Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (2): 139-149.doi: 10.3724/SP.J.1226.2019.00139.

Previous Articles    

Shifts in community structure and function of ammonia-oxidizing archaea in biological soil crusts along a revegetation chronosequence in the Tengger Desert

LiNa Zhao1,2,4,XinRong Li1,2,ShiWei Yuan3,4,YuBing Liu1,2()   

  1. 1. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    3. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-24 Accepted:2019-02-28 Online:2019-04-01 Published:2019-04-29
  • Contact: YuBing Liu E-mail:liuyb@lzb.ac.cn
  • About author:Professor YuBing Liu, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel: +86-931-4967199; E-mail: liuyb@lzb.ac.cn

Abstract:

Metagenomic studies have demonstrated the existence of ammonia-oxidizing archaea (AOA) and revealed they are responsible for ammoxidation in some extreme environments. However, the changes in compositional structure and ammonia-oxidation capacity of AOA communities in biological soil crusts (BSCs) of desert ecosystems remain poorly understood. Here, we utilized Illumina MiSeq sequencing and microbial functional gene array (GeoChip 5.0) to assess the above changes along a 51-year revegetation chronosequence in the Tengger Desert, China. The results showed a significant difference in AOA-community richness between 5-year-old BSCs and older ones. The most dominant phylum during BSC development was Crenarchaeota, and the corresponding species were ammonia-oxidizing_Crenarchaeote and environmental_samples_Crenarchaeota. Network analysis revealed that the positive correlations among dominant taxa increased, and their cooperation was reinforced in AOA communities during BSC succession. Redundancy analysis showed that the dominant factor influencing the change in AOA-community structure was soil texture. GeoChip 5.0 indicated that the amoA gene abundances of AOA and ammonia-oxidizing bacteria (AOB) were basically the same, demonstrating that AOA and AOB played an equally important role during BSCs development. Our study of the long-term succession of BSC demonstrated a persistent response of AOA communities to revegetation development in desert ecosystems.

Key words: ammonia-oxidizing archaea, biological soil crusts, GeoChip 5.0, network analysis

Figure 1

Rarefaction curves of the amoA clone libraries based on 97% identity in different ages of BSCs. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Figure 2

PCoA of AOA communities in BSCs at five different ages at the OTU level defined, based on 97% identity. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Figure 3

Sobs index of AOA communities in BSCs at five different ages at the OTU level defined, based on 97% identity. All bars represent mean ± standard deviation (n = 3); different lowercase letters represents a significant difference between samples (P <0.05). 5YR, 15YR, 28YR, 34YR, and 51YR represent 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Figure 4

Composition of AOA communities in BSCs at five different ages at the (a) phylum and (b) species level. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Figure 5

Network visualizations showing interactions between major categories of AOA communities in BSCs at five different ages. (a), (b), (c), (d), and (e) correspond to interactions within 5YR, 15YR, 28YR, 34YR, and 51YR, respectively; and (f) is a brief summary of node and link numbers, and ratios of positive and negative links for five groups of subnetworks. Node sizes indicate OTU abundance. Line thicknesses represent the correlation coefficient. Red links indicate positive correlations between nodes. Green links indicate negative correlations between nodes. C nodes, U nodes, T nodes, and P/N correspond to Crenarchaeota nodes, Unclassified_norank_Archaea nodes, Thaumarchaeota nodes, and the ratios of positive and negative links respectively. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Figure 6

Archaea and bacterial amoA genes abundance among BSCs at different ages. The ratios of AOA to AOB amoA genes abundance (AOA:AOB) are shown in the boxes above the chart. All bars represent mean ± standard deviation (n = 3); different lowercase letters, uppercase letters, and Greek letters represent significant differences between AOA abundance, AOB abundance, and the ratio of AOA:AOB (P <0.05), respectively. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Figure 7

RDA of soil biochemical characteristics in relation to AOA compositional structures. Each dot represents the AOA community in each sample. Red arrows indicate the direction and magnitude of the impact of environmental factors on the AOA community, and the length of the red arrow indicates the intensity of the correlation. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Table S-1

