Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (5): 371-381.doi: 10.3724/SP.J.1226.2019.00371.

Previous Articles     Next Articles

Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area

YueDan Zhao,XingDong He(),Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao   

  1. College of Life Sciences, Nankai University, Tianjin 300071, China
  • Received:2019-07-31 Accepted:2019-08-27 Online:2019-10-31 Published:2019-11-12
  • Contact: XingDong He E-mail:xingd@nankai.edu.cn

Abstract:

The differences in nitrogen/phosphorus (N/P) ratios of different functional groups in ecology are more helpful in explaining species competition and community dynamics. Based on the functional groups of plant growth type, carbon metabolism pathway, root type and phylogenetic type, we analyzed characteristics of leaf N/P ratios of 77 species in Sanggendalai (typical grassland zone) of Zhenglan Banner, Inner Mongolia, China and 91 species in the Habahu National Nature Reserve (desertified grassland zone) in Yanchi County of Ningxia, China. The results show that the N/P ratio (16.91) of C3 plants in the desertified steppe was significantly larger than that (12.72) in the typical steppe, but there was no significant difference between the N/P ratios of C4 plants in the two zones. There was no significant difference in N/P ratios between C3 plants and C4 plants in the same zone. Similarly, the N/P ratio (16.60) of dicotyledons in desertified steppe were significantly higher than that (12.98) in typical steppe, while differences in N/P ratios between monocotyledonous plants of the two zones was not significant, and there existed no significant difference in N/P ratios between dicotyledonous and monocotyledonous plants in the same zone. The N/P ratio had significant difference between gramineous and non-gramineous plants in the typical steppe but not in the desertified steppe, but there existed no significant difference in N/P ratios among different root types of perennial herbaceous plants in the same type of steppe or between two types of steppe. Thus, different features on the N/P ratios of C3 plants and dicotyledonous plants between typical steppe and desertified steppe may lead to different growth status of plants, and the N/P ratio stoichiometric of the same plant functional group may be a foundation of the changes of a plant community.

Key words: semi-arid region, plant N/P ratio, plant functional groups, desertified steppe, typical steppe

Table 1

Plant communities and soil nutrient status for all collected plants in the Ningxia Habahu National Nature Reserve and in Sanggendalai of Zhenglan Banner of Inner Mongolia, China"

Site Plant community Organic matter (g/kg) Total N (g/kg) Total P (g/kg)
Habahu Artemisia ordosica community 1.884±0.193 0.169±0.015 0.094±0.007
Salix psammophila community 0.974±0.132 0.109±0.015 0.076±0.005
Sophora alopecuroides community 4.274±0.525 0.294±0.019 0.223±0.006
Stipa bungeana community 7.783±0.326 0.467±0.026 0.250±0.007
Sanggendalai S. krylovii community 11.951±0.438 0.840±0.040 0.253±0.005
Leymus chinensis community 7.950±0.725 0.530±0.040 0.201±0.011
Caragana microphylla community 7.170±0.798 0.500±0.039 0.190±0.012

Table 2

Different functional groups of all collected plant species in the Ningxia Habahu National Nature Reserve and in Sanggendalai of Zhenglan Banner of Inner Mongolia, China"

