Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 220-233.doi: 10.3724/SP.J.1226.2021.19059.
Previous Articles Next Articles
Sindikubwabo Celestin1,2,Qi Feng1(),RuoLin Li1,3,WenJu Cheng1,2,Jian Ma4,Habiyakare Telesphore2,Nzabarinda Vincent2
Ahmadalipour A, Moradkhani H, Castelletti A, et al., 2019. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 662(2019): 672-686. DOI: 10.1016/j.scitotenv.2019.01.278.
doi: 10.1016/j.scitotenv.2019.01.278 |
|
Almazroui M, Awad AM, 2016. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmospheric Research, 180(2016): 92-118. DOI: 10.1016/j.atmosres.2016.05.015.
doi: 10.1016/j.atmosres.2016.05.015 |
|
Asfaw A, Simane B, Hassen A, et al., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19(4): 29-41. DOI: 10. 1016/j.wace.2017.12.002.
doi: 10. 1016/j.wace.2017.12.002 |
|
Awange JL, Hu KX, Khaki M, 2019. The newly merged satellite remotely sensed, gauge and reanalysis-based Multi-Source Weighted-Ensemble Precipitation: Evaluation over Australia and Africa (1981-2016). Science of the Total Environment, 670(2019): 448-465. DOI: 10.1016/j.scitotenv. 2019.03.148.
doi: 10.1016/j.scitotenv. 2019.03.148 |
|
Ayugi B, Tan G, Gnitou GT, et al., 2020. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmospheric Research, 232(2020): 1-17. DOI: 10.1016/j.atmosres.2019. 104705.
doi: 10.1016/j.atmosres.2019. 104705 |
|
Basheer M, Elagib NA, 2019. Performance of satellite-based and GPCC7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmospheric Research, 215(2019): 128-140. DOI: 10.1016/j.atmosres.2018.08.028.
doi: 10.1016/j.atmosres.2018.08.028 |
|
Biasutti M, 2019. Rainfall trends in the African Sahel: Characteristics, processes, and causes. WIREs Climate Change, 10(4): 1-22. DOI: 10.1002/wcc.591.
doi: 10.1002/wcc.591 |
|
Bradai L, Bissati S, Chenchouni H, 2014. Desert truffles of the North Algerian Sahara: Diversity and bioecology. Emirates Journal of Food and Agriculture, 26(5): 425-435. DOI: 10.9755/ejfa.v26i5.16520.
doi: 10.9755/ejfa.v26i5.16520 |
|
Caminade C, Terray L, 2010. Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 35: 75-94. DOI: 10.1007/s00382-009-0545-4.
doi: 10.1007/s00382-009-0545-4 |
|
Charney J, Stone PH, Quirk WJ, 1975. Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187(4175): 434-435. DOI: 10.1126/science.187.4175.434.
doi: 10.1126/science.187.4175.434 |
|
Chen S, Wu R, Chen W, 2015. The changing relationship between interannual variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. Journal of Climate, 28(2): 485-504. DOI: 10.1175/JCLI-D-14-00422.1.
doi: 10.1175/JCLI-D-14-00422.1 |
|
Chen Z, Zhou T, Zhang L, et al., 2020. Global land monsoon precipitation changes in CMIP6 projections. Geophysical Research Letters, 47(14): 1-9. DOI: 10.1029/2019gl086902.
doi: 10.1029/2019gl086902 |
|
Cook KH, 1999. Generation of the African Easterly Jet and its role in determining West African precipitation. Journal of Climate, 12(5): 1165-1184. DOI: 10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.
doi: 10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2 |
|
Dai A, 2011. Drought under global warming: A review. WIREs Climate Change, 2: 45-65. DOI: 10.1002/wcc.81.
doi: 10.1002/wcc.81 |
|
Dinku T, 2019. Challenges with availability and quality of climate data in Africa. In: Melesse AM, Wossenu A, Gabriel S (eds) Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation. Elsevier, pp. 71-80. | |
Druyan LM, Koster RD, 1989. Sources of Sahel precipitation for simulated drought and rainy seasons. Journal of Climate, 2(12): 1438-1446. DOI: 10.1175/1520-0442(1989)002<1438:SOSPFS>2.0.CO;2.
doi: 10.1175/1520-0442(1989)002<1438:SOSPFS>2.0.CO;2 |
|
El-Beltagy A, Madkour M, 2012. Impact of climate change on arid lands agriculture. Agriculture & Food Security, 1(1): 1-12. DOI: 10.1186/2048-7010-1-3.
doi: 10.1186/2048-7010-1-3 |
|
El-Kholei AO, 2019. Risks, hazards, and disasters: can a smart city be resilient? In: Visvizi A, Lytras MD (eds) Smart Cities: Issues and Challenges. Elsevier, pp. 125-146. | |
Emori S, Brown SJ, 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17): 1-5. DOI: 10.1029/2005GL023272.
doi: 10.1029/2005GL023272 |
|
Evan AT, Flamant C, Lavaysse C, et al., 2015. Water vapor-forced greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought. Journal of Climate, 26(19): 2969-2972. DOI: 10.1175/JCLI-D-14-00039.1.
doi: 10.1175/JCLI-D-14-00039.1 |
|
Gaetani M, Flamant C, Bastin S, et al., 2017. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dynamics, 48(3-4): 1353-1373. DOI: 10.1007/s00382-016-3146-z.
doi: 10.1007/s00382-016-3146-z |
|
Harada C, Sumi A, Ohmori H, 2003. Seasonal and year-to-year variations of rainfall in the Sahara Desert region based on TRMM PR data. Geophysical Research Letters, 30(6): 1-21. DOI: 10.1029/2002GL016695.
doi: 10.1029/2002GL016695 |
|
Held IM, Soden BJ, 2006. Robust responses of the hydrologic cycle to global warming. Journal of Climate, 19(21): 5686-5699. DOI: 10.1175/JCLI3990.1.
doi: 10.1175/JCLI3990.1 |
|
Hersbach H, Bell B, Berrisford P, et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. DOI: 10.1002/qj.3803.
doi: 10.1002/qj.3803 |
|
Huang J, Ji M, Xie Y, et al., 2016. Global semi-arid climate change over last 60 years. Climate Dynamics, 46: 1131-1150. DOI: 10.1007/s00382-015-2636-8.
doi: 10.1007/s00382-015-2636-8 |
|
Jung M, Reichstein M, Ciais P, et al., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951-954. DOI: 10.1038/nature09396.
doi: 10.1038/nature09396 |
|
Kushnir Y, Seager R, Ting M, et al., 2010. Mechanisms of Tropical Atlantic SST Influence on North American Precipitation Variability. Journal of Climate, 23(21): 5610-5628. DOI: 10.1175/2010JCLI3172.1.
doi: 10.1175/2010JCLI3172.1 |
|
Kysely J, Beguería S, Beranová R, et al., 2012. Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Global and Planetary Change, 98-99(2012): 63-72. DOI: 10.1016/j.gloplacha.2012.06.010.
doi: 10.1016/j.gloplacha.2012.06.010 |
|
Lavaysse C, Flamant C, Evan A, et al., 2016. Recent climatological trend of the Saharan heat low and its impact on the West African climate. Climate Dynamics, 47(11): 3479-3498. DOI: 10.1007/s00382-015-2847-z.
doi: 10.1007/s00382-015-2847-z |
|
Li S, 2003. Influence of the North Atlantic SST tripole on northwest African rainfall. Journal of Geophysical Research, 108(D19): 1-16. DOI: 10.1029/2002JD003130.
doi: 10.1029/2002JD003130 |
|
Lioubimtseva E, Cole R, Adams JM, et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62(2): 285-308. DOI: 10.1016/j.jaridenv.2004.11.005.
doi: 10.1016/j.jaridenv.2004.11.005 |
|
Mann HB, 1945. Nonparametric Tests Against Trend. Econometrica, 13(3): 245-259. DOI: 10.2307/1907187.
doi: 10.2307/1907187 |
|
Masih I, Maskey S, Mussa FEF, et al., 2014. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences, 18(9): 3635-3649. DOI: 10.5194/hess-18-3635-2014.
doi: 10.5194/hess-18-3635-2014 |
|
Nashwan MS, Shahid S, 2019. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmospheric Research, 230: 1-10. DOI: 10.1016/j.atmosres.2019.104632.
doi: 10.1016/j.atmosres.2019.104632 |
|
Nations, U, 2018. Handbook on the Least Developed Country Category: Inclusion, Graduation and Special Support Measures, Third Edit. UN-iLibrary. | |
Ndehedehe CE, Ferreira VG, Onojeghuo AO, et al., 2020. Influence of global climate on freshwater changes in Africa's largest endorheic basin using multi-scaled indicators. The Science of the Total Environment, 737: 1-19. DOI: 10.1016/j.scitotenv.2020.139643.
doi: 10.1016/j.scitotenv.2020.139643 |
|
Nicholson S, 2005. On the question of the "recovery" of the rains in the West African Sahel. Journal of Arid Environments, 63(3): 615-641. DOI: 10.1016/j.jaridenv.2005. 03.004.
doi: 10.1016/j.jaridenv.2005. 03.004 |
|
Nicholson SE, 1981. Rainfall and atmospheric circulation during drought periods and wetter years in West Africa. Monthly Weather Review, 109: 2191-2208. DOI: 10.1175/1520-0493(1981)109<2191:RAACDD>2.0.CO;2.
doi: 10.1175/1520-0493(1981)109<2191:RAACDD>2.0.CO;2 |
|
Nicholson SE, 2016. An analysis of recent rainfall conditions in eastern Africa. International Journal of Climatology, 36: 526-532. DOI: 10.1002/joc.4358.
doi: 10.1002/joc.4358 |
|
Nicholson SE, Tucker CJ, Ba MB, 1998. Desertification, drought, and surface vegetation: An example from the West African Sahel. Bulletin of the American Meteorological Society, 79(5): 815-829. DOI: 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2.
doi: 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2 |
|
Onyutha C, Tabari H, Taye MT, et al., 2016. Analyses of rainfall trends in the Nile River Basin. Journal of Hydro-environment Research, 13(2): 36-51. DOI: 10.1016/j.jher.2015. 09.002.
doi: 10.1016/j.jher.2015. 09.002 |
|
Ove H-G, Daniela J, Michael T, et al., 2018. Impacts of 1.5 °C of Global Warming on Natural and Human Systems. In: Masson-Delmotte V, P Z,H-O P, et al. (eds) Global Warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. In Press, pp. 175-311. | |
Park S, Kang D, Yoo C, et al., 2020. Recent ENSO influence on East African drought during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS Journal of Photogrammetry and Remote Sensing, 162(2020): 17-26. DOI: 10.1016/j.isprsjprs.2020.02.003.
doi: 10.1016/j.isprsjprs.2020.02.003 |
|
Pekel JF, Cottam A, Gorelick N, et al., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633): 418-422. DOI: 10.1038/nature20584.
doi: 10.1038/nature20584 |
|
Praveen B, Talukdar S, Shahfahad, et al., 2020. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1): 1-21. DOI: 10.1038/s41598-020-67228-7.
doi: 10.1038/s41598-020-67228-7 |
|
Prospero JM, Nees RT, 1986. Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320: 735-738. DOI: 10.1038/320735a0.
doi: 10.1038/320735a0 |
|
Riesco Martín J, Mora García M, Pablo Dávila F de, et al., 2013. Severe rainfall events over the western Mediterranean Sea: A case study. Atmospheric Research, 127(2013): 47-63. DOI: 10.1016/j.atmosres.2013.03.001.
doi: 10.1016/j.atmosres.2013.03.001 |
|
Rodriguez FB, Mohino E, Mechoso CR, et al., 2015. Variability and predictability of west African droughts: A review on the role of sea surface temperature anomalies. Journal of Climate, 28: 4034-4050. DOI: 10.1175/JCLI-D-14-00130.1.
doi: 10.1175/JCLI-D-14-00130.1 |
|
Rowell DP, 2003. The impact of Mediterranean SSTs on the Sahelian rainfall season. Journal of Climate, 16(5): 849-862. DOI: 10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.
doi: 10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2 |
|
Şahin S, Ivanov M, Türkeş M, 2018. Control of dry and wet Januaries and winters in the Mediterranean Basin by large-scale atmospheric moisture flux and its convergence. Journal of Hydrology, 566(2018): 616-626. DOI: 10.1016/j.jhydrol.2018.09.038.
doi: 10.1016/j.jhydrol.2018.09.038 |
|
Salman SA, Shahid S, Afan HA, et al., 2020. Changes in climatic water availability and crop water demand for Iraq Region. Sustainability, 12(8): 1-20. DOI: 10.3390/su12083437.
doi: 10.3390/su12083437 |
|
Scheffer M, Carpenter S, Foley JA, et al., 2001. Catastrophic shifts in ecosystems. Nature, 413: 591-596. DOI: 10.1038/35098000.
doi: 10.1038/35098000 |
|
Schilling J, Freier KP, Hertig E, et al., 2012. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems & Environment, 156: 12-26. DOI: 10.1016/j.agee.2012.04.021.
doi: 10.1016/j.agee.2012.04.021 |
|
Schneider T, O'Gorman PA, Levine XJ, 2010. Water vapor and the dynamics of climate changes. Reviews of Geophysics, 48(3): 1-22. DOI: 10.1029/2009RG000302.
doi: 10.1029/2009RG000302 |
|
Schneider U, Becker A, Finger P, et al., 2011. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. GPCC, 1: 1. DOI: 10.5676/DWD_GPCC/FD_M_V7_050.
doi: 10.5676/DWD_GPCC/FD_M_V7_050 |
|
Sen PK, 1968. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379-1389. DOI: 10.1080/01621459. 1968. 10480934.
doi: 10.1080/01621459. 1968. 10480934 |
|
Seneviratne SI, Nicholls N, Easterling D, et al., 2012. Changes in climate extremes and their impacts on the natural physical environment. In: Field CB (ed)Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 109-230. | |
Sindikubwabo C, Li R, Wang C, 2018. Abrupt change in Sahara precipitation and the associated circulation patterns. Atmospheric and Climate Sciences, 08(02): 262-273. DOI: 10.4236/acs.2018.82017.
doi: 10.4236/acs.2018.82017 |
|
Tegegne G, Melesse AM, Alamirew T, 2021. Projected changes in extreme precipitation indices from CORDEX simulations over Ethiopia, East Africa. Atmospheric Research, 247(2021): 105156. DOI: 10.1016/j.atmosres.2020.105156.
doi: 10.1016/j.atmosres.2020.105156 |
|
Vigna I, Bigi V, Pezzoli A, et al., 2020. Comparison and bias-correction of satellite-derived precipitation datasets at local level in Northern Kenya. Sustainability, 12(7): 1-18. DOI: 10.3390/su12072896.
doi: 10.3390/su12072896 |
|
Vischel T, Panthou G, Peyrillé P, et al., 2019. Precipitation extremes in the West African Sahel: Recent evolution and physical mechanisms. In: Venugopal V, Sukhatme J, Murtugudde R, et al. (eds)Tropical Extremes: Natural Variability and Trends. Elsevier, pp. 95-138. | |
Vizy EK, Cook KH, 2017. Seasonality of the observed amplified Sahara warming trend and implications for Sahel rainfall. Journal of Climate, 30: 3073-3094. DOI: 10.1175/JCLI-D-16-0687.1.
doi: 10.1175/JCLI-D-16-0687.1 |
|
Wang Q, Gu J, Wang X, 2020. The impact of Sahara dust on air quality and public health in European countries. Atmospheric Environment, 241: 1-10. DOI: 10.1016/j.atmosenv. 2020.117771.
doi: 10.1016/j.atmosenv. 2020.117771 |
|
Weldegerima TM, Zeleke TT, Birhanu BS, et al., 2018. Analysis of rainfall trends and its relationship with SST signals in the lake Tana basin, Ethiopia. Advances in Meteorology, 2018: 1-10. DOI: 10.1155/2018/5869010.
doi: 10.1155/2018/5869010 |
|
Worden J, Noone D, Bowman K, et al., 2007. Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445: 528-532. DOI: 10.1038/nature05508.
doi: 10.1038/nature05508 |
|
Yin Y, Xu Y, Chen Y, 2009. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake basin, China. Quaternary International, 208(2009): 93-101. DOI: 10.1016/j.quaint.2008.12.016.
doi: 10.1016/j.quaint.2008.12.016 |
|
Zhang X, Zwiers FW, Hegerl GC, et al., 2007. Detection of human influence on twentieth-century precipitation trends. Nature, 448: 461-465. DOI: 10.1038/nature06025.
doi: 10.1038/nature06025 |
[1] | Sanjaya Gurung,Saroj Dhoj Joshi,Binod Parajuli. Overview of an early warning system for Glacial Lake outburst flood risk mitigation in Dudh-Koshi Basin, Nepal [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 206-219. |
[2] | WeiCheng Luo,WenZhi Zhao,Bing Liu,Heng Ren. Changes in morphology and soil nutrient patterns of nebkhas in arid regions along a precipitation gradient [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 256-267. |
[3] | Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52. |
[4] | YongJian Ding,JianPing Yang,ShengXia Wang,YaPing Chang. A review of the interaction between the cryosphere and atmosphere [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 329-342. |
[5] | ShiYin Liu,TongHua Wu,Xin Wang,XiaoDong Wu,XiaoJun Yao,Qiao Liu,Yong Zhang,JunFeng Wei,XiaoFan Zhu. Changes in the global cryosphere and their impacts: A review and new perspective [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 343-354. |
[6] | ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379. |
[7] | ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388. |
[8] | YanRan Lü,Tong Jiang,YanJun Wang,BuDa Su,JinLong Huang,Hui Tao. Simulation and projection of climate change using CMIP6 Muti-models in the Belt and Road Region [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 389-403. |
[9] | SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502. |
[10] | PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283. |
[11] | Jia Qin,JinKui Wu,TianDing Han,QiuDong Zhao. Quantitatively estimate the components of natural runoff and identify the impacting factors in asnow-fed river basin of China [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 154-164. |
[12] | Hu Liu,Lin Li,SiJia Wang,QiYue Yang,WenZhi Zhao. Soil-moisture dynamics and tree-water status in a Picea crassifolia forest, Qilian Mountains, China [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 34-46. |
[13] | ShanShan Chen,ShuYing Zang,Li Sun. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 1-11. |
[14] | ShuYuan Kang,YuGang Guo. Spatiotemporal variations in moisture conditions across Monsoon Asia during the last 500 years [J]. Sciences in Cold and Arid Regions, 2019, 11(6): 470-478. |
[15] | YueDan Zhao,XingDong He,Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao. Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 371-381. |
|