Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (1): 81-92.doi: 10.3724/SP.J.1226.2019.00081

Previous Articles    

Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts

CuiHua Huang1,Fei Peng1,2,3,*(),Itaru Shibata3,Jun Luo1,Xian Xue1,Kinya Akashi2,3,Atsushi Tsunekawa2,3,Tao Wang1   

  1. 1. Minqin Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China
    2. International Platform for Dryland Research and Education, Tottori University, Koyama-Minami, Tottori 680-8550, Japan
    3. Arid Land Research Center, Tottori University, Hamasaka, Tottori 680-0001, Japan
  • Received:2018-07-18 Accepted:2018-09-29 Online:2019-02-01 Published:2019-03-22
  • Contact: Fei Peng E-mail:pengfei@lzb.ac.cn
  • About author:Fei Peng, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China. Tel: +86-931-4967484; Fax: +86-931-8273894; E-mail:pengfei@lzb.ac.cn

Abstract:

Biological soil crusts (BSCs) play important roles in the carbon (C) balance in arid regions. Net C balance of BSCs is strongly dependent on rainfall and consequent activation of microbes in the BSCs. The compensation-rainfall size for BSCs (the minimum rainfall amount for a positive net C balance) is assumed to be different with BSCs of different developmental stages. A field experiment with simulated rainfall amount (SRA) of 0, 1, 5, 10, 20, and 40 mm was conducted to examine the C fluxes and compensation-rainfall size of BSCs in different parts of fixed dunes in the ecotone between the Badain Jaran Desert and the Minqin Oasis. We found algae?lichen crust on the interdunes and crest, algae crust on the leeward side, and lichen?moss crust on the windward. Even a small rainfall (1 mm) can activate both photosynthesis and respiration of all types of BSCs. The gross ecosystem production, ecosystem respiration, and net ecosystem exchange were significantly affected by SRA, hours after the simulated rainfall, position on a dune, and their interactions. The rapid activation of photosynthesis provides a C source and therefore could be responsible for the increase of C efflux after each rewetting. C-uptake and -emission capacity of all the BSCs positively correlated with rainfall size, with the lowest C fluxes on the leeward side. The compensation rainfall for a net C uptake was 3.80, 15.54, 8.62, and 1.88 mm for BSCs on the interdunes, the leeward side, the crest, and the windward side, respectively. The whole dune started to show a net C uptake with an SRA of 5 mm and maximized with an SRA of about 30 mm. The compensation-rainfall size is negatively correlated with chlorophyll content. Our results suggest that BSCs will be favored in terms of C balance, and sand dune stabilization could be sustained with an increasing frequency of 5?10 mm rainfall events in the desert?oasis transitional zone.

Key words: biological soil crust, rainfall size, desert?oasis ecotone, C balance, arid region

Table 1

Soil texture and chemical characteristics for different parts of the dune at the surface (0?2 cm) and subsurface (2?5 cm) layers"

Depth Position SOC (g/kg) TN (g/kg) NO 3 - (mg/kg) NH 4 + (mg/kg) Clay (%) Silt (%) Sand (%) pH
0?2 cm Interdunes 6.91±0.98a 0.71±0.08a 8.33±4.92a 10.26±0.47bc 1.02±0.01ab 38.98±2.26ab 60.00±2.84ab 8.24±0.36a
Leeward 5.30±0.80ab 0.53±0.07ab 5.82±3.30a 12.43±0.14ab 1.18±0.10a 46.56±1.68a 52.26±1.77b 8.10±0.26a
Crest 6.23±0.24ab 0.65±0.03ab 7.67±1.42a 9.34±1.14cd 1.11±0.08a 44.09±2.49ab 54.80±2.56ab 8.02±0.22a
Windward 8.82±0.47a 0.88±0.05a 10.56±4.59a 13.97±0.40a 0.84±0.15ab 33.80±4.81ab 65.36±4.91ab 8.17±0.14a
2?5 cm Interdunes 1.83±0.80c 0.23±0.07c 5.82±3.30a 7.25±0.14de 0.46±0.17b 20.49±10.71b 79.05±10.87a 8.43±0.26a
Leeward 2.94±0.24bc 0.31±0.03bc 7.67±1.42a 7.29±1.14de 0.85±0.17ab 34.48±6.22ab 64.68±6.40ab 8.18±0.22a
Crest 2.82±0.47bc 0.29±0.05bc 10.56±4.59a 6.67±0.40e 0.75±0.12ab 32.97±5.47ab 66.28±5.59ab 8.45±0.14a
Windward 2.38±2.15bc 0.25±0.24c 10.09±4.69a 7.08±0.37de 0.76±0.25ab 29.05±10.96ab 79.29±11.21ab 8.34±0.11a