Species Site 1 Site 2 Family Life-form RST PP Phylogeny
Amaranthus tricolor * Amaranthaceae Annual C4 Dicots
Cynanchum thesioides * Asclepiadaceae Perennial Ratoon C3 Dicots
Lappula myosotis * Boraginaceae Annual C3 Dicots
Cynanchum chinense * Asclepiadaceae Perennial Ratoon C3 Dicots
C. hancockianum * Asclepiadaceae Perennial Fibrous Root C3 Dicots
Incarvillea sinensis * Bignoniaceae Annual C3 Dicots
Messerschmidia sibirica * Boraginaceae Perennial Ratoon C3 Dicots
Gypsophila davurica * * Caryophyllaceae Perennial Axial Root C3 Dicots
Silene aprica * Caryophyllaceae Annual C3 Dicots
Stellaria dichotoma * Caryophyllaceae Perennial Axial Root C3 Dicots
Corispermum mongolicum * Chenopodiaceae Annual C3 Dicots
Chenopodium acuminatum * Chenopodiaceae Annual C4 Dicots
Ch. glaucum * Chenopodiaceae Annual C4 Dicots
Kochia scoparia var. sieversiana * * Chenopodiaceae Annual C4 Dicots
K. prostrata * Chenopodiaceae shrub C4 Dicots
Suaeda glauca * Chenopodiaceae Annual C4 Dicots
Agriophyllum squarrosum * Chenopodiaceae Annual C3 Dicots
Ceratoides latens * Chenopodiaceae shrub C3 Dicots
Bassia dasyphylla * Chenopodiaceae Annual C4 Dicots
Kalidium gracile * Chenopodiaceae shrub C3 Dicots
Atriplex centralasiatica * Chenopodiaceae Annual C4 Dicots
Salsola collina * * Chenopodiaceae Annual C4 Dicots
Artemisia sieversiana * Compositae Annual C4 Dicots
A. halodendron * Compositae shrub C3 Dicots
A. frigida * * Compositae Perennial Axial Root C3 Dicots
A. ordosica * Compositae shrub C3 Dicots
A. sphaerocephala * Compositae shrub C3 Dicots
A. scoparia * * Compositae Perennial Axial Root C3 Dicots
Cirsium japonicum * Compositae Perennial Fleshy root tuber C3 Dicots
C. setosum * Compositae Perennial Axial Root C3 Dicots
Echinops gmelini * * Compositae Annual C3 Dicots
Heteropappus altaicus * * Compositae Perennial Axial Root C3 Dicots
Inula salsoloides * Compositae Perennial Axial Root C3 Dicots
Ixeris chinensis * * Compositae Perennial Axial Root C3 Dicots
Jurinea mongolica * Compositae Perennial Axial Root C3 Dicots
Mulgedium tataricum * Compositae Perennial Ratoon C3 Dicots
Saussurea runcinata * Compositae Perennial Axial Root C3 Dicots
S. amara * Compositae Perennial Axial Root C3 Dicots
Serratula centauroides * Compositae Perennial Axial Root C3 Dicots
Sonchus arvensis * Compositae Perennial Ratoon C3 Dicots
Scorzonera divaricata * * Compositae Perennial Ratoon C3 Dicots
Convolvulus arvensis * Convolvulaceae Perennial Axial Root C3 Dicots
Dontostemon dentatus * Cruciferae Annual C3 Dicots
Lepidium apetalum * Cruciferae Annual C3 Dicots
Carex korshinskyi * Cyperaceae Perennial Rhizome C3 Monocots
C. duriuscula * Cyperaceae Perennial Rhizome C3 Monocots
Scabiosa comosa * Dipsacaceae Perennial Axial Root C3 Dicots
Euphorbia fischeriana * Euphorbiaceae Perennial Axial Root C3 Dicots
E. esula * Euphorbiaceae Perennial Axial Root C3 Dicots
E. kozlovii * Euphorbiaceae Perennial Axial Root C3 Dicots
Gentiana scabra * Gentianaceae Perennial Fibrous Root C3 Dicots
G. dahurica * Gentianaceae Perennial Axial Root C3 Dicots
Erodium stephanianum * Geraniaceae Perennial Axial Root C3 Dicots
Pennisetum centrasiaticum * * Gramineae Perennial Rhizome C4 Monocots
Stipa Baicalensis * Gramineae Perennial Thick-Bunched C3 Monocots
S. bungeana * Gramineae Perennial Thick-Bunched C3 Monocots
S. tianschanica var. gobica * Gramineae Perennial Thick-Bunched C3 Monocots
S. glareosa * Gramineae Perennial Thick-Bunched C4 Monocots
S. krylovii * Gramineae Perennial Thick-Bunched C3 Monocots
S. grandis * Gramineae Perennial Thick-Bunched C3 Monocots
Agropyron cristatum * * Gramineae Perennial Bunched C3 Monocots
A. mongolicum * Gramineae Perennial Bunched C3 Monocots
Cleistogenes squarrosa * * Gramineae Perennial Bunched C4 Monocots
Calamagrostis pseudophragmites * * Gramineae Perennial Rhizome C3 Monocots
Chloris virgata * Gramineae Annual C4 Monocots
Poa sinoglauca * * Gramineae Perennial Thick-Bunched C3 Monocots
Achnatherum splendens * Gramineae Perennial Thick-Bunched C3 Monocots
Leymus secalinus * * Gramineae Perennial Rhizome C3 Monocots
L. chinensis * Gramineae Perennial Rhizome C3 Monocots
Phragmites communis * Gramineae Perennial Rhizome C3 Monocots
Psammochloa villosa * Gramineae Perennial Rhizome C3 Monocots
Setaria viridis * Gramineae Annual C4 Monocots
Achnatherum sibiricum * Gramineae Perennial Thick-Bunched C3 Monocots
Koeleria cristata * Gramineae Perennial Thick-Bunched C3 Monocots
Iris tenuifolia * * Iridaceae Perennial Thick-Bunched C3 Monocots
I. lactea * Iridaceae Perennial Thick-Bunched C3 Monocots
Amethystea caerulea * Labiatae Annual C3 Dicots
Scutellaria baicalensis * Labiatae Perennial Ratoon C3 Dicots
Phlomis mongolica * Labiatae Perennial Fleshy root tuber C3 Dicots
Ph. umbrosa * Labiatae Perennial Fleshy root tuber C3 Dicots
Thymus mongolicus * Labiatae shrub C3 Dicots
Lagochilus ilicifolius * Labiatae Perennial Axial Root C3 Dicots
Panzeria alaschanica * Labiatae Perennial Axial Root C3 Dicots
Dracocephalum moldavica * Labiatae Annual C3 Dicots
Astragalus melilotoides * Leguminosae Perennial Axial Root C3 Dicots
Caragana tibetica * Leguminosae shrub C3 Dicots
C. roborovskyii * Leguminosae shrub C3 Dicots
C. korshinskii * Leguminosae shrub C3 Dicots
C. microphylla * * Leguminosae shrub C3 Dicots
Gueldenstaedtia gansuensis * Leguminosae Perennial Axial Root C3 Dicots
Lespedeza davurica * Leguminosae shrub C3 Dicots
L. potaninii * Leguminosae shrub C3 Dicots
Hedysarum scoparium * Leguminosae shrub C3 Dicots
H. laeve * Leguminosae shrub C3 Dicots
Sophora alopecuroides * Leguminosae Perennial Ratoon C3 Dicots
Sphaerophysa salsula * Leguminosae Perennial Ratoon C3 Dicots
Oxytropis aciphylla * Leguminosae shrub C3 Dicots
Ammopiptanthus mongolicus * Leguminosae shrub C3 Dicots
Medicago * Leguminosae Perennial Axial Root C3 Dicots
Thermopsis lanceolata * * Leguminosae Perennial Ratoon C3 Dicots
Oxytropis racemosa * * Leguminosae Perennial Axial Root C3 Dicots
O. glabra * Leguminosae Perennial Axial Root C3 Dicots
Melilotus albus * Leguminosae Annual C3 Dicots
M. suaveolens * Leguminosae Annual C3 Dicots
M. officinalis * Leguminosae Perennial Axial Root C3 Dicots
Melilotoides ruthenica * Leguminosae Perennial Axial Root C3 Dicots
Astragalus adsurgens * Leguminosae Perennial Axial Root C3 Dicots
Allium mongolicum * Liliaceae Perennial Bulb Root C3 Monocots
A. tenuissimum * Liliaceae Perennial Bulb Root C3 Monocots
A. ramosum * Liliaceae Perennial Bulb Root C3 Monocots
Asparagus cochinchinensis * Liliaceae Perennial Fleshy root tuber C3 Monocots
Veratrum nigrum * Liliaceae Perennial Fibrous Root C3 Monocots
Cannabis sativa * Moraceae Annual C3 Dicots
Orobanche coerulescens * Orobanchaceae Perennial Fibrous Root C3 Dicots
Plantago major * Plantaginaceae Perennial Fibrous Root C3 Dicots
P. asiatica * Plantaginaceae Perennial Fibrous Root C3 Dicots
Limonium aureum * Plumbaginaceae Perennial Axial Root C3 Dicots
Triglochin palustre * Potamogetonaceae Perennial Rhizome C3 Monocots
Polygonum divaricatum * Polygonaceae Perennial Axial Root C3 Dicots
Glaux maritima * Primulaceae Perennial Axial Root C3 Dicots
Halerpestes ruthenica * Ranunculaceae Perennial Fibrous Root C3 Dicots
Clematis fruticosa * Ranunculaceae shrub C3 Dicots
Thalictrum squarrosum * Ranunculaceae Perennial Rhizome C4 Dicots
Delphinium grandiflorum * Ranunculaceae Perennial Axial Root C3 Dicots
Potentilla anserina * Rosaceae Perennial Fleshy root tuber C3 Dicots
P. bifurca * Rosaceae Perennial Ratoon C3 Dicots
P. chinensis * Rosaceae Perennial Axial Root C3 Dicots
P. acaulis * Rosaceae Perennial Axial Root C3 Dicots
P. tanacetifolia * Rosaceae Perennial Axial Root C3 Dicots
P. discolor * Rosaceae Perennial Axial Root C3 Dicots
P. longifolia * Rosaceae Perennial Axial Root C3 Dicots
Sanguisorba officinalis * Rosaceae Perennial Axial Root C3 Dicots
Haplophyllum dauricum * * Rutaceae Perennial Axial Root C3 Dicots
Populus × xiaozuanic * Salicaceae arbor C3 Dicots
Salix cheilophila * * Salicaceae shrub C3 Dicots
S. gordejevii * Salicaceae shrub C3 Dicots
Tamarix chinensis * Tamaricaceae shrub C3 Dicots
Reaumuria songarica * Tamaricaceae shrub C3 Dicots
Ulmus pumila * * Ulmaceae arbor C3 Dicots
Saposhnikovia divaricata * Umbelliferae Perennial Axial Root C3 Dicots
Cnidium monnieri * Umbelliferae Annual C3 Dicots
Ferula bungeana * Umbelliferae Perennial Axial Root C3 Dicots
Nitraria tangutorum * Zygophyllaceae shrub C3 Dicots
Peganum harmala. * Zygophyllaceae Perennial Ratoon C3 Dicots
P. harmala * Zygophyllaceae Perennial Ratoon C3 Dicots
Tribulus terrester * Zygophyllaceae Annual C4 Dicots

Figure 1

Comparisons between plant N/P ratios of different photosynthetic pathways in the Habahu National Nature Reserve of Ningxia and in Sanggendalai of Zhenglan Banner in Inner Mongolia (The capital letter indicates the difference between same variable of both places. The lower-case letter indicates the difference between/among different variables for same places)"

Figure 2

Comparisons of N/P ratio between monocotyledon and dicotyledon plants in the Habahu National Nature Reserve of Ningxia and in Sanggendalai of Zhenglan Banner of Inner Mongolia (The capital letters indicates the difference between same variable of both places. The lower-case letter indicates the difference between/among different variables for same places)"

Figure 3

Comparisons of N/P ratio between Gramineous and non-Gramineous plants in the Habahu National Nature Reserve of Ningxia and in Sanggendalai of Zhenglan Banner of Inner Mongolia"

Figure 4

Comparisons of N and P contention of gramineous and non-gramineous plants in Sanggendalai of Zhenglan Banner of Inner Mongolia"

Figure 5

Comparisons of N/P ratios between different root types of plants in the Habahu National Nature Reserve of Ningxia and in Sanggendalai of Zhenglan Banner of Inner Mongolia (In the abscissa, RhT, RaT, BRT, TBT, FlRT, BT, FiRT and ART represent Rhizome, Ratoon, Bulb Root, Thick-Bunched, Fleshy Root Tuber, Bunched, Fibrous Root and Axial Root types, respectively)"

Ajao AA , Oladipo OA , Saheed SA , 2017. A review on the ambit and prospects of C3 and C4 plants in Nigeria. Sciences in Cold and Arid Regions, 9(6): 587-598. DOI: 10.3724/SP.J.1226.2017.00587 .
doi: 10.3724/SP.J.1226.2017.00587
Chen SH , 1987. Root Types of Grassland Plants in Inner Mongolia. Inner Mongolia People's Press. (in Chinese)
Dong JF , Wang SP , Cui XY , et al. , 2016. Effects of nitrogen fertilization on plant community characteristics of different groups in Qinghai-Tibet Alpine steppe. Pratacultural Science, 33(11): 2291-2299. DOI: 10.11829/j.issn.1001-0629.2015-0708 . (in Chinese)
doi: 10.11829/j.issn.1001-0629.2015-0708
Fan W , Meng R , Chen QS , et al. , 2010. Effects of different nitrogen application levels on above-ground and underground biomass distribution in Stipa krylovii Steppe. Animal Husbandry and Feed Science, 31(2): 74-76. DOI: 10.3969/j.issn.1672-5190.2010.02.028 . (in Chinese)
doi: 10.3969/j.issn.1672-5190.2010.02.028
Fan JW , Zhang LX , Zhang WY , et al. , 2014. Characteristics of N, P element in root system of grassland transect in China and its relationship with geographical and climatic factors. Acta Prataculturae Sinica, 23(5): 69-76. DOI: 10.11686/cyxb20140508 . (in Chinese)
doi: 10.11686/cyxb20140508
Guo JT , He XD , Jing HJ , et al. , 2018. Seasonal dynamics of N:P ratio stoichiometry and Ca fraction for four dominant plants in the Alxa Desert. Sciences in Cold and Arid Regions, 10(4): 326-332. DOI: 10.3724/SP.J.1226.2018.00326 .
doi: 10.3724/SP.J.1226.2018.00326
Güsewell S , 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164: 243-266. DOI: 10.1111/j.1469-8137.2004.01192.x .
doi: 10.1111/j.1469-8137.2004.01192.x
Han WX , Fang JY , Guo DL , et al. , 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168(2): 377-385. DOI: 10. 1111/j.1469-8137.2005.01530.x .
doi: 10. 1111/j.1469-8137.2005.01530.x
Hu MJ , Penuelas J , Sardans J , et al. , 2018. Stoichiometry patterns of plant organ N and P in coastal herbaceous wetlands along the East China Sea: implications for biogeochemical niche. Plant and Soil, 431(1-2): 273-288. DOI: 10.1007/s11104-018-3759-6 .
doi: 10.1007/s11104-018-3759-6
Koerselman W , Meuleman AFM , 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33: 1441-1450. DOI: 10.2307/2404783 .
doi: 10.2307/2404783
Lan HY , Zhang FC , 2008. Reviews on special mechanisms of adaptability of early-spring ephemeral plants to desert habitats in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 28(7): 1478-1485. DOI: 10.3321/j.issn:1000-4025.2008. 07.032 . (in Chinese)
doi: 10.3321/j.issn:1000-4025.2008. 07.032
Li DF , Yu SL , Wang GX , et al. , 2015. Environmental differentiation and mechanism of the stoichiometric characteristics of nutrient organs in dominant thickets on the Loess Plateau. Journal of Plant Ecology, 39(5): 453-465. DOI: 10. 17521/cjpe.2015.0044 . (in Chinese)
doi: 10. 17521/cjpe.2015.0044
Li MC , Yi XF , Zhang XA , et al. , 2005. A list of C4 plants in alpine regions of Qinghai Plateau. Acta Botanica Boreali-Occidentalia Sinica, 25(5): 198-202. DOI: 10.3321/j.issn:1000-4025.2005.05.038 . (in Chinese)
doi: 10.3321/j.issn:1000-4025.2005.05.038
Li MR , 1993. A list of C4 photosynthesis plants (continued). Plant Physiology Journal, (3): 221-240. DOI: 10.13592/j.cnki.ppj.1993.03.026 . (in Chinese)
doi: 10.13592/j.cnki.ppj.1993.03.026
Li YL , Mao W , Zhao XY , et al. , 2010. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China. Environmental Science, 31(8): 1716-1725. DOI: 10.13227/j.hjkx.2010.08.001 . (in Chinese)
doi: 10.13227/j.hjkx.2010.08.001
Liang YT , He XD , Guo JT , et al. , 2018. Effects of N:P ratio of Artemisia ordosica on growth influenced by soil calcium carbonate. Sciences in Cold and Arid Regions, 10(4): 333-339. DOI: 10.3724/SP.J.1226.2018.00333 .
doi: 10.3724/SP.J.1226.2018.00333
Liu C , Wang Y , Wang N , et al. , 2012. Advances in nitrogen and phosphorus stoichiometry of vegetation in terrestrial ecosystems. Journal of Plant Ecology, 36(11): 1205-1216. DOI: 10.3724/SP.J.1258.2012.01205 . (in Chinese)
doi: 10.3724/SP.J.1258.2012.01205
Liu MX , Zhu KJ , 2013. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on alpine meadow in the eastern edge of Tibetan Plateau. Chinese Journal of Grassland, 35(2): 52-58. DOI: 10.3969/j.issn.1673-5021.2013.02.010 . (in Chinese)
doi: 10.3969/j.issn.1673-5021.2013.02.010
Ning ZY , Li YL , Yang HL , et al. , 2017. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in horqin sandy land. Chinese Journal of Plant Ecology, 41(10): 1069-1080. DOI: 10.17521/cjpe.2017. 0048 . (in Chinese)
doi: 10.17521/cjpe.2017. 0048
Peng YY , Peng HY , Han WX , et al. , 2017. Comparison of nitrogen and phosphorus use efficiency between legumes and non-nitrogen-fixing plants. Journal of China Agricultural University, 22(6): 48-55. DOI: 10.11841/j.issn.1007-4333. 2017.06.06 . (in Chinese)
doi: 10.11841/j.issn.1007-4333. 2017.06.06
Reich PB , Oleksyn J , 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Science of the United States of America, 101(30): 11001-11006. DOI: 10.1073/pnas.0403588101 .
doi: 10.1073/pnas.0403588101
Ren SJ , Yu GR , Tao B , et al. , 2007. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 28(12): 2665-2673. DOI: 10.13227/j.hjkx.2007.12.007 . (in Chinese)
doi: 10.13227/j.hjkx.2007.12.007
Shan XQ , Jing YX , 1994. Nodulation and nitrogen fixation of legumes and non-legumes. Science and technology guide, 12(6): 30-34. DOI: 10.1109/ICBBE.2010.5515134 . (in Chinese)
doi: 10.1109/ICBBE.2010.5515134
Shen Y , Xie YZ , Zhen Y , et al. , 2013. Effects of different restoration measures on stoichiometric characteristics of carbon, nitrogen and phosphorus of dominant plants in typical steppe. Journal of Agricultural Sciences, 34(03): 5-9. DOI: 10.3969/j.issn.1673-0747.2013.03.002 . (in Chinese)
doi: 10.3969/j.issn.1673-0747.2013.03.002
Song YT , Zhou DW , Li Q , et al. , 2012. Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Journal of Plant Ecology, 36(3): 222-230. DOI: 10.3724/SP.J.1258.2012.00222 .
doi: 10.3724/SP.J.1258.2012.00222
Su PX , Xie TT , Zhou ZJ , et al. , 2011. Species Distribution of C4 plants in Desert vegetation in China and its relationship with Climate. Journal of Desert Research, 31(2): 267-276. DOI: 10.3724/SP.J.1226.2011.00381 .
doi: 10.3724/SP.J.1226.2011.00381
Sun XM , Chen JJ , Li JX , et al. , 2018. Changes of eco-stoichiometric and photosynthetic characteristics of typical species in Subalpine Meadow of Qinghai-Tibet plateau after fertilization. Journal of Lanzhou University (Natural Sciences), 54(6): 804-810. DOI: 10.13885/j.issn.0455-2059.2018.06. 013 . (in Chinese)
doi: 10.13885/j.issn.0455-2059.2018.06. 013
Tang HP , Liu SR , 2001. A list of C4 plants in Inner Mongolia. Journal of Inner Mongolia University (Nature Edition), 32(4): 431-438. DOI: 10.3969/j.issn.1000-1638.2001.04.015 . (in Chinese)
doi: 10.3969/j.issn.1000-1638.2001.04.015
Tao Y , Wu GL , Zhang Y , et al. , 2016. Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China. Journal of Arid Land, 8(6): 1-13. DOI: 10.1007/s40333-016-0019-6 .
doi: 10.1007/s40333-016-0019-6
Tilman D , 1982. Resource Competition and Community Structure. Princet on:Monographs in Population Biology, 139-149. DOI: 10.2307/1309371 .
doi: 10.2307/1309371
Vitousek PM , Porder S , Houlton BZ , et al. , 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20: 5-15. DOI: 10.1890/08-0127.1 .
doi: 10.1890/08-0127.1
Wang LQ , Chen SH , 2003. Discussion on the principle of classification of root system types of grassland plants. Journal of Inner Mongolia Agricultural University (Natural Science Edition), (3): 11-13. DOI: 10.3969/j.issn.1009-3575.2003. 03.003 . (in Chinese)
doi: 10.3969/j.issn.1009-3575.2003. 03.003
Wright IJ , Reich PB , Westoby M , et al. , 2004. The worldwide leaf economics spectrum. Nature, 428: 821-827. DOI: 10.1038/nature02403 .
doi: 10.1038/nature02403
Wu GL , Li W , Shi ZH , et al. , 2011. Aboveground dominant functional group predicts belowground properties in an alpine grassland community of western China. Journal of Soils and Sediments, 11: 1011-1019. DOI: 10.1007/s11368-011-0367-y .
doi: 10.1007/s11368-011-0367-y
Xie CZ , 1983. The difference and relationship between Monocotyledonous and dicotyledonous plants. Plant Journal, (3): 24-25. (in Chinese)
Xu B , Cheng YX , Gan HJ , et al. , 2010. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China. Chinese Journal of Plant Ecology, 34(1): 29-38. DOI: 10.3724/SP.J.1142.2010.40521 .
doi: 10.3724/SP.J.1142.2010.40521
You WX , He XD , Zhang WJ , et al. , 2016. Comprehensive Scientific Survey of Ningxia Habahu National Nature Reserve. Tianjin: Nankai University Press. (in Chinese)
Yu B , Wu KN , 2018. Effects of nitrogen application on plant growth and soil inorganic nitrogen content in Alpine Grassland. Jiangsu Agricultural Sciences, 46(15): 214-218. DOI: 10.15889/j.issn.1002-1302.2018.15.056 . (in Chinese)
doi: 10.15889/j.issn.1002-1302.2018.15.056
Yu HL , Fan JW , Zhong HP , et al. , 2017. Characteristics of N and P stoiehiometry of plants in different functional groups in the Qinghai-Tibet Plateau regions. Acta Ecologica Sinica, 37(11): 3755-3764. DOI: 10.5846/stxb201604040609 . (in Chinese)
doi: 10.5846/stxb201604040609
Yuan ZY , Chen HY , Reich PB , 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications, 2(1): 344. DOI: 10.1038/ncomms1346 .
doi: 10.1038/ncomms1346
Zhang LF , Wang LL , He WL , et al. , 2018a. Patterns of leaf N:P stoichiometry along climatic gradients in sandy region, north of China. Journal of Plant Ecology, 11(2): 218-225. DOI: 10.1093/jpe/rtw134 .
doi: 10.1093/jpe/rtw134
Zhang LX , Fan JW , Zhang WY , et al. , 2014b. Analysis on the Chemometrics characteristics of nitrogen and phosphorus elements in leaves of grassland plants in Inner Mongolia. Chinese Journal of Grassland, 36(2): 43-48. DOI: 10.3969/j.issn.1673-5021.2014.02.008 . (in Chinese)
doi: 10.3969/j.issn.1673-5021.2014.02.008
Zhang Q , Xiong GM , Li JX , et al. , 2018b. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant and Soil, 427(1-2): 305-319. DOI: 10.1007/s11104-018-3655-0 .
doi: 10.1007/s11104-018-3655-0
Zhang WY , Fan JW , Zhong HP , et al. , 2010. The nitrogen:phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18(4): 503-509. DOI: 10.11733/j.issn. 1007-0435.2010.04.005 . (in Chinese)
doi: 10.11733/j.issn. 1007-0435.2010.04.005
Zhang K , He MZ , Li XR , et al. , 2014a. Folia carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert. Acta Ecologica Sinica, 34(22): 6538-6547. DOI: 10.5846/stxb201302270310 . (in Chinese)
doi: 10.5846/stxb201302270310
Zheng SX , 2006. Spatial distribution pattern of nutrient composition of plant leaves in Loess Plateau. Progress in Natural Science, 16(8): 965-973. DOI: 10.3321/j.issn:1002-008X. 2006.08.008 . (in Chinese)
doi: 10.3321/j.issn:1002-008X. 2006.08.008
[1] MengQi Li,XingDong He,XiangXiang Yang,YueDan Zhao,YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340-346.
[2] XinPing Wang, YaFeng Zhang, Rui Hu, YanXia Pan, HaoJie Xu, Wei Shi, YanXia Jin, Hiroshi Yasuda. Revisit of event-based rainfall characteristics at Shapotou area in northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] Zhuo Ga,Za Dui,Duodian Luozhu,Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[4] Rong Yang,JunQia Kong,ZeYu Du,YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[5] Yang Qiu,ZhongKui Xie,XinPing Wang,YaJun Wang,YuBao Zhang,YuHui He,WenMei Li,WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[6] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[7] FangLei Zhong,AiJun Guo,XiaoJuan Yin,JinFeng Cui,Xiao Yang,YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .
[8] Yong Chen,Tao Wang,LiHua Zhou,Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .
[9] Bing Liu,WenZhi Zhao,YangYang Meng,Chan Liu. Biodiversity, productivity, and temporal stability in a natural grassland ecosystem of China[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 293 -304 .
[10] Yan Xie,Jun Wen,Rong Liu,Xin Wang,DongYu Jia. Analysis of water vapour flux between alpine wetlands underlying surface and atmosphere in the source region of the Yellow River[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 305 -316 .