006. Litter decomposition in a sandy Monte desert of Western Argentina: Influences of vegetation patches and summer rainfall. Austral Ecology, 31(7): 808-816. DOI: 10.1111/j.1442-9993.2006. 01635.x .
doi: 10.1111/j.1442-9993.2006. 01635.x |
|
Qu H, Pan CC, Zhao XY, et al., 2019. Initial lignin content is an indicator of predicting leaf litter decomposition and the mixed effects of two perennial gramineous plants in a desert steppe: A 5-year long-term study. Land Degradation and Development, 30(14): 1645-1654. DOI: 10.1002/ldr.3343 .
doi: 10.1002/ldr.3343 |
|
Qu H, Zhao X, Lian J, et al., 2020. Increasing precipitation interval has more impacts on litter mass loss than decreasing precipitation amount in desert steppe. Frontiers in Environmental Science, 8: 88. DOI: 10.3389/fenvs. 2020.00088 .
doi: 10.3389/fenvs. 2020.00088 |
|
Qu H, Zhao XY, Zhao HL, et al., 2010. Litter decomposition rates of three shrub species in Horqin Sandy Land and their relationship with key meteorological factors. Journal of Desert Research, 30(4): 844-849. DOI: 10.1097/MOP. 0b013e3283423f35. (in Chinese)
doi: 10.1097/MOP. 0b013e3283423f35. |
|
Robinson CH, 2002. Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242(1): 65-81. DOI: 10.1023/A:1019681606112 .
doi: 10.1023/A:1019681606112 |
|
Rodtassana C, Tanner EVJ, 2018. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects. Ecology, 99(3): 735-742. DOI: 10.1002/ecy.2143 .
doi: 10.1002/ecy.2143 |
|
Rowland L, da Costa ACL, Oliveira AAR, et al., 2018. Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics. Journal of Ecology, 106(4): 1673-1682. DOI: 10.1111/1365-2745.12931 .
doi: 10.1111/1365-2745.12931 |
|
Saccone P, Morin S, Baptist F, et al., 2013. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363(1-2): 215-229. DOI: 10.1007/s11104-012-1307-3 .
doi: 10.1007/s11104-012-1307-3 |
|
Schwinning S, Sala OE, Loik ME, et al., 2004. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141(2): 191-193. DOI: 10.1007/s00442-004-1683-3 .
doi: 10.1007/s00442-004-1683-3 |
|
Seelen LMS, Flaim G, Keuskamp J, 2019. An affordable and reliable assessment of aquatic decomposition: tailoring the tea bag index to surface waters. Water Research, 151(MAR.15): 31-43. DOI: 10.1016/j.watres.2018.11.081 .
doi: 10.1016/j.watres.2018.11.081 |
|
Shaver GR, Canadell J, Chapin III FS, et al., 2000. Global warming and terrestrial ecosystems: A conceptual frame-work for analysis. BioScience, 50(10): 871-882. DOI: 10. 1641/0006-3568(2000)050 .
doi: 10. 1641/0006-3568(2000)050 |
|
Shibata H, Hasegawa Y, Watanabe T, et al., 2013. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116(1-3): 69-82. DOI: 10.1007/s10533-013-9882-9 .
doi: 10.1007/s10533-013-9882-9 |
|
Song X, Jiang H, Zhang Z, et al., 2014. Interactive effects of elevated UV-B radiation and N deposition on decomposition of Moso bamboo litter. Soil Biology and Biochemistry, 69: 11-16. DOI: 10.1016/j.soilbio.2013.10.036 .
doi: 10.1016/j.soilbio.2013.10.036 |
|
Song XZ, Zhang HL, Chang SX, et al., 2012. Elevated UV-B radiation increased the decomposition of Cinnamomum camphora and Cyclobalanopsis glauca leaf litter in subtropical China. Journal of Soils and Sediments, 12(3): 307-311. DOI: 10.1007/s11368-011-0451-3 .
doi: 10.1007/s11368-011-0451-3 |
|
Soong JL, Parton WJ, Calderon F, et al., 2015. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124(1-3): 27-44. DOI: 10.1007/s10533-015-0079-2 .
doi: 10.1007/s10533-015-0079-2 |
|
Sulkava P, Huhta V, 2003. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralization in boreal forest soil. Applied Soil Ecology, 22(3): 225-239. DOI: 10.1016/S0929-1393(02)00155-5 .