Figure 1

Soil moisture after each rainfall simulation of 0, 1, 5, 10, 20, and 40 mm. Error bars are the standard error of three replicates"

Figure 2

Percentage of algae, lichen, and moss on the"

Figure 3

Chlorophyll content of algae, lichen, and moss on interdune, leeward, crest, and windward parts of the stabilized dunes with BSCs. Error bars are the standard error of three replicates"

Table 2

Results (F value ) of four-way ANOVA analysis about the effect of month, hours after simulated rainfall (HAF), position of the dunes (Position), simulated rainfall amount (SRA), interaction of position and SRA, and interaction of HAF and SRA on ecosystem respiration (ER), net ecosystem exchange (NEE), and gross ecosystem production (GEP)"

Source of variance/df NEE ER GEP
Month / 2 4.5* 20.9** 11.8**
HAF / 6 74.5** 103.2** 106.5**
SRA / 5 54.8** 97.0** 94.7**
Position / 3 20.9** 32.3** 32.9**
HAF×SRA / 29 7.6** 9.1** 9.6**
SRA×Position / 15 2.2** 2.8** 2.8**

Figure 4

Average gross ecosystem production (GEP), net ecosystem exchange (NEE), and ecosystem respiration (ER) of organisms in biological soil crusts with different amounts of simulated rainfall on the interdune, leeward, crest, and windward parts of a sand dune. Values in each rainfall simulation are the average of 0, 1, 2, 4, 6, 8, and 10 hours after rainfall simulation of the three replicates. Error bars are the standard error of three replicates"

Figure 5

GEP, NEE, and ER of organisms in biological soil crust at 10 minutes; 0,1, 2, 4, 6, 8, and 10 hours after rainfall simulation on the interdune, leeward, crest, and windward parts of a dune. Values for each time are the average of C fluxes with 0, 1, 5, 10, 20, and 40 mm of rainfall simulation in three replicates. Error bars are the standard error of the three replicates"

Figure 6

Cumulative net ecosystem change (NEE) and ecosystem respiration (ER) after the SRA in June, August, and September"

Figure 7

Linear fitting between the cumulated NEE and SRA on the interdune, leeward, crest, and windward parts of fixed sand dunes. Negative values represent net C loss, and positive represent net C gain"

Figure 8

Polynomial fitting between cumulated NEE and SRA, combining the interdune, leeward, crest, and windward parts of a dune. Negative values represent net C loss, and positive represent net C gain"