Soil characteristics of topsoil (0?5 cm) under BSCs in revegetated areas. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Soil characteristics 5YR 15YR 28YR 34YR 51YR
pH 8.22±0.07 8.24±0.08 8.20±0.03 8.25±0.02 8.09±0.05
Sand (%) 99.10±0.12 93.88±0.71 93.51±1.27 90.16±1.47 85.74±1.24
Silt (%) 0.76±0.14 5.86±0.75 6.09±1.31 9.32±1.53 13.64±1.22
Clay (%) 0.14±0.03 0.26±0.05 0.40±0.05 0.52±0.06 0.62±0.06
Organic Matter (g/kg) 0.54±0.03 2.10±0.18 1.67±0.63 2.79±0.52 2.93±0.26
Carbon: Nitrogen ratio 2.54±1.16 4.51±0.35 4.12±0.17 4.66±0.25 4.68±0.40
Total Carbon (g/kg) 0.45±0.07 3.53±0.61 3.08±2.03 6.53±1.15 7.23±0.15
Total Nitrogen (g/kg) 0.14±0.05 0.27±0.01 0.24±0.09 0.35±0.07 0.36±0.01
Total Phosphorus (g/kg) 0.28±0.03 0.49±0.03 0.48±0.13 0.62±0.09 0.63±0.03
Available Nitrogen (mg/kg) 10.16±1.80 17.55±2.17 21.35±3.31 26.99±5.77 29.96±14.83
Available Phosphorus (mg/kg) 1.30±0.48 7.22±0.30 4.70±3.21 7.41±2.47 6.68±1.40
Urease (μg N-NH 4 + /(g?h)) 0.79±0.00 3.85±0.25 3.96±0.04 6.80±0.04 10.46±0.16

Dehydrogenase

(μg triphenyl formazan/(g?h))

0.64±0.02 0.71±0.02 0.74±0.02 0.76±0.02 0.90±0.01
Invertase (μg glucose/(g?h)) 11.61±3.26 54.27±1.56 44.33±12.75 39.62±8.40 38.33±3.39

Table S-2

Sequence information from all samples. 5YR, 15YR, 28YR, 34YR, and 51YR represents 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively"

Sample ID Sequences numbers Mean length OTU
5YR1 14,959 272.668828 26
5YR2 13,765 271.275699 23
5YR3 17,437 272.507140 26
Even 15,387 272.150556 25
15YR1 12,705 271.997403 40
15YR2 16,331 271.610618 45
15YR3 18,192 274.208828 39
Even 15,743 272.605616 41
28YR1 12,032 270.735206 38
28YR2 17,346 271.312810 29
28YR3 16,824 272.688421 32
Even 15,401 271.578812 33
34YR1 17,985 274.157687 43
34YR2 17,306 271.427135 37
34YR3 10,409 271.250841 37
Even 15,233 272.278554 39
51YR1 18,602 272.207773 36
51YR2 12,914 270.748335 40
51YR3 10,190 271.624436 38
Even 13,902 271.526848 38

Table S-3

he Pearson correlations between soil biochemical characteristics of the topsoil (0?5 cm) under BSCs"