doi: 10.1016/S0929-1393(02)00155-5 |
|
Sun H, Qin JH, Wu Y, 2008. Freeze-thaw cycles and their impacts on ecological process: a review. Soils, 40(4): 505-509. DOI: 10.3321/j.issn:0253-9829.2008.04.001 .
doi: 10.3321/j.issn:0253-9829.2008.04.001 |
|
Steinberger Y, Whitford WG, 1988. Decomposition process in Negev ecosystems. Oecologia, 75(1): 61-66. DOI: 10.1007/BF00378814 .
doi: 10.1007/BF00378814 |
|
Uchida M, Mo W, Nakatsubo T, et al., 2005. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and Forest Meteorology, 134(1-4): 102-109. DOI: 10.1016/j.agrformet.2005.11.003 .
doi: 10.1016/j.agrformet.2005.11.003 |
|
Vitousek PM, 1994. Beyond global warming: Ecology and global change. Ecology, 75(7): 1861-1876. DOI: 10.2307/1941591 .
doi: 10.2307/1941591 |
|
Wang FY, 1989. Review on the study of forest litterfall. Advances in Ecology, 6(2): 82-89. (in Chinese) | |
Wang G, Post WM, Mayes MA, 2013. Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses. Ecological Applications, 23(1): 255-272. DOI: 10.1890/12-0681.1 .
doi: 10.1890/12-0681.1 |
|
Wang SJ, Ruan HH, 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biology and Biochemistry, 41(5): 891-897. DOI: 10.1016/j.soilbio.2008.12.016 .
doi: 10.1016/j.soilbio.2008.12.016 |
|
Wang XB, Cai DX, Hoogmoed WB, et al., 2007. Developments in conservation tillage in rainfed regions of North China. Soil and Tillage Research, 93(2): 239-250. DOI: 10.1016/j.still.2006.05.005 .
doi: 10.1016/j.still.2006.05.005 |
|
Wu F, Yang W, Zhang J, et al., 2010a. Fine root decomposition in two subalpine forests during the freeze-thaw season. Canadian Journal of Forest Research, 40(2): 298-307. DOI: 10.1139/X09-194 .
doi: 10.1139/X09-194 |
|
Wu F, Yang W, Zhang J, et al., 2010b. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36(1): 135-140. DOI: 10.1016/j.actao.2009. 11.002 .
doi: 10.1016/j.actao.2009. 11.002 |
|
Wu GL, Zhang MQ, Liu Y, et al., 2020. Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem. Geoderma, 374(2): 114429. DOI: 10.1016/j.geoderma.2020.114429 .
doi: 10.1016/j.geoderma.2020.114429 |
|
Wu QQ, 2018. Effects of snow depth manipulation on the releases of carbon, nitrogen and phosphorus from the foliar litter of two temperate tree species. Science of the Total Environment, 643: 1357-1365. DOI: 10.1016/j.scitotenv.2018. 06.308 .
doi: 10.1016/j.scitotenv.2018. 06.308 |
|
Wu QQ, 2020. Short-and long-term effects of snow-depth on Korean Pine and Mongolian oak litter decomposition in northeastern China. Ecosystems, 23: 662-674. DOI: 10. 1007/s10021-019-00429-y .
doi: 10. 1007/s10021-019-00429-y |
|
Yang SZ, Jin HJ, 2008. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost. Acta Ecologica Sinica, 28(10): 5065-5074. DOI: 10.3321/j.issn:1000-0933. 2008.10.054. (in Chinese)
doi: 10.3321/j.issn:1000-0933. 2008.10.054. |
|
Yang WQ, Deng RJ, Zhang J, 2007. Forest litter decomposition and its responses to global climate change. Chinese Journal of Applied Ecology, 18(12): 2889-2895. DOI: CNKI:SUN:YYSB.0.2007-12-039. (in Chinese)
doi: CNKI:SUN:YYSB.0.2007-12-039. |
|
Yu G, Wang S, Chen P, et al., 2005. Isotope tracer approaches in soil organic carbon cycle research. Advances in Earth Science, 20(5): 568-577. DOI: CNKI:SUN:DXJZ.0.2005-05-013. (in Chinese)
doi: CNKI:SUN:DXJZ.0.2005-05-013. |
|
Zhang B, Wang HL, Yao SH, et al., 2013. Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana . Soil Biology and Biochemistry, 57: 556-567. DOI: 10. 1016/j.soilbio.2012.07.024 .
doi: 10. 1016/j.soilbio.2012.07.024 |
|
Zhao HM, Huang G, Ma J, et al., 2012. Responses of surface litter decomposition to seasonal water addition in desert. Chinese Journal of Plant Ecology, 36(6): 471. DOI: 10. 3724/SP.J.1258.2012.00471. (in Chinese)
doi: 10. 3724/SP.J.1258.2012.00471. |
|
Zhao XY, Cui JY, Zhang TH, 1999. Estimation and dynamic modeling of wheat litter production in desertified arable land in Horqin Sandy Land. Journal of Desert Research, 19(s1): 103-106. DOI: CNKI:SUN:ZGSS.0.1999-S1-023. (in Chinese)
doi: CNKI:SUN:ZGSS.0.1999-S1-023. |
|
Zheng JQ, Guo RH, Li DS, et al., 2016. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest. Journal of Beijing Forestry University, 38(4): 21-28. DOI: 10.13332/j.1000-1522.20150464. (in Chinese)
doi: 10.13332/j.1000-1522.20150464. |
|
Zhong HP, Du ZC, 1997. The relationship between the climatic factors and the litter decomposition of Trifolium pratense, Dactylis glomerata in mountains of eastern Sichuan. Grassland of China, 6(4): 29-32. DOI: CNKI:SUN:ZGCD. 0.1997-06-006. (in Chinese)
doi: CNKI:SUN:ZGCD. 0.1997-06-006. |
|
Zhu JX, 2011. Response of Litter Decomposition in Subalpine Forests to Seasonal Freezing and Thawing. Doctoral Dissertation, Sichuan Agricultural University. (in Chinese) |
[1] | LiPing Li,ChunYan Zhang,Eimear Nic Lughadha,Tarciso C. C. Leão,Kate Hardwick,YaoMin Zheng,HuaWei Wan,Ming Ma,Nurbay Abudusalih,Hai Ying,Pu Zhen,JiangShan Lai,ZhanFeng Shen,Liu Li,Tuo Wang,YangMing Jiang,HuiHui Zhao,QingJie Liu. Geographic range size patterns across plants and animals of Xinjiang, China [J]. Sciences in Cold and Arid Regions, 2022, 14(1): 54-67. |
[2] | Stuart A. Harris. Cryogenic wedges on the NE Qinghai-Tibet and Ordos Plateaus: Their characteristics, origin and OSL dating [J]. Sciences in Cold and Arid Regions, 2021, 13(6): 463-473. |
[3] | YongTao Zhao,YunFa Miao,Yan Lei,XianYong Cao,MingXing Xiang. Progress, problems and prospects of palynology in reconstructing environmental change in inland arid areas of Asia [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 271-291. |
[4] | Sindikubwabo Celestin,Qi Feng,RuoLin Li,WenJu Cheng,Jian Ma,Habiyakare Telesphore,Nzabarinda Vincent. Temporal changes in seasonal precipitation over the Sahara Desert from 1979 to 2016 [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 220-233. |
[5] | WeiCheng Luo,WenZhi Zhao,Bing Liu,Heng Ren. Changes in morphology and soil nutrient patterns of nebkhas in arid regions along a precipitation gradient [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 256-267. |
[6] | ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379. |
[7] | PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283. |
[8] | Hu Liu,Lin Li,SiJia Wang,QiYue Yang,WenZhi Zhao. Soil-moisture dynamics and tree-water status in a Picea crassifolia forest, Qilian Mountains, China [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 34-46. |
[9] | YueDan Zhao,XingDong He,Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao. Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 371-381. |
[10] | YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247. |
[11] | CuiHua Huang,Fei Peng,Itaru Shibata,Jun Luo,Xian Xue,Kinya Akashi,Atsushi Tsunekawa,Tao Wang. Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 81-92. |
[12] | MengQi Li, XingDong He, XiangXiang Yang, YueDan Zhao, YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340-346. |
[13] | XinPing Wang, YaFeng Zhang, Rui Hu, YanXia Pan, HaoJie Xu, Wei Shi, YanXia Jin, Hiroshi Yasuda. Revisit of event-based rainfall characteristics at Shapotou area in northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484. |
|