Austin AT , Yahdjian L , Stark JM , et al . , 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141(2): 221−235. DOI: 10.1007/s00442-004-15 19-1.
doi: 10.1007/s00442-004-15 19-1.
Belnap J , Gillette DA , 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation & Development, 8(4): 355−362. DOI: 10.1002/ (SICI)1099-145X(199712)8:4<355::AID-LDR266>3.0.CO;2-H.
doi: 10.1002/
Belnap J , Lange OL , 2003. Biological soil crusts: structure, function, and management. Berlin, Heidelberg: Springer, pp. 272−276. DOI: 10.1007/978-3-642-56475-8.
doi: 10.1007/978-3-642-56475-8.
Belnap J , Phillips SL , Miller ME , 2004. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, 141(2): 306−316. DOI: 10.1007/s00442-003-1438-6.
doi: 10.1007/s00442-003-1438-6.
Bowker MA , Belnap J , Davidson DW , et al . , 2006. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. Journal of Applied Ecology, 43(1): 152−163. DOI: 10.11 11/j.1365-2664.2006.01122.x.
doi: 10.11 11/j.1365-2664.2006.01122.x.
Bowker MA , Eldridge DJ , Val J , et al . , 2013. Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biology and Biochemistry, 61: 14−22. DOI: 10.1016/j.soilbio.2013.02.002.
doi: 10.1016/j.soilbio.2013.02.002.
Bowling DR , Grote EE , Belnap J , 2011. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. Journal of Geophysical Research: Biogeosciences, 116(G3): G03028. DOI: 10.1029/2011JG001643.
doi: 10.1029/2011JG001643.
Büdel B , Williams WJ , Reichenberger H , 2018. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf savannah, Queensland, Australia. Biogeosciences,15(2): 491−505. DOI: 10.5194/bg-15-491-2018.
doi: 10.5194/bg-15-491-2018.
Chamizo S , Cantón Y , Lazaro R , et al . , 2013. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. Journal of Hydrology, 489: 74−84. DOI: 10.1016/j.jhydrol.2013.02.051.
doi: 10.1016/j.jhydrol.2013.02.051.
Coe KK , Belnap J , Sparks JP , 2012. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology, 93(7): 1626−1636. DOI: 10.1890/11-2247.1.
doi: 10.1890/11-2247.1.
Darby BJ , Neher DA , Belnap J , 2010. Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant and Soil, 328(1−2): 421−431. DOI: 10.1007/s11104-009-0122-y.
doi: 10.1007/s11104-009-0122-y.
Dong ZB , Man DQ , Luo WY , et al . , 2010. Horizontal aeolian sediment flux in the Minqin area, a major source of Chinese dust storms. Geomorphology, 116(1−2): 58−66. DOI: 10.10 16/j.geomorph.2009.10.008.
doi: 10.10 16/j.geomorph.2009.10.008.
Du JH , Yan P , Ding LG , et al . , 2009. Soil physical and chemical properties of Nitraria tangutorun nebkhas surface at different development stages in Minqin oasis. Journal of Desert Research, 29(2): 248−253.
Du JH , Yan P , Dong YX , 2011. Precipitation characteristics and its impact on vegetation restoration in Minqin County, Gansu Province, northwest China. International Journal of Climatology, 31(8): 1153−1165. DOI: 10.1002/joc.2122.
doi: 10.1002/joc.2122.
Fischer T , Veste M , 2018. Carbon cycling of biological soil crusts mirrors ecological maturity along a Central European inland dune catena. CATENA, 160: 68−75. DOI: 10.1016/j.catena.2017.09.004.
doi: 10.1016/j.catena.2017.09.004.
Funk FA , Loydi A , Peter G , 2014. Effects of biological soil crusts and drought on emergence and survival of a Patagonian perennial grass in the Monte of Argentina. Journal of Arid Land, 6(6): 735−741. DOI: 10.1007/s40333-014-0022-8.
doi: 10.1007/s40333-014-0022-8.
Grote EE , Belnap J , Housman DC , et al . , 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Global Change Biology, 16(10): 2763−2774. DOI: 10.1111/j.1365-2486.2010.02201.x.
doi: 10.1111/j.1365-2486.2010.02201.x.