Attributes IT DHA UE AP AN TP TN TC C:N OM Clay Silt Sand pH
pH 0.032 -0.629* -0.548* -0.175 -0.366 -0.31 -0.426 -0.382 0.024 -0.313 -0.459 -0.526* 0.525* 1
Sand -0.397 -0.925** -0.972** -0.634* -0.742** -0.838** -0.819** -0.917** -0.726** -0.885** -0.896** -1.000** 1
Silt 0.395 0.922** 0.970** 0.634* 0.735** 0.836** 0.818** 0.916** 0.725** 0.884** 0.888** 1
Clay 0.404 0.901** 0.932** 0.559* 0.818** 0.789** 0.765** 0.857** 0.665** 0.827** 1
OM 0.572* 0.759** 0.858** 0.884** 0.773** 0.965** 0.953** 0.971** 0.784** 1
C:N 0.675** 0.586* 0.675** 0.702** 0.659** 0.711** 0.573* 0.703** 1
TC 0.415 0.801** 0.901** 0.796** 0.730** 0.956** 0.946** 1
TN 0.488 0.719** 0.800** 0.863** 0.687** 0.955** 1
TP 0.495 0.717** 0.803** 0.899** 0.734** 1
AN 0.342 0.701** 0.732** 0.686** 1
AP 0.599* 0.483 0.586* 1
UE 0.364 0.962** 1
DHA 0.373 1
IT 1
Abed RM , Al Kharusi S , Schramm A , et al . , 2010. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiology Ecology, 72: 418−428. DOI: 10.1111/j.1574-6941.2010. 00854.x.
doi: 10.1111/j.1574-6941.2010. 00854.x
Aitkenhead JA , Mcdowell WH , 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14(1): 127−138. DOI: 10.1029/1999GB900083.
doi: 10.1029/1999GB900083
Andrés P , Moore JC , Simpson RT , et al . , 2016. Soil food web stability in response to grazing in a semiarid prairie: the importance of soil textural heterogeneity. Soil Biology and Biochemistry, 97: 131−143. DOI: 10.1016/j.soilbio.2016. 02.014.
doi: 10.1016/j.soilbio.2016. 02.014
Belnap J , 2003. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds.). Biological Soil Crusts: Structure, Function, and Management.Springer, Berlin, pp.241−261.
Belnap J , Weber B , Büdel B , 2016. Biological soil crusts as an organizing principle in drylands. In: Weber B, Büdel B, Belnap J (eds.).Biological Soil Crusts: an Organizing Principle in Drylands.Springer, Cham, pp. 3−13.
Casida LE Jr , Klein DA , Santoro T , 1964. Soil dehydrogenase activity. Soil Science, 98: 371−376.
Chen Z , Wu WL , Shao XM , et al . , 2015. Shifts in abundance and diversity of soil ammonia-oxidizing bacteria and archaea associated with land restoration in a semi-arid ecosystem. PLoS One, 10(7): e0132879.
Di HJ , Cameron KC , Shen JP , et al . , 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2: 621−624.
Erguder TH , Boon N , Wittebolle L , et al . , 2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews, 33: 855−869. DOI: 10.1111/j.1574-6976.2009.00179.x.
doi: 10.1111/j.1574-6976.2009.00179.x
Feng K , Zhang ZJ , Cai W , et al . , 2017. Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26: 6170−6182. DOI: 10.1111/mec.14356.
doi: 10.1111/mec.14356
Fierer N , Jackson RB , 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103: 626−631. DOI: 10.1073/pnas.0507535103.
doi: 10.1073/pnas.0507535103
Hagberg AA , Schult DA , Swart PJ , 2008. Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G, Vaught T, Millman J (eds.). The 7th Python in Science Conference (SciPy2008)Pasadena, CA, pp. 11−15.
Hallam SJ , Mincer TJ , Schleper C , et al . , 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology, 4: e95. DOI: 10.1371/journal.pbio.0040095.
doi: 10.1371/journal.pbio.0040095
Harris J , 2009. Soil microbial communities and restoration ecology: facilitators or followers? Science, 325: 573−574. DOI: 10.1126/science.1172975.
doi: 10.1126/science.1172975
Hayden HL , Drake J , Imhof M , et al . , 2010. The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biology AND Biochemistry, 42: 1774−1783. DOI: 10.1016/j.soilbio.2010.06.015.
doi: 10.1016/j.soilbio.2010.06.015
