Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 256-267.doi: 10.3724/SP.J.1226.2021.20058.

Previous Articles     Next Articles

Changes in morphology and soil nutrient patterns of nebkhas in arid regions along a precipitation gradient

WeiCheng Luo,WenZhi Zhao(),Bing Liu,Heng Ren   

  1. Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-08-20 Accepted:2020-10-02 Online:2021-06-30 Published:2021-07-05
  • Contact: WenZhi Zhao E-mail:zhaowzh@lzb.ac.cn

Abstract:

Nebkhas, discrete mounds of sand and vegetation, are a common landscape feature critical to the stability of desert ecosystems and supported by limited precipitation. Nebkha morphology and spatial pattern vary in landscapes, but it is unclear how they change along precipitation gradients in arid and semi-arid regions. In this study we determined morphology and soil nutrient patterns of nebkha from different regions of northwestern China. The objective of this study was to understand zonal differences among nebkhas and how morphological characteristics and soil nutrient patterns of nebkha change along a precipitation gradient in northwestern China. Our results shows that mean annual precipitation (MAP) had significant effects on morphological characteristics of nebkhas such as height, area, and volume which significantly decreased with an increase in MAP. MAP had significant positive effects on shrub cover and species richness of nebkha. Soil nutrients such as soil organic matter (SOM), total carbon (TC), total nitrogen (TN), and total phosphorus (TP) in the 0-10 cm layer increased with an increase of MAP, and soil nutrient content within nebkhas was higher than in inter-nebkha areas. We concluded that nebkhas are "fertile islands" with an important role in ecosystem dynamics in study regions. Further, MAP is a key factor which determined zonal differences, morphological, and soil nutrients patterns of nebkhas. However, disturbance, such as animal grazing, and planted sand-stabilizing vegetation accelerated the degeneration of nebkha landscapes. We recommend implementation of protective measures for nebkhas in arid and semi-arid areas of China.

Key words: Nebkha, morphology, soil nutrient, precipitation gradient, arid and semi-arid lands

Figure 1

Distribution of sampling sites (stars) along a precipitation gradient in northwestern China"

Table 1

Description of study sites"

Study site

Mean annual

precipitation (mm)

LongitudeLatitudeClimateDisturbance
Ejina (EJN)3742°03′20.77″N101°14′47.87″EExtremely aridGrazing, sand-stabilizing vegetation planted
Jinta (JT)6040°11′23.85″N98°41′10.01″EExtremely aridGrazing, sand-stabilizing vegetation planted
Linze (LZ)11039°24′7.65″N100°10′58.53″EExtremely aridSand-stabilizing vegetation planted
Dengkou (DK)15040°25′55.81″N106°45′30.16″ESemi-aridSand-stabilizing vegetation planted
Hangjin (HJ)24040°44′42.73″N106°32′37.67″ESemi-aridGrazing, sand-stabilizing vegetation planted
Yanchi (YC)28037°55′43.20″N107°25′22.16″ESemi-aridGrazing, sand-stabilizing vegetation planted

Table 2

Morphological parameters of nebkhas of different sites"

Study siteParameterMean±SDMinimumMaximumVarianceSkew
EJNHeight (m)2.05±0.931.602.500.11-0.23
Length (m)9.15±0.566.3012.503.830.42
Width (m)9.40±0.687.0014.105.501.49
Area (m2)70.53±9.7634.62138.361,143.221.47
Volume (m3)98.72±15.4036.93202.922,844.751.26
Vegetation coverage55.83%±4.34%40.00%85.00%2.30%1.21%
JTHeight (m)1.84±0.081.502.230.070.29
Length (m)7.59±0.455.9010.502.441.11
Width (m)8.95±0.596.5012.504.120.75
Area (m2)53.61±4.6230.1070.06254.80-0.35
Volume (m3)64.94±5.1132.1184.07313.67-0.97
Vegetation coverage60.42%±3.17%45.00%80.00%1.20%0.12%
LZHeight (m)1.57±0.080.251.950.080.33
Length (m)6.35±0.414.908.602.010.54
Width (m)4.62±0.413.507.302.041.19
Area (m2)24.07±3.6813.4649.28162.191.44
Volume (m3)24.69±3.2111.6741.07123.480.29
Vegetation coverage54.17%±2.94%40.00%65.00%1.00%-0.20%
DKHeight (m)1.48±0.130.662.200.19-0.47
Length (m)8.12±0.742.6011.106.61-0.79
Width (m)8.23±1.002.4016.5012.040.79
Area (m2)56.92±10.064.90143.771,213.971.19
Volume (m3)59.01±10.802.16143.771,400.110.75
Vegetation coverage61.67%±3.28%45.00%80.00%1.30%0.47%
HJHeight (m)1.33±0.210.503.200.531.58
Length (m)6.70±0.881.9011.509.23-0.31
Width (m)7.18±0.761.9010.806.93-0.48
Area (m2)43.02±8.882.9397.50946.650.68
Volume (m3)45.54±12.361.13117.001,832.170.75
Vegetation coverage76.08%±4.53%40.00%95.00%2.50%-1.21%
YCHeight (m)1.15±0.250.173.580.762.11
Length (m)6.13±0.572.729.963.910.22
Width (m)5.21±0.511.817.933.17-0.26
Area (m2)27.52±4.833.8662.00280.270.84
Volume (m3)29.02±11.720.44147.961,649.202.69
Vegetation coverage81.00%±2.62%65.00%90.00%0.80%-0.44%

Table 3

ANOVA analysis for effect of mean annual precipitation (MAP) on nebkha characteristics"

EffectdfHeightAreaVolumeShrub coverageSpecies richness
FPFPFPFPFP
MAP54.520.0015.79<0.0016.53<0.00125.09<0.00192.49<0.001

Figure 2

Changes in nebkha height and area along a mean annual precipitation gradient Values are means ± standard error. Confidence interval is 95%"

Figure 3

Soil organic matter in two soil layers within and in inter-nebkha areas along a precipitation gradient. Values are means ± standard error. Different lowercases show significant difference between nebkha and inter-nebkha area"

Figure 4

Soil total carbon in two soil layers within and in inter-nebkha areas along a precipitation gradient. Values are means ± standard error"

Figure 5

Soil total nitrogen within nebkha and in inter-nebkha areas for two soil layers along a precipitation gradient. Values are means ± standard error"

Figure 6

Soil total phosphorus within nebkha and in inter-nebkha areas for two soil layers along a precipitation gradient. Values are means ± standard error"

Table 4

ANOVA analysis for effect of mean annual precipitation (MAP) on soil nutrient content of nebkhas and inter-dune lands"

EffectMAP
dfFP
Nebkha (0-10 cm)SOM5123.04<0.001
Total C532.41<0.001
Total N520.58<0.001
Total P543.43<0.001
Inter-nebkha area (0-10 cm)SOM523.62<0.001
Total C526.00<0.001
Total N58.92<0.001
Total P56.320.004
Nebkha (10-20 cm)SOM5184.80<0.001
Total C529.82<0.001
Total N526.62<0.001
Total P597.93<0.001
Inter-nebkha area (10-20 cm)SOM540.01<0.001
Total C549.20<0.001
Total N56.680.003
Total P517.41<0.001
Bhark EW, Small EE, 2003. Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan desert, New Mexico. Ecosystems, 6: 185-196. DOI: 10.1007/s10021-002-0210-9.
doi: 10.1007/s10021-002-0210-9
Cabrera-vega LL, Cruz-avero N, Hernández-Calvento L, et al., 2013. Morphological changes in dunes as an indicator of anthropogenic interferences in arid dune fields. Journal of Coastal Research SI, 65(3): 1271-1276. DOI: 10.2112/SI65-215.1.
doi: 10.2112/SI65-215.1
Cao C, Abulajiang Y, Zhang Y, et al., 2016. Assessment of the effects of phytogenic nebkhas on soil nutrient accumulation and soil microbiological property improvement in semi-arid sandy land. Ecological Engineering, 91: 582-589. DOI: 10.1016/j.ecoleng.2016.03.042.
doi: 10.1016/j.ecoleng.2016.03.042
Danin A, 1996. Plants of Desert Dunes. Springer, Berlin, Germany. DOI: 978-3-642-64636-2.
doi: 978-3-642-64636-2
El-Bana MI, Li ZQ, Nijs I, 2007. Role of host identity in effects of phytogenic mounds on plant assemblages and species richness on coastal arid dunes. Journal Vegetational Science, 18: 635-644. DOI: 10.1111/j.1654-1103.2007.tb02577.x.
doi: 10.1111/j.1654-1103.2007.tb02577.x
El-Bana MI, Nijs I, Khedr AHA, 2003. The importance of phytogenic mounds (nebkhas) for restoration of arid degraded rangelands in northern Sinai. Restoration Ecology, 11: 317-324. DOI: 10.1046/j.1526-100X.2003.00222.x.
doi: 10.1046/j.1526-100X.2003.00222.x
El-Bana MI, Nijs I, Kockelbergh F, 2002. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant and Soil, 247: 283-293. DOI: 10.1023/A:1021548711206.
doi: 10.1023/A:1021548711206
Field JP, Breshears DD, Whicker JJ, et al., 2012. Sediment capture by vegetation patches: implications for desertification and increased resource redistribution. Journal of Geophysical Research: biogeosciences, 117: 1-9. DOI: 10.1006/jare.1999.0590.
doi: 10.1006/jare.1999.0590
Hesp P, McLachlan A, 2000. Morphology, dynamics, ecology and fauna of Arctotheca populifolia and Gazania rigens nabkha dunes. Journal of Arid Environment, 44: 155-172. DOI: 10.1006/jare.1999.0590.
doi: 10.1006/jare.1999.0590
Hesp P, Smyth TAG, 2019. Anchored dunes. In: Livingstone I, Warren A (Eds.), Aeolian geomorphology: a new intro-duction: 157-178.
doi: 10.1016/B978-0-12-374739-6.00294-3
Wiley Blackwell. DOI: 10.1016/B978-0-12-374739-6.00294-3.
doi: 10.1016/B978-0-12-374739-6.00294-3
Hooker T, Stark J, Norton U, et al., 2008. Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA. Biogeochemistry, 90: 291-308. DOI: 10.1007/s10533-008-9254-z.
doi: 10.1007/s10533-008-9254-z
Khalaf FI, Al-Awadhi JM, 2012. Sedimentologic al and morphological characteristics of gypseous coastal nabkhas on Bubiyan Island, Kuwait, Arabian Gulf. Journal of Arid Environments, 82: 31-43. DOI: 10.1016/j.jaridenv.2012. 02.017.
doi: 10.1016/j.jaridenv.2012. 02.017
Khalaf FI, Al-Hurban AE, Al-Awadhi J, 2014. Morphology of protected and non-protected Nitraria retusacoastal nabkha in Kuwait, Arabian Gulf: A comparative study. Catena, 115: 115-122. DOI: 10.1016/j.catena.2013.12.001.
doi: 10.1016/j.catena.2013.12.001
King J, Nickling WG, Gillies JA, 2006. Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA. Geomorphology, 82: 229-244. DOI: 10.1016/j.geomorph.2006. 05.004.
doi: 10.1016/j.geomorph.2006. 05.004
Lee H, Fitzgerald J, Hewins DB, et al., 2014. Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled environment assessment. Soil Biology and Biochemistry, 72: 123-132. DOI: 10.1016/j.soilbio. 2014.01.027.
doi: 10.1016/j.soilbio. 2014.01.027
Li PX, Wang N, He WM, et al., 2008. Fertile islands under Artemisia ordosica in inland dunes of northern China: effects of habitats and plant developmental stages. Journal of Arid Environment, 72: 951-960. DOI: 10.1016/j.jaridenv.2007. 11.004.
doi: 10.1016/j.jaridenv.2007. 11.004
Liu ZM, Li XL, Yan QL, et al., 2007. Species richness and vegetation pattern in interdune lowlands of an active dune field in Inner Mongolia, China. Biological Conservation, 140: 29-39. DOI: 10.1016/j.biocon.2007.07.030.
doi: 10.1016/j.biocon.2007.07.030
Luo WC, Zhao WZ, 2019. Adventitious roots are key to the development of nebkhas in extremely arid regions. Plant and Soil, 442: 471-482. DOI: 10.1007/s11104-019-04209-4.
doi: 10.1007/s11104-019-04209-4
Luo WC, Zhao WZ, Zhou H, 2016. Growth stages affect species richness and vegetation patterns of nebkhas in the desert steppes of China. Catena, 137: 126-133. DOI: 10.1016/j.catena.2015.09.011.
doi: 10.1016/j.catena.2015.09.011
Noy-Meir I, 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25-51. DOI: 10.2307/2096803.
doi: 10.2307/2096803
Okin GS, Gillette DA, Herrick JE, 2006. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. Journal of Arid Environments, 65: 253-275. DOI: 10.1016/j.jaridenv. 2005.06.029.
doi: 10.1016/j.jaridenv. 2005.06.029
Petraglia A, Cacciatori C, Chelli S, et al., 2018. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435: 1-14. DOI: 10.1007/s11104-018-3889-x.
doi: 10.1007/s11104-018-3889-x
Qu H, Zhao HL, Zhou RL, 2014. Effects of sand burial on dune plants: a review. Sciences in Cold and Arid Regions, 6(3): 0201-0208. DOI: 10.3724/SP.J.1226.2014.00201.
doi: 10.3724/SP.J.1226.2014.00201
Quets JJ, El-Bana MI, Al-Rowaily SL, et al., 2016. A mechanism of self-organization in a desert with phytogenic mounds. Ecosphere, 7(11): 1-10. DOI: 10.1002/ecs2.1494.
doi: 10.1002/ecs2.1494
Quets JJ, El-Bana MI, Al-Rowaily SL, et al., 2017. Emergence, survival, and growth of recruits in a desert ecosystem with vegetation induced dunes (nebkhas): A spatiotemporal analysis. Journal of Arid Environments, 139: 1-10. DOI: 10.1016/j.jaridenv.2016.11.013.
doi: 10.1016/j.jaridenv.2016.11.013
Riutta T, Slade EM, Bebber DP, et al., 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry, 49(6): 124-131. DOI: 10.1016/j.soilbio.2012.02.028.
doi: 10.1016/j.soilbio.2012.02.028
Rodriguez-Iturbe I, 2000. Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resource Research, 36: 3-9. DOI: 10.1029/1999WR900210.
doi: 10.1029/1999WR900210
Schlesinger WH, Raikes JA, Hartley AE, et al., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77: 364-374. DOI: 10.2307/2265615.
doi: 10.2307/2265615
Schwinning S, Starr BI, Ehleringer JR, 2005. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: effects on soil water and plant water uptake. Journal of Arid Environment, 60(4): 547-566. DOI: 10.1016/j.jaridenv.2004.07.003.
doi: 10.1016/j.jaridenv.2004.07.003
Titus JH, Nowakw RS, Smith SD, 2002. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments, 52: 269-292. DOI: 10.1006/jare.2002.1010.
doi: 10.1006/jare.2002.1010
Tomiolo S, Van Der Putten WH, Tielbörger K, 2015. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change. Ecology, 96: 1298-1308. DOI: 10.1890/14-1445.1.
doi: 10.1890/14-1445.1
Touchette BW, Moody JWG, Byrne CM, et al., 2012. Water integration in the clonal emergent hydrophyte Justicia americana: benefits of acropetal water transfer from mother to daughter ramets. Hydrobiologia, 702: 83-94. DOI: 10. 1007/s10750-012-1309-4.
doi: 10. 1007/s10750-012-1309-4
Wang X, Wang T, Dong Z, et al., 2006. Nebkha development and its significance to wind erosion and land degradation in semi-arid Northern China. Journal of Arid Environments, 65(1): 129-141. DOI: 10.1016/j.jaridenv.2005.06.030.
doi: 10.1016/j.jaridenv.2005.06.030
Wang XM, Xiao HL, Li JC, et al., 2008. Nebkha development and its relationship to environmental change in the Alaxa Plateau, China. Environmental Geology, 56: 359-365. DOI: 10.1007/s00254-007-1171-2.
doi: 10.1007/s00254-007-1171-2
Yang HT, Li XR, Liu LC, et al., 2014. Soil water repellency and influencing factors of Nitraria tangutorun nebkhas at different succession stages. Journal of Arid Land, 6(3): 300-310. DOI: CNKI:SUN:GHKX.0.2014-03-007.
doi: CNKI:SUN:GHKX.0.2014-03-007
Yue XL, Hasi, Zhuang YM, et al., 2005. Studies on sandy grassland nebkhas-A review. Journal of Desert Research, 16(4): 360-363.
Zhang LH, Xie ZK, Zhao RF, et al., 2018. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 127: 87-95. DOI: 10.1016/j.apsoil.2018.02.005.
doi: 10.1016/j.apsoil.2018.02.005
Zhang PJ, Yang J, Zhao LQ, et al., 2011. Effect of Caragana tibetica nebkhas on sand entrapment and fertile islands in steppe-desert ecotones on the Inner Mongolia Plateau, China. Plant and Soil, 347: 79-90. DOI: 10.1007/s11104-011-0813-z.
doi: 10.1007/s11104-011-0813-z
Zhou H, Zhao WZ, He ZB, et al., 2019. Variation in depth of water uptake for Pinus syvestrisvar. mongolica along a precipitation gradient in sandy regions. Journal of Hydrology, 577: 123921. DOI: 10.1016/j.jhydrol.2019.123921.
doi: 10.1016/j.jhydrol.2019.123921
Zhou H, Zhao WZ, Luo WC, et al., 2015. Species diversity and vegetation distribution in nebkhas of Nitraria tangutorum in the desert steppes of China. Ecological Research, 30(4): 735-744. DOI: 10.1007/s11284-015-1277-z.
doi: 10.1007/s11284-015-1277-z
[1] YuBing Liu, XinRong Li, ZhiShan Zhang, XiaoJun Li, Jin Wang. The adaptive significance of differences of root morphology, anatomy and physiology from three ecotypes of reed (Phragmites communis Trin.) [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 196-204.
[2] ChaoFeng Fu, JingBo Zhao, FanMin Mei, TianJie Shao, Jun Zuo. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 675-686.
[3] Akinwumi J. Akinloye, Temitope I. Borokini, Kehinde A. Adeniji, Funmilola M. Akinnubi. Comparative anatomical studies of Artocarpus altilis(Parkinson) Fosberg and Artocarpus communis(J. R. &G. Forster) in Nigeria [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 709-721.
[4] MengMeng Li, YuBing Liu, MeiLing Liu, Dan Liu. Comparative studies on leaf epidermal micromorphology and mesophyll structure of Elaeagnus angustifolia L. in two different regions of desert habitat [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 229-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .