Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 220-233.doi: 10.3724/SP.J.1226.2021.19059.

Previous Articles     Next Articles

Temporal changes in seasonal precipitation over the Sahara Desert from 1979 to 2016

Sindikubwabo Celestin1,2,Qi Feng1(),RuoLin Li1,3,WenJu Cheng1,2,Jian Ma4,Habiyakare Telesphore2,Nzabarinda Vincent2   

  1. 1.Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Qilian Mountains Eco environment Research Center, Lanzhou, Gansu 730000, China
    4.Academy of Water Resources Conservation Forests in Qilian Mountains, Zhangye, Gansu 734000, China
  • Received:2020-06-24 Accepted:2021-02-02 Online:2021-06-30 Published:2021-07-05
  • Contact: Qi Feng E-mail:qifeng@lzb.ac.cn
  • Supported by:
    the National Key R&D Program of China(2017YFC0404305);National Natural Science Foundation of China(41801015);the Foundation for Excellent Young Scholars of Northwest Institute of Eco-Environment and Resources NIEER Chinese Academy of Sciences, CAS(51Y851D61);the Major Program of the Natural Science Foundation of Gansu province, China(18JR4RA002);Science and Technology Program of Gansu Province, China(18JR2RA026);the Chinese Academy of Sciences-The World Academy of Sciences (CAS-TWAS) President's Fellowship programme

Abstract:

Rainfall variability dominates livelihoods in all countries of Saharan Africa. To better understand the processes involved in Sahara precipitation changes, we used the Global Precipitation Climatology Center (GPCC) dataset to examine dry and wet seasonal trends in the Sahara region from 1979 to 2016. We also used the European Centre for Medium-Range Weather Forecasts (ECMWF) to evaluate the general atmospheric circulation associated with seasonal change of Sahara precipitation. The Mann-Kendall test and Theil sens' slope estimator methods were adopted to test and estimate the significance and weight of precipitation trend, respectively. The results revealed that Sahara precipitation has increased significantly. The seasonal evaluation shows a positive trend of 0.42 mm/decade and 1.43 mm/decade in JAS (June, August, and September) seasons for the northern and southern Saharan Desert, respectively. Moreover, the JFMA (January, February, March, and April) period shows a negative trend but not statistically significant. An examination of the general circulation and moisture transport changes suggested an increase of rainfall in southern Sahara. The wet period is also driven by northward penetration of moisture originating from the Sahel region, African Easterly Jet (AEJ), and weakening in the upper tropospheric zonal wind. Summer rainfall has also been likely associated with positive anomalies of sea surface temperature (SST) in the North Tropical Atlantic (NTA) and the Mediterranean Sea.

Key words: Sahara, precipitation, variability, arid, Africa, climate

Figure 1

(a) Depicts the annual mean total precipitation estimated from GPCC dataset and (b) indicates the annual mean maximum temperature calculated from the ERA5 datasets. The dashed line divides the northern and southern parts of the Sahara Desert (box)"

Figure 2

The monthly mean precipitation averaged between 1979 and 2016 in northern (green) and southern (blue) parts of the Sahara Desert"

Figure 3

Spatial distributions of seasonal mean precipitation estimated from GPCC. The hatch areas indicate regions with seasonal mean precipitation of less than 1 mm"

Figure 4

Spatial mean seasonal precipitation anomalies averaged from temporal seasonal anomaly calculated with respect to the 30-year climatological mean (1981-2000)"

Figure 5

The seasonal precipitation anomalies for the northern (orange) and southern (blue) Sahara Desert. The anomalies are calculated in respect to the 30-year climatological mean (1981-2000)"

Table 1

Results summary of the MK-test and Theil Sen's slope computed from seasonal precipitation over the Sahara Desert. Note: the positive (negative) values of Z score, S and Slope indicate an upward (downward) trend, while the Z score ≥ 1.96 and P-value ≤0.05 indicate trend significance"

RegionSeasonTrendP valueZ scoreSSlope
NorthJASincreasing0.00282.99212390.0416
JFMAno trend0.6328-0.4777-39-0.0118
MJno trend0.13141.50861210.0172
ONDno trend0.78210.2766230.0053
SouthJASincreasing0.00023.69612950.1427
JFMAno trend0.4507-0.7543-61-0.0078
MJno trend0.74380.3269270.0074
ONDno trend0.43570.7795630.0101

Figure 6

(a) Correlation between the southern Sahara precipitation and SST anomalies (b) Variation of NTA SST anomalies (bar) and southern Sahara precipitation anomalies during the JAS period 1979-2016 (dash line). The contour values and dots indicate the spatial and significant estimated from SST anomalies of the JAS period 1979-2016"

Figure 7

Comparison of seasonal changes in general circulation components. Contour lines indicate the seasonal mean of specific humidity (a, d) at 1000 hPa, zonal wind at 200 hPa (b, e) and zonal wind at 600 hPa (c, f). Colors in (a, d) indicate correlation between southern Sahara precipitation and Specific humidity at 950 hPa for (a) winter and (d) summer, and arrows in (a, d) depicts seasonal moisture flux calculated at 950 hPa"

Figure 8

Composite analysis for (a) moisture and (b) zonal components performed between the wet and dry period of the JAS season. Color and arrows in (a) indicated changes in moisture contents (g/kg) and moisture flux components, respectively. Colors and contours in (b) show changes in zonal wind components at 600 hPa and 200 hPa, respectively"