He M , Dijkstra FA , Zhang K , et al . , 2016. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant and Soil, 398: 1−12. DOI: 10.10 07/s11104-015-2669-0.
doi: 10.10 07/s11104-015-2669-0
Jesus ED , Marsh TL , Tiedje JM , et al . , 2009. Changes in land use alter the structure of bacterial communities in western amazon soils. ISME Journal, 3: 1004−1011. DOI: 10.1038/ismej.2009.47.
doi: 10.1038/ismej.2009.47
Jiang X , Wu Y , Liu G , et al . , 2017. The effects of climate, catchment land use and local factors on the abundance and community structure of sediment ammonia-oxidizing microorganisms in Yangtze lakes. AMB Express, 7(1): 173. DOI: 10.1186/s13568-017-0479-x.
doi: 10.1186/s13568-017-0479-x
Jin K , Sleutel S , Buchan D , et al . , 2009. Changes of soil enzyme activities under different tillage practices in the Chinese loess plateau. Soil and Tillage Research, 104(1): 115−120. DOI: 10.1016/j.still.2009.02.004.
doi: 10.1016/j.still.2009.02.004
Kowalchuk GA , Stephen JR , 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55: 485−529. DOI: 10.1146/annurev.micro.55.1.485.
doi: 10.1146/annurev.micro.55.1.485
López-Lozano NE , Heidelberg KB , Nelson WC , et al . , 2013. Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico. PeerJ, 1: e47. DOI: 10.7717/peerj.47.
doi: 10.7717/peerj.47
Leininger S , Urich T , Schloter M , et al . , 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442: 806−809. DOI: 10.1038/nature04983.
doi: 10.1038/nature04983
Li XR , Kong DS , Tan HJ , et al . , 2007. Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300: 221−231. DOI: 10.1007/s11104-007-9407-1.
doi: 10.1007/s11104-007-9407-1
Li XR , Zhang P , Su YG , et al . , 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. Catena, 97: 119−126. DOI: 10.1016/j.catena.2012.05.009.
doi: 10.1016/j.catena.2012.05.009
Liu LC , Li SZ , Duan ZH , et al . , 2006. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China. Journal of Hydrology, 328: 331−337. DOI: 10.1016/j.jhydrol.2005.12.004.
doi: 10.1016/j.jhydrol.2005.12.004
Liu LC , Liu YB , Zhang P , et al . , 2017. Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China. Biogeosciences, 14: 3801−3814. DOI: 10.5194/bg-14-3801-2017.
doi: 10.5194/bg-14-3801-2017
Mao Y , Yannarell AC , Mackie RI , 2011. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One, 6: e24750. DOI: 10. 1371/journal.pone.0024750.
doi: 10. 1371/journal.pone.0024750
Martens-Habbena W , Berube PM , Urakawa H , et al . , 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461: 976−979. DOI: 10.1038/nature08465.
doi: 10.1038/nature08465
Mayland HF , Mcintosh TH , 1966. Availability of biologically fixed atmospheric nitrogen-15 to higher plants. Nature, 209: 421−422. DOI: 10.1038/209421a0.
doi: 10.1038/209421a0
Moritsuka N , Izawa G , Katsura K , et al . , 2015. Simple method for measuring soil sand content by nylon mesh sieving. Soil Science and Plant Nutrition, 61: 501−505. DOI: 10.10 80/00380768.2015.1016864.
doi: 10.10 80/00380768.2015.1016864
Nanjing Institute of Soil Research , 1980. Analysis of Soil Physicochemical Features. Shanghai Science and Technology Press, Shanghai, pp. 360. (in Chinese)
Neher DA , Lewins SA , Weicht TR , et al . , 2009. Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments, 73: 672−677. DOI: 10.1016/j.jaridenv. 2009.01.013.
doi: 10.1016/j.jaridenv. 2009.01.013
Nelson DW , Sommers LE , 1996. Total carbon, organic carbon and organic matter. Methods of Soil Analysis Part 3—chemical Methods, (methodsofsoilan3), pp. 961−1010.
Offre P , Kerou M , Spang A , et al . , 2014. Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends in Microbiology, 22: 665−675. DOI: 10.10 16/j.tim.2014.07.007.
doi: 10.10 16/j.tim.2014.07.007
Ouyang Y , Norton JM , Stark JM , et al . , 2016. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 96: 4−15. DOI: 10.1016/j.soilbio.2016.01.012.
doi: 10.1016/j.soilbio.2016.01.012
Parton WJ , Cole CV , Stewart JWB , et al ., 1989. Simulating regional patterns of soil C, N and P dynamics in the U.S. central grasslands region.In: Clarholm M, Bergström L (eds.).Ecology of Arable Land—Perspectives and Challenges .Kluwer Academic Publishers, Netherlands, pp. 99−108.
Prosser JI, Nicol GW , 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology, 20: 523−531. DOI: 10.1016/j.tim.2012.08.001.
doi: 10.1016/j.tim.2012.08.001
Raun WR , Johnson GV , 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91: 357−363. DOI: 10.2134/agronj1999.00021962009100030001x.
doi: 10.2134/agronj1999.00021962009100030001x
Rawls WJ , Pachepsky YA , Ritchie JC , et al . , 2003. Effect of soil organic carbon on soil water retention. Geoderma, 116: 61−76. DOI: 10.1016/S0016-7061(03)00094-6.
doi: 10.1016/S0016-7061(03)00094-6
Schleper C , Nicol GW , 2010. Ammonia-oxidising archaea-physiology, ecology and evolution. Advances in Microbial Physiology, 57: 1−41. DOI: 10.1016/B978-0-12-381045-8.00001-1.
doi: 10.1016/B978-0-12-381045-8.00001-1
Schloss PD , Westcott SL , Ryabin T , et al . , 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75: 7537. DOI: 10.1128/AEM.01541-09.
doi: 10.1128/AEM.01541-09
Six J , Conant RT , Paul EA , et al . , 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241: 155−176. DOI: 10.1023/A:10 16125726789.
doi: 10.1023/A:10 16125726789
Sommers LE, Nelson DW , 1972. Determination of total phosphorus in soils: A rapid perchloric acid digestion procedure. Soil Science Society of America Journal, 36: 902−904. DOI: 10.2136/sssaj1972.03615995003600060020x.
doi: 10.2136/sssaj1972.03615995003600060020x
Ter Braak CJF, 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67: 1167−1179. DOI: 10.2307/1938672.
doi: 10.2307/1938672
Tilman D , Downing JA , 1994. Biodiversity and stability in grasslands. Nature, 367: 363−365. DOI: 10.1038/367363a0.
doi: 10.1038/367363a0
Tu Q , Yu H , He ZL , et al . , 2014. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 14(5): 914−928. DOI: 10.1111/1755-0998.12239.
doi: 10.1111/1755-0998.12239
Van der Heijden MGA , Klironomos J , Ursic M , et al . , 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69−72. DOI: 10.1038/23932.
doi: 10.1038/23932
Wang C , Wang X , Liu D , et al . , 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5: 4799. DOI: 10.10 38/ncomms5799.
doi: 10.10 38/ncomms5799
Walkly A ,1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification to the chromic acid titration method. Soil Science, 37: 29−38.
West NE , 1991. Nutrient cycling in soils of semiarid and arid regions. In: Skujins J (ed.). Semiarid Lands and Deserts, Soil Resource and Reclamation. Dekker Marcel, Inc, York New, pp. 295−332.
Yang CL , Sun TH , Zhou WX , et al . , 2007. Single and joint effects of pesticides and mercury on soil urease. Journal of Environmental Sciences, 19: 210−216. DOI: 10.1016/S10 01-0742(07)60034-5.
doi: 10.1016/S10 01-0742(07)60034-5
Zhalnina K , de Quadros PD , Camargo FA , et al . , 2012. Drivers of archaeal ammonia-oxidizing communities in soil. Frontiers in Microbiology, 3: 210. DOI: 10.3389/fmicb.2012. 00210.
doi: 10.3389/fmicb.2012. 00210
Zhang LM , Hu HW , Shen JP , et al . , 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal, 6(5): 1032−1045. DOI: 10.1038/ismej. 2011.168.
doi: 10.1038/ismej. 2011.168
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!