Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (1): 54-67.doi: 10.3724/SP.J.1226.2022.21004.

Previous Articles    

Geographic range size patterns across plants and animals of Xinjiang, China

LiPing Li1,ChunYan Zhang1,Eimear Nic Lughadha2,Tarciso C. C. Leão2,Kate Hardwick3,YaoMin Zheng4,HuaWei Wan5,Ming Ma6,Nurbay Abudusalih7,Hai Ying8,Pu Zhen9,JiangShan Lai10,ZhanFeng Shen1,Liu Li1,Tuo Wang1,YangMing Jiang1,HuiHui Zhao1,QingJie Liu1()   

  1. 1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    2.Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
    3.Royal Botanic Gardens Kew, Wakehurst, Sussex, RH17 6TN, UK
    4.School of International Economics and Management, Beijing Technology and Business University, Beijing 100048, China
    5.Satellite Environmental Application Center of Ministry of Ecology and Environment, Beijing 100094, China
    6.Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
    7.Key Laboratory of Oasis Ecology of Ministry of Education, College of Resources and Environmental Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
    8.Department of Geology, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
    9.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
    10.State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2021-03-12 Accepted:2021-09-13 Online:2022-02-28 Published:2022-03-03
  • Contact: QingJie Liu E-mail:liuqj@aircas.ac.cn
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences(XDA26010101);the National Key Research and Development Program of China(2020YFC0832800);National Natural Science Foundation of China(41801366);NSFC-RS exchange project between China and UK(42011530175)

Abstract:

Patterns in species geographic range size are relatively well-known for vertebrates, but still poorly known for plants. Contrasts of these patterns between groups have rarely been investigated. With a detailed flora and fauna distribution database of Xinjiang, China, we used regression methods, redundancy analysis and random forests to explore the relationship of environment and body size with the geographic range size of plants, mammals and birds in Xinjiang and contrast these patterns between plants and animals. We found positive correlations between species range size and body size. The range size of plants was more influenced by water variables, while that of mammals and birds was largely influenced by temperature variables. The productivity variable, i.e., Enhanced Vegetation Index (EVI) was far more correlated with range size than climatic variables for both plants and animals, suggesting that vegetation productivity inferred from remote sensing data may be a good predictor of species range size for both plants and animals.

Key words: range size, body size, Enhanced Vegetation Index (EVI), arid region, conservation

Figure 1

The correlation of plant range area and height (herb, shrub and tree in green, red and blue color, respectively). The black line is the correlation line for whole plant species"

Figure 2

The correlation of plant range size and environmental variables"

Figure 3

The correlation of body mass and range size of mammals (a) and birds (b)(insignificant for birds with dashed line in (b))"

Figure 4

The correlation of mammal range size and environmental variables (insignificant for temperature seasonality with dashed line in (d))"

Figure 5

The correlation of bird range size and environmental variables"

Figure 6

The RDA analysis of range size and environmental variables, body size"

Table 1

The percentage of the variation in plant or animal range size explained by temperature, water, body size, topography, and vegetation productivity according to multiple regressions and their ANOVA decompositions"

VariablesPlant: log2(RA)Mammal: log2(RA)Bird: RA
Temperature+water+body mass+topo+productivity
MAT4.53***16.38***17.41***
Temperature seasonality0.0111.95***6.77***
MAP11.62***3.62**0.82*
Precipitation seasonality8.66***5.63***5.49***
log2(height), log2(weight)1.71***3.94**0.54 .
Altitudinal range5.36***0.030.07
EVI3.10***0.162.07***
Residuals65.0158.2966.83
Productivity+temperature+water+body mass+topo
EVI17.35***14.01***13.34***
MAT3.65***13.65***12.79***
Temperature seasonality0.32***4.44**1.28**
MAP0.000.052.13***
Precipitation seasonality6.18***5.48***2.48***
log2(height), log2(weight)2.37***4.03**0.79*
Altitudinal range5.12***0.050.36
Residuals65.0158.2966.83

Table 2

Relative importance of the variables (values are relative to the largest, set to 1.00) to predict the species range area, according to the increase in node purity with a random forest analysis. Values ≥0.6 are in bold"

VariablesPlant: log2(RA)Mammal: log2(RA)Bird: RA
MAT0.530.600.62
Temperature seasonality0.580.450.45
MAP0.680.760.56
Precipitation seasonality0.800.620.77
log2(height), log2(weight)0.150.100.32
Altitudinal range0.770.510.45
EVI1.001.001.00

Figure S1

Frequency distributions of plant range area"

Figure S2

Frequency distributions of plant height"

Figure S3

Frequency distributions of animal range area and body mass"

Apdukader A , 2002. A Checklist of the Mammals in Xinjiang, China. Science Press, Beijing.
Blackburn TM , Gaston KJ , 1996. Spatial patterns in the geographic range sizes of bird species in the New World. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1342): 897-912. DOI: 10.1098/rstb.1996. 0083 .
doi: 10.1098/rstb.1996. 0083
Böhm M , Williams R , Bramhall HR , et al. , 2016. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Global Ecology & Biogeography, 25(4): 391-405. DOI: 10.1111/geb. 12419 .
doi: 10.1111/geb. 12419
Borregaard MK , Rahbek C , 2010. Causality of the relationship between geographic distribution and species abundance. The Quarterly Review of Biology, 85(1): 3-25. DOI: 10.1086/650265 .
doi: 10.1086/650265
Fraedrich K , Sielmann F , 2014. Climate and vegetation: an ERA-Interim and GIMMS NDVI analysis. Journal of Climate, 27(13): 5111-5118. DOI: 10.1175/JCLI-D-13-00674.1 .
doi: 10.1175/JCLI-D-13-00674.1
Ceolin GB , Giehl ELH , 2017. A little bit everyday: range size determinants in Arachis (Fabaceae), a dispersal‐limited group. Journal of Biogeography, 44(12): 2798-2807. DOI: 10.1111/jbi.13082 .
doi: 10.1111/jbi.13082
Commissione Redactorum Florae Xinjiangensis, 1992-2011. Florae Xinjiangensis. Xinjiang Science & Technology Publishing House, Urumqi.
Dombroskie SL , Aarssen LW , 2010. Within-genus size distributions in angiosperms: small is better. Perspectives in Plant Ecology, Evolution and Systematics, 12(4): 283-293. DOI: 10.1016/j.ppees.2010.06.002 .
doi: 10.1016/j.ppees.2010.06.002
Gallagher RV , 2016. Correlates of range size variation in the Australian seed‐plant flora. Journal of Biogeography, 43(7): 1287-1298. DOI: 10.1111/jbi.12711 .
doi: 10.1111/jbi.12711
Gaston KJ , Blackburn TM , 1996. Range size-body size relationships: evidence of scale dependence. Oikos, 75(3): 479-485. DOI: 10.2307/3545889 .
doi: 10.2307/3545889
Geng Y , Wang ZH , Liang CZ , et al. , 2012. Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology & Biogeography, 21(4): 416-427. DOI: 10.1111/j.1466-8238.2011.00692.x .
doi: 10.1111/j.1466-8238.2011.00692.x
Hijmans RJ , Cameron SE , Parra JL , et al. , 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978. DOI: 10.1002/joc.1276 .
doi: 10.1002/joc.1276
Inostroza-Michael O , Hernandez CE , Rodriguez-Serrano E , et al. , 2018. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical Furnariid birds. Evolution, 72(5): 1124-1133. DOI: 10. 1111/evo.13481 .
doi: 10. 1111/evo.13481
Kolb A , Barsch F , Diekmann M , 2006. Determinants of local abundance and range size in forest vascular plants. Global Ecology and Biogeography, 15(3): 237-247. DOI: 10.1111/j.1466-8238.2005.00210.x .
doi: 10.1111/j.1466-8238.2005.00210.x
Leão TCC , Nic Lughadha EE , Reich PB , 2020. Evolutionary patterns in the geographic range size of Atlantic forest plants. Ecography, 43(10): 