Ahmadalipour A, Moradkhani H, Castelletti A, et al., 2019. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 662(2019): 672-686. DOI: 10.1016/j.scitotenv.2019.01.278.
doi: 10.1016/j.scitotenv.2019.01.278
Almazroui M, Awad AM, 2016. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmospheric Research, 180(2016): 92-118. DOI: 10.1016/j.atmosres.2016.05.015.
doi: 10.1016/j.atmosres.2016.05.015
Asfaw A, Simane B, Hassen A, et al., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19(4): 29-41. DOI: 10. 1016/j.wace.2017.12.002.
doi: 10. 1016/j.wace.2017.12.002
Awange JL, Hu KX, Khaki M, 2019. The newly merged satellite remotely sensed, gauge and reanalysis-based Multi-Source Weighted-Ensemble Precipitation: Evaluation over Australia and Africa (1981-2016). Science of the Total Environment, 670(2019): 448-465. DOI: 10.1016/j.scitotenv. 2019.03.148.
doi: 10.1016/j.scitotenv. 2019.03.148
Ayugi B, Tan G, Gnitou GT, et al., 2020. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmospheric Research, 232(2020): 1-17. DOI: 10.1016/j.atmosres.2019. 104705.
doi: 10.1016/j.atmosres.2019. 104705
Basheer M, Elagib NA, 2019. Performance of satellite-based and GPCC7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmospheric Research, 215(2019): 128-140. DOI: 10.1016/j.atmosres.2018.08.028.
doi: 10.1016/j.atmosres.2018.08.028
Biasutti M, 2019. Rainfall trends in the African Sahel: Characteristics, processes, and causes. WIREs Climate Change, 10(4): 1-22. DOI: 10.1002/wcc.591.
doi: 10.1002/wcc.591
Bradai L, Bissati S, Chenchouni H, 2014. Desert truffles of the North Algerian Sahara: Diversity and bioecology. Emirates Journal of Food and Agriculture, 26(5): 425-435. DOI: 10.9755/ejfa.v26i5.16520.
doi: 10.9755/ejfa.v26i5.16520
Caminade C, Terray L, 2010. Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 35: 75-94. DOI: 10.1007/s00382-009-0545-4.
doi: 10.1007/s00382-009-0545-4
Charney J, Stone PH, Quirk WJ, 1975. Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187(4175): 434-435. DOI: 10.1126/science.187.4175.434.
doi: 10.1126/science.187.4175.434
Chen S, Wu R, Chen W, 2015. The changing relationship between interannual variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. Journal of Climate, 28(2): 485-504. DOI: 10.1175/JCLI-D-14-00422.1.
doi: 10.1175/JCLI-D-14-00422.1
Chen Z, Zhou T, Zhang L, et al., 2020. Global land monsoon precipitation changes in CMIP6 projections. Geophysical Research Letters, 47(14): 1-9. DOI: 10.1029/2019gl086902.
doi: 10.1029/2019gl086902
Cook KH, 1999. Generation of the African Easterly Jet and its role in determining West African precipitation. Journal of Climate, 12(5): 1165-1184. DOI: 10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.
doi: 10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2
Dai A, 2011. Drought under global warming: A review. WIREs Climate Change, 2: 45-65. DOI: 10.1002/wcc.81.
doi: 10.1002/wcc.81
Dinku T, 2019. Challenges with availability and quality of climate data in Africa. In: Melesse AM, Wossenu A, Gabriel S (eds) Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation. Elsevier, pp. 71-80.
Druyan LM, Koster RD, 1989. Sources of Sahel precipitation for simulated drought and rainy seasons. Journal of Climate, 2(12): 1438-1446. DOI: 10.1175/1520-0442(1989)002<1438:SOSPFS>2.0.CO;2.
doi: 10.1175/1520-0442(1989)002<1438:SOSPFS>2.0.CO;2
El-Beltagy A, Madkour M, 2012. Impact of climate change on arid lands agriculture. Agriculture & Food Security, 1(1): 1-12. DOI: 10.1186/2048-7010-1-3.
doi: 10.1186/2048-7010-1-3
El-Kholei AO, 2019. Risks, hazards, and disasters: can a smart city be resilient? In: Visvizi A, Lytras MD (eds) Smart Cities: Issues and Challenges. Elsevier, pp. 125-146.
Emori S, Brown SJ, 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17): 1-5. DOI: 10.1029/2005GL023272.
doi: 10.1029/2005GL023272
Evan AT, Flamant C, Lavaysse C, et al., 2015. Water vapor-forced greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought. Journal of Climate, 26(19): 2969-2972. DOI: 10.1175/JCLI-D-14-00039.1.
doi: 10.1175/JCLI-D-14-00039.1
Gaetani M, Flamant C, Bastin S, et al., 2017. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dynamics, 48(3-4): 1353-1373. DOI: 10.1007/s00382-016-3146-z.
doi: 10.1007/s00382-016-3146-z
Harada C, Sumi A, Ohmori H, 2003. Seasonal and year-to-year variations of rainfall in the Sahara Desert region based on TRMM PR data. Geophysical Research Letters, 30(6): 1-21. DOI: 10.1029/2002GL016695.
doi: 10.1029/2002GL016695
Held IM, Soden BJ, 2006. Robust responses of the hydrologic cycle to global warming. Journal of Climate, 19(21): 5686-5699. DOI: 10.1175/JCLI3990.1.
doi: 10.1175/JCLI3990.1
Hersbach H, Bell B, Berrisford P, et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. DOI: 10.1002/qj.3803.
doi: 10.1002/qj.3803
Huang J, Ji M, Xie Y, et al., 2016. Global semi-arid climate change over last 60 years. Climate Dynamics, 46: 1131-1150. DOI: 10.1007/s00382-015-2636-8.
doi: 10.1007/s00382-015-2636-8
Jung M, Reichstein M, Ciais P, et al., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951-954. DOI: 10.1038/nature09396.
doi: 10.1038/nature09396
Kushnir Y, Seager R, Ting M, et al., 2010. Mechanisms of Tropical Atlantic SST Influence on North American Precipitation Variability. Journal of Climate, 23(21): 5610-5628. DOI: 10.1175/2010JCLI3172.1.
doi: 10.1175/2010JCLI3172.1
Kysely J, Beguería S, Beranová R, et al., 2012. Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Global and Planetary Change, 98-99(2012): 63-72. DOI: 10.1016/j.gloplacha.2012.06.010.
doi: 10.1016/j.gloplacha.2012.06.010
Lavaysse C, Flamant C, Evan A, et al., 2016. Recent climatological trend of the Saharan heat low and its impact on the West African climate. Climate Dynamics, 47(11): 3479-3498. DOI: 10.1007/s00382-015-2847-z.
doi: 10.1007/s00382-015-2847-z
Li S, 2003. Influence of the North Atlantic SST tripole on northwest African rainfall. Journal of Geophysical Research, 108(D19): 1-16. DOI: 10.1029/2002JD003130.
doi: 10.1029/2002JD003130
Lioubimtseva E, Cole R, Adams JM, et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62(2): 285-308. DOI: 10.1016/j.jaridenv.2004.11.005.
doi: 10.1016/j.jaridenv.2004.11.005
Mann HB, 1945. Nonparametric Tests Against Trend. Econometrica, 13(3): 245-259. DOI: 10.2307/1907187.
doi: 10.2307/1907187
Masih I, Maskey S, Mussa FEF, et al., 2014. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences, 18(9): 3635-3649. DOI: 10.5194/hess-18-3635-2014.
doi: 10.5194/hess-18-3635-2014
Nashwan MS, Shahid S, 2019. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmospheric Research, 230: 1-10. DOI: 10.1016/j.atmosres.2019.104632.
doi: 10.1016/j.atmosres.2019.104632
Nations, U, 2018. Handbook on the Least Developed Country Category: Inclusion, Graduation and Special Support Measures, Third Edit. UN-iLibrary.
Ndehedehe CE, Ferreira VG, Onojeghuo AO, et al., 2020. Influence of global climate on freshwater changes in Africa's largest endorheic basin using multi-scaled indicators. The Science of the Total Environment, 737: 1-19. DOI: 10.1016/j.scitotenv.2020.139643.
doi: 10.1016/j.scitotenv.2020.139643
Nicholson S, 2005. On the question of the "recovery" of the rains in the West African Sahel. Journal of Arid Environments, 63(3): 615-641. DOI: 10.1016/j.jaridenv.2005. 03.004.
doi: 10.1016/j.jaridenv.2005. 03.004
Nicholson SE, 1981. Rainfall and atmospheric circulation during drought periods and wetter years in West Africa. Monthly Weather Review, 109: 2191-2208. DOI: 10.1175/1520-0493(1981)109<2191:RAACDD>2.0.CO;2.
doi: 10.1175/1520-0493(1981)109<2191:RAACDD>2.0.CO;2
Nicholson SE, 2016. An analysis of recent rainfall conditions in eastern Africa. International Journal of Climatology, 36: 526-532. DOI: 10.1002/joc.4358.
doi: 10.1002/joc.4358
Nicholson SE, Tucker CJ, Ba MB, 1998. Desertification, drought, and surface vegetation: An example from the West African Sahel. Bulletin of the American Meteorological Society, 79(5): 815-829. DOI: 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2.
doi: 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2
Onyutha C, Tabari H, Taye MT, et al., 2016. Analyses of rainfall trends in the Nile River Basin. Journal of Hydro-environment Research, 13(2): 36-51. DOI: 10.1016/j.jher.2015. 09.002.
doi: 10.1016/j.jher.2015. 09.002
Ove H-G, Daniela J, Michael T, et al., 2018. Impacts of 1.5 °C of Global Warming on Natural and Human Systems. In: Masson-Delmotte V, P Z,H-O P, et al. (eds) Global Warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. In Press, pp. 175-311.
Park S, Kang D, Yoo C, et al., 2020. Recent ENSO influence on East African drought during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS Journal of Photogrammetry and Remote Sensing, 162(2020): 17-26. DOI: 10.1016/j.isprsjprs.2020.02.003.
doi: 10.1016/j.isprsjprs.2020.02.003
Pekel JF, Cottam A, Gorelick N, et al., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633): 418-422. DOI: 10.1038/nature20584.
doi: 10.1038/nature20584
Praveen B, Talukdar S, Shahfahad, et al., 2020. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1): 1-21. DOI: 10.1038/s41598-020-67228-7.
doi: 10.1038/s41598-020-67228-7
Prospero JM, Nees RT, 1986. Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320: 735-738. DOI: 10.1038/320735a0.
doi: 10.1038/320735a0
Riesco Martín J, Mora García M, Pablo Dávila F de, et al., 2013. Severe rainfall events over the western Mediterranean Sea: A case study. Atmospheric Research, 127(2013): 47-63. DOI: 10.1016/j.atmosres.2013.03.001.
doi: 10.1016/j.atmosres.2013.03.001
Rodriguez FB, Mohino E, Mechoso CR, et al., 2015. Variability and predictability of west African droughts: A review on the role of sea surface temperature anomalies. Journal of Climate, 28: 4034-4050. DOI: 10.1175/JCLI-D-14-00130.1.
doi: 10.1175/JCLI-D-14-00130.1
Rowell DP, 2003. The impact of Mediterranean SSTs on the Sahelian rainfall season. Journal of Climate, 16(5): 849-862. DOI: 10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.
doi: 10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2
Şahin S, Ivanov M, Türkeş M, 2018. Control of dry and wet Januaries and winters in the Mediterranean Basin by large-scale atmospheric moisture flux and its convergence. Journal of Hydrology, 566(2018): 616-626. DOI: 10.1016/j.jhydrol.2018.09.038.
doi: 10.1016/j.jhydrol.2018.09.038
Salman SA, Shahid S, Afan HA, et al., 2020. Changes in climatic water availability and crop water demand for Iraq Region. Sustainability, 12(8): 1-20. DOI: 10.3390/su12083437.
doi: 10.3390/su12083437
Scheffer M, Carpenter S, Foley JA, et al., 2001. Catastrophic shifts in ecosystems. Nature, 413: 591-596. DOI: 10.1038/35098000.
doi: 10.1038/35098000
Schilling J, Freier KP, Hertig E, et al., 2012. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems & Environment, 156: 12-26. DOI: 10.1016/j.agee.2012.04.021.
doi: 10.1016/j.agee.2012.04.021
Schneider T, O'Gorman PA, Levine XJ, 2010. Water vapor and the dynamics of climate changes. Reviews of Geophysics, 48(3): 1-22. DOI: 10.1029/2009RG000302.
doi: 10.1029/2009RG000302
Schneider U, Becker A, Finger P, et al., 2011. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. GPCC, 1: 1. DOI: 10.5676/DWD_GPCC/FD_M_V7_050.
doi: 10.5676/DWD_GPCC/FD_M_V7_050
Sen PK, 1968. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379-1389. DOI: 10.1080/01621459. 1968. 10480934.
doi: 10.1080/01621459. 1968. 10480934
Seneviratne SI, Nicholls N, Easterling D, et al., 2012. Changes in climate extremes and their impacts on the natural physical environment. In: Field CB (ed)Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 109-230.
Sindikubwabo C, Li R, Wang C, 2018. Abrupt change in Sahara precipitation and the associated circulation patterns. Atmospheric and Climate Sciences, 08(02): 262-273. DOI: 10.4236/acs.2018.82017.
doi: 10.4236/acs.2018.82017
Tegegne G, Melesse AM, Alamirew T, 2021. Projected changes in extreme precipitation indices from CORDEX simulations over Ethiopia, East Africa. Atmospheric Research, 247(2021): 105156. DOI: 10.1016/j.atmosres.2020.105156.
doi: 10.1016/j.atmosres.2020.105156
Vigna I, Bigi V, Pezzoli A, et al., 2020. Comparison and bias-correction of satellite-derived precipitation datasets at local level in Northern Kenya. Sustainability, 12(7): 1-18. DOI: 10.3390/su12072896.
doi: 10.3390/su12072896
Vischel T, Panthou G, Peyrillé P, et al., 2019. Precipitation extremes in the West African Sahel: Recent evolution and physical mechanisms. In: Venugopal V, Sukhatme J, Murtugudde R, et al. (eds)Tropical Extremes: Natural Variability and Trends. Elsevier, pp. 95-138.
Vizy EK, Cook KH, 2017. Seasonality of the observed amplified Sahara warming trend and implications for Sahel rainfall. Journal of Climate, 30: 3073-3094. DOI: 10.1175/JCLI-D-16-0687.1.
doi: 10.1175/JCLI-D-16-0687.1
Wang Q, Gu J, Wang X, 2020. The impact of Sahara dust on air quality and public health in European countries. Atmospheric Environment, 241: 1-10. DOI: 10.1016/j.atmosenv. 2020.117771.
doi: 10.1016/j.atmosenv. 2020.117771
Weldegerima TM, Zeleke TT, Birhanu BS, et al., 2018. Analysis of rainfall trends and its relationship with SST signals in the lake Tana basin, Ethiopia. Advances in Meteorology, 2018: 1-10. DOI: 10.1155/2018/5869010.
doi: 10.1155/2018/5869010
Worden J, Noone D, Bowman K, et al., 2007. Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445: 528-532. DOI: 10.1038/nature05508.
doi: 10.1038/nature05508
Yin Y, Xu Y, Chen Y, 2009. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake basin, China. Quaternary International, 208(2009): 93-101. DOI: 10.1016/j.quaint.2008.12.016.
doi: 10.1016/j.quaint.2008.12.016
Zhang X, Zwiers FW, Hegerl GC, et al., 2007. Detection of human influence on twentieth-century precipitation trends. Nature, 448: 461-465. DOI: 10.1038/nature06025.
doi: 10.1038/nature06025
[1] Sanjaya Gurung,Saroj Dhoj Joshi,Binod Parajuli. Overview of an early warning system for Glacial Lake outburst flood risk mitigation in Dudh-Koshi Basin, Nepal [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 206-219.
[2] WeiCheng Luo,WenZhi Zhao,Bing Liu,Heng Ren. Changes in morphology and soil nutrient patterns of nebkhas in arid regions along a precipitation gradient [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 256-267.
[3] Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52.
[4] YongJian Ding,JianPing Yang,ShengXia Wang,YaPing Chang. A review of the interaction between the cryosphere and atmosphere [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 329-342.
[5] ShiYin Liu,TongHua Wu,Xin Wang,XiaoDong Wu,XiaoJun Yao,Qiao Liu,Yong Zhang,JunFeng Wei,XiaoFan Zhu. Changes in the global cryosphere and their impacts: A review and new perspective [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 343-354.
[6] ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379.
[7] ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388.
[8] YanRan Lü,Tong Jiang,YanJun Wang,BuDa Su,JinLong Huang,Hui Tao. Simulation and projection of climate change using CMIP6 Muti-models in the Belt and Road Region [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 389-403.
[9] SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502.
[10] PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283.
[11] Jia Qin,JinKui Wu,TianDing Han,QiuDong Zhao. Quantitatively estimate the components of natural runoff and identify the impacting factors in asnow-fed river basin of China [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 154-164.
[12] Hu Liu,Lin Li,SiJia Wang,QiYue Yang,WenZhi Zhao. Soil-moisture dynamics and tree-water status in a Picea crassifolia forest, Qilian Mountains, China [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 34-46.
[13] ShanShan Chen,ShuYing Zang,Li Sun. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(1): 1-11.
[14] ShuYuan Kang,YuGang Guo. Spatiotemporal variations in moisture conditions across Monsoon Asia during the last 500 years [J]. Sciences in Cold and Arid Regions, 2019, 11(6): 470-478.
[15] YueDan Zhao,XingDong He,Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao. Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 371-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .