Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 256-267.doi: 10.3724/SP.J.1226.2021.20058.
Previous Articles Next Articles
WeiCheng Luo,WenZhi Zhao(),Bing Liu,Heng Ren
Bhark EW, Small EE, 2003. Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan desert, New Mexico. Ecosystems, 6: 185-196. DOI: 10.1007/s10021-002-0210-9.
doi: 10.1007/s10021-002-0210-9 |
|
Cabrera-vega LL, Cruz-avero N, Hernández-Calvento L, et al., 2013. Morphological changes in dunes as an indicator of anthropogenic interferences in arid dune fields. Journal of Coastal Research SI, 65(3): 1271-1276. DOI: 10.2112/SI65-215.1.
doi: 10.2112/SI65-215.1 |
|
Cao C, Abulajiang Y, Zhang Y, et al., 2016. Assessment of the effects of phytogenic nebkhas on soil nutrient accumulation and soil microbiological property improvement in semi-arid sandy land. Ecological Engineering, 91: 582-589. DOI: 10.1016/j.ecoleng.2016.03.042.
doi: 10.1016/j.ecoleng.2016.03.042 |
|
Danin A, 1996. Plants of Desert Dunes. Springer, Berlin, Germany. DOI: 978-3-642-64636-2.
doi: 978-3-642-64636-2 |
|
El-Bana MI, Li ZQ, Nijs I, 2007. Role of host identity in effects of phytogenic mounds on plant assemblages and species richness on coastal arid dunes. Journal Vegetational Science, 18: 635-644. DOI: 10.1111/j.1654-1103.2007.tb02577.x.
doi: 10.1111/j.1654-1103.2007.tb02577.x |
|
El-Bana MI, Nijs I, Khedr AHA, 2003. The importance of phytogenic mounds (nebkhas) for restoration of arid degraded rangelands in northern Sinai. Restoration Ecology, 11: 317-324. DOI: 10.1046/j.1526-100X.2003.00222.x.
doi: 10.1046/j.1526-100X.2003.00222.x |
|
El-Bana MI, Nijs I, Kockelbergh F, 2002. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant and Soil, 247: 283-293. DOI: 10.1023/A:1021548711206.
doi: 10.1023/A:1021548711206 |
|
Field JP, Breshears DD, Whicker JJ, et al., 2012. Sediment capture by vegetation patches: implications for desertification and increased resource redistribution. Journal of Geophysical Research: biogeosciences, 117: 1-9. DOI: 10.1006/jare.1999.0590.
doi: 10.1006/jare.1999.0590 |
|
Hesp P, McLachlan A, 2000. Morphology, dynamics, ecology and fauna of Arctotheca populifolia and Gazania rigens nabkha dunes. Journal of Arid Environment, 44: 155-172. DOI: 10.1006/jare.1999.0590.
doi: 10.1006/jare.1999.0590 |
|
Hesp P, Smyth TAG, 2019. Anchored dunes. In: Livingstone I, Warren A (Eds.), Aeolian geomorphology: a new intro-duction: 157-178.
doi: 10.1016/B978-0-12-374739-6.00294-3 |
|
Wiley Blackwell. DOI: 10.1016/B978-0-12-374739-6.00294-3.
doi: 10.1016/B978-0-12-374739-6.00294-3 |
|
Hooker T, Stark J, Norton U, et al., 2008. Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA. Biogeochemistry, 90: 291-308. DOI: 10.1007/s10533-008-9254-z.
doi: 10.1007/s10533-008-9254-z |
|
Khalaf FI, Al-Awadhi JM, 2012. Sedimentologic al and morphological characteristics of gypseous coastal nabkhas on Bubiyan Island, Kuwait, Arabian Gulf. Journal of Arid Environments, 82: 31-43. DOI: 10.1016/j.jaridenv.2012. 02.017.
doi: 10.1016/j.jaridenv.2012. 02.017 |
|
Khalaf FI, Al-Hurban AE, Al-Awadhi J, 2014. Morphology of protected and non-protected Nitraria retusacoastal nabkha in Kuwait, Arabian Gulf: A comparative study. Catena, 115: 115-122. DOI: 10.1016/j.catena.2013.12.001.
doi: 10.1016/j.catena.2013.12.001 |
|
King J, Nickling WG, Gillies JA, 2006. Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA. Geomorphology, 82: 229-244. DOI: 10.1016/j.geomorph.2006. 05.004.
doi: 10.1016/j.geomorph.2006. 05.004 |
|
Lee H, Fitzgerald J, Hewins DB, et al., 2014. Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled environment assessment. Soil Biology and Biochemistry, 72: 123-132. DOI: 10.1016/j.soilbio. 2014.01.027.
doi: 10.1016/j.soilbio. 2014.01.027 |
|
Li PX, Wang N, He WM, et al., 2008. Fertile islands under Artemisia ordosica in inland dunes of northern China: effects of habitats and plant developmental stages. Journal of Arid Environment, 72: 951-960. DOI: 10.1016/j.jaridenv.2007. 11.004.
doi: 10.1016/j.jaridenv.2007. 11.004 |
|
Liu ZM, Li XL, Yan QL, et al., 2007. Species richness and vegetation pattern in interdune lowlands of an active dune field in Inner Mongolia, China. Biological Conservation, 140: 29-39. DOI: 10.1016/j.biocon.2007.07.030.
doi: 10.1016/j.biocon.2007.07.030 |
|
Luo WC, Zhao WZ, 2019. Adventitious roots are key to the development of nebkhas in extremely arid regions. Plant and Soil, 442: 471-482. DOI: 10.1007/s11104-019-04209-4.
doi: 10.1007/s11104-019-04209-4 |
|
Luo WC, Zhao WZ, Zhou H, 2016. Growth stages affect species richness and vegetation patterns of nebkhas in the desert steppes of China. Catena, 137: 126-133. DOI: 10.1016/j.catena.2015.09.011.
doi: 10.1016/j.catena.2015.09.011 |
|
Noy-Meir I, 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25-51. DOI: 10.2307/2096803.
doi: 10.2307/2096803 |
|
Okin GS, Gillette DA, Herrick JE, 2006. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. Journal of Arid Environments, 65: 253-275. DOI: 10.1016/j.jaridenv. 2005.06.029.
doi: 10.1016/j.jaridenv. 2005.06.029 |
|
Petraglia A, Cacciatori C, Chelli S, et al., 2018. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435: 1-14. DOI: 10.1007/s11104-018-3889-x.
doi: 10.1007/s11104-018-3889-x |
|
Qu H, Zhao HL, Zhou RL, 2014. Effects of sand burial on dune plants: a review. Sciences in Cold and Arid Regions, 6(3): 0201-0208. DOI: 10.3724/SP.J.1226.2014.00201.
doi: 10.3724/SP.J.1226.2014.00201 |
|
Quets JJ, El-Bana MI, Al-Rowaily SL, et al., 2016. A mechanism of self-organization in a desert with phytogenic mounds. Ecosphere, 7(11): 1-10. DOI: 10.1002/ecs2.1494.
doi: 10.1002/ecs2.1494 |
|
Quets JJ, El-Bana MI, Al-Rowaily SL, et al., 2017. Emergence, survival, and growth of recruits in a desert ecosystem with vegetation induced dunes (nebkhas): A spatiotemporal analysis. Journal of Arid Environments, 139: 1-10. DOI: 10.1016/j.jaridenv.2016.11.013.
doi: 10.1016/j.jaridenv.2016.11.013 |
|
Riutta T, Slade EM, Bebber DP, et al., 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry, 49(6): 124-131. DOI: 10.1016/j.soilbio.2012.02.028.
doi: 10.1016/j.soilbio.2012.02.028 |
|
Rodriguez-Iturbe I, 2000. Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resource Research, 36: 3-9. DOI: 10.1029/1999WR900210.
doi: 10.1029/1999WR900210 |
|
Schlesinger WH, Raikes JA, Hartley AE, et al., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77: 364-374. DOI: 10.2307/2265615.
doi: 10.2307/2265615 |
|
Schwinning S, Starr BI, Ehleringer JR, 2005. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: effects on soil water and plant water uptake. Journal of Arid Environment, 60(4): 547-566. DOI: 10.1016/j.jaridenv.2004.07.003.
doi: 10.1016/j.jaridenv.2004.07.003 |
|
Titus JH, Nowakw RS, Smith SD, 2002. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments, 52: 269-292. DOI: 10.1006/jare.2002.1010.
doi: 10.1006/jare.2002.1010 |
|
Tomiolo S, Van Der Putten WH, Tielbörger K, 2015. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change. Ecology, 96: 1298-1308. DOI: 10.1890/14-1445.1.
doi: 10.1890/14-1445.1 |
|
Touchette BW, Moody JWG, Byrne CM, et al., 2012. Water integration in the clonal emergent hydrophyte Justicia americana: benefits of acropetal water transfer from mother to daughter ramets. Hydrobiologia, 702: 83-94. DOI: 10. 1007/s10750-012-1309-4.
doi: 10. 1007/s10750-012-1309-4 |
|
Wang X, Wang T, Dong Z, et al., 2006. Nebkha development and its significance to wind erosion and land degradation in semi-arid Northern China. Journal of Arid Environments, 65(1): 129-141. DOI: 10.1016/j.jaridenv.2005.06.030.
doi: 10.1016/j.jaridenv.2005.06.030 |
|
Wang XM, Xiao HL, Li JC, et al., 2008. Nebkha development and its relationship to environmental change in the Alaxa Plateau, China. Environmental Geology, 56: 359-365. DOI: 10.1007/s00254-007-1171-2.
doi: 10.1007/s00254-007-1171-2 |
|
Yang HT, Li XR, Liu LC, et al., 2014. Soil water repellency and influencing factors of Nitraria tangutorun nebkhas at different succession stages. Journal of Arid Land, 6(3): 300-310. DOI: CNKI:SUN:GHKX.0.2014-03-007.
doi: CNKI:SUN:GHKX.0.2014-03-007 |
|
Yue XL, Hasi, Zhuang YM, et al., 2005. Studies on sandy grassland nebkhas-A review. Journal of Desert Research, 16(4): 360-363. | |
Zhang LH, Xie ZK, Zhao RF, et al., 2018. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 127: 87-95. DOI: 10.1016/j.apsoil.2018.02.005.
doi: 10.1016/j.apsoil.2018.02.005 |
|
Zhang PJ, Yang J, Zhao LQ, et al., 2011. Effect of Caragana tibetica nebkhas on sand entrapment and fertile islands in steppe-desert ecotones on the Inner Mongolia Plateau, China. Plant and Soil, 347: 79-90. DOI: 10.1007/s11104-011-0813-z.
doi: 10.1007/s11104-011-0813-z |
|
Zhou H, Zhao WZ, He ZB, et al., 2019. Variation in depth of water uptake for Pinus syvestrisvar. mongolica along a precipitation gradient in sandy regions. Journal of Hydrology, 577: 123921. DOI: 10.1016/j.jhydrol.2019.123921.
doi: 10.1016/j.jhydrol.2019.123921 |
|
Zhou H, Zhao WZ, Luo WC, et al., 2015. Species diversity and vegetation distribution in nebkhas of Nitraria tangutorum in the desert steppes of China. Ecological Research, 30(4): 735-744. DOI: 10.1007/s11284-015-1277-z.
doi: 10.1007/s11284-015-1277-z |
|