Huang L , Zhang ZS , Li XR , 2014. Carbon fixation and its influence factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China. Journal of Arid Land, 6(6): 725−734. DOI: 10.1007/s40333-014-0027-3.
doi: 10.1007/s40333-014-0027-3.
Huxman TE , Snyder KA , Tissue D , et al . , 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141(2): 254−268. DOI: 10.1007/s00442-004-16 82-4.
doi: 10.1007/s00442-004-16 82-4.
Jeffries DL , Link SO , Klopatek JM , 1993. CO2 fluxes of cryptogamic crusts: II. Response to dehydration. New Phytologist, 125(2): 391−396. DOI: 10.1111/j.1469-8137.1993.tb03891.x.
doi: 10.1111/j.1469-8137.1993.tb03891.x.
Jia RL , Li XR , Liu LC , et al . , 2008. Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, Northern China. Soil Biology and Biochemistry, 40(11): 2827−2834. DOI: 10.1016/j.soilbio.2008.07.029.
doi: 10.1016/j.soilbio.2008.07.029.
Jia RL , Li XR , Liu LC , et al . , 2012. Differential wind tolerance of soil crust mosses explains their micro-distribution in nature. Soil Biology and Biochemistry, 45: 31−39. DOI: 10.10 16/j.soilbio.2011.09.021.
doi: 10.10 16/j.soilbio.2011.09.021.
Jia RL , Li XR , Liu LC , et al . , 2014. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China. Journal of Hydrology, 519: 2341−2349. DOI: 10.1016/j.jhydrol.2014.10.031.
doi: 10.1016/j.jhydrol.2014.10.031.
Lange OL , Büdel B , Meyer A , et al . , 1993. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. The Lichenologist, 25(2): 175−189. DOI: 10.1006/lich.1993.1025.
doi: 10.1006/lich.1993.1025.
Lange OL , Meyer A , Zellner H , et al . , 1994. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Functional Ecology, 8(2): 253−264. DOI: 10.2307/2389909.
doi: 10.2307/2389909.
Lange OL , Belnap J , Reichenberger H , 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology, 12(2): 195−202. DOI:10.1046/j.1365-243 5.1998.00192.x.
doi: 10.1046/j.1365-243 5.1998.00192.x.
Lange OL, 2001. Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds.). Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, pp. 77−84. DOI: 10.1007/978-3-642-5647 5-8_18.
doi: 10.1007/978-3-642-5647 5-8_18.
Li XR , He MZ , Zerbe S , et al . , 2010. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Landforms, 35(8): 932−940. DOI: 10.1002/esp.1963.
doi: 10.1002/esp.1963.
Li XR , Zhang P , Su YG , et al . , 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four-year field study. CATENA, 97: 119−126. DOI: 10.1016/j.catena.2012.05.009.
doi: 10.1016/j.catena.2012.05.009.
Lin DL , Xia JY , Wan SQ , 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188(1): 187−198. DOI: 10.1111/j.1469-8137. 2010.03347.x.
doi: 10.1111/j.1469-8137. 2010.03347.x.
Liu YM , Xing ZS , Yang HY , 2017. Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China). Journal of Arid Environments, 144: 201−211. DOI: 10.1016/j.jaridenv.2017.04.003.
doi: 10.1016/j.jaridenv.2017.04.003.
Noy-Meir I, 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25−51. DOI: 10.1146/annurev.es.04.110173.000325.
doi: 10.1146/annurev.es.04.110173.000325.
Peng F , You QG , Xu MH , et al . , 2015. Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau. European Journal of Soil Science, 66(1): 145−154. DOI: 10.1111/ejss.12187.
doi: 10.1111/ejss.12187.
Reed SC , Coe KK , Sparks JP , et al . , 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2(10): 752−755. DOI: 10.1038/nclimate1596.
doi: 10.1038/nclimate1596.
Sponseller RA, 2007. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13(2): 426−436. DOI: 10.1111/j.1365-2486.2006.01307.x.
doi: 10.1111/j.1365-2486.2006.01307.x.
Su YG , Wu L , Zhang YM , 2012. Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. CATENA, 96: 41−48. DOI: 10.10 16/j.catena.2012.04.003.
doi: 10.10 16/j.catena.2012.04.003.
Su YG , Wu L , Zhou ZB , et al . , 2013. Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggute desert, North China. Soil Biology and Biochemistry, 58: 332−340. DOI: 10.1016/j.soilbio.2012.12.006.
doi: 10.1016/j.soilbio.2012.12.006.
Thomas AD , Hoon SR , 2010. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting. Journal of Arid Environments, 74(1): 131−139. DOI: 10. 1016/j.jaridenv.2009.07.005.
doi: 10. 1016/j.jaridenv.2009.07.005.
Wilske B , Burgheimer J , Karnieli A , et al . , 2008. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. Biogeosciences, 5(5): 1411−1423. DOI: 10.5194/bg-5-1411-2008.
doi: 10.5194/bg-5-1411-2008.
Wu L , Zhang YM , Zhang J , et al . , 2015. Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: implications for soil C balance in a temperate desert of northwestern China. European Journal of Soil Biology, 67: 27−34. DOI: 10.1016/j.ejsobi.2015.01.003.
doi: 10.1016/j.ejsobi.2015.01.003.
Wu YS , Erdun H , Yin RP , et al . , 2013. Discussion on wind factor influencing the distribution of biological soil crusts on surface of sand dunes. Sciences in Cold and Arid Regions, 5(6): 739−744. DOI: 10.3724/SP.J.1226.2013.00739.
doi: 10.3724/SP.J.1226.2013.00739.
Xie YW , Chen FH , Qi JG , 2009. Past desertification processes of Minqin Oasis in arid China. International Journal of Sustainable Development & World Ecology, 16(4): 260−269. DOI: 10.1080/13504500903132309.
doi: 10.1080/13504500903132309.
Yu J , Kidron GJ , Pen-Mouratov S , et al . , 2012. Do development stages of biological soil crusts determine activity and functional diversity in a sand-dune ecosystem? Soil Biology and Biochemistry, 51: 66−72. DOI: /10.1016/j.soilbio. 2012.04.007.
doi: /10.1016/j.soilbio. 2012.04.007.
Zhao Y , Li XR , Zhang ZS , et al . , 2014. Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China. Ecological Research, 29(5): 889−896. DOI: 10.1007/s11284-014-1177-7.
doi: 10.1007/s11284-014-1177-7.
Zhao Y , Zhang ZS , Hu YG , et al . , 2016. The seasonal and successional variations of carbon release from biological soil crust-covered soil. Journal of Arid Environments, 127: 148−153. DOI: 10.1016/j.jaridenv.2015.11.012
doi: 10.1016/j.jaridenv.2015.11.012
[1] YueDan Zhao,XingDong He,Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao. Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 371-381.
[2] YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247.
[3] LiNa Zhao,XinRong Li,ShiWei Yuan,YuBing Liu. Shifts in community structure and function of ammonia-oxidizing archaea in biological soil crusts along a revegetation chronosequence in the Tengger Desert [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 139-149.
[4] MengQi Li,XingDong He,XiangXiang Yang,YueDan Zhao,YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340-346.
[5] XinPing Wang, YaFeng Zhang, Rui Hu, YanXia Pan, HaoJie Xu, Wei Shi, YanXia Jin, Hiroshi Yasuda. Revisit of event-based rainfall characteristics at Shapotou area in northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang,YongQiu Wu,MeiHui Pan,RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao,ShiHua Lyu,ZhaoGuo Li,LiJuan Wen,Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga,Za Dui,Duodian Luozhu,Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang,JunQia Kong,ZeYu Du,YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu,ZhongKui Xie,XinPing Wang,YaJun Wang,YuBao Zhang,YuHui He,WenMei Li,WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei,XiaoFei Ma,PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong,AiJun Guo,XiaoJuan Yin,JinFeng Cui,Xiao Yang,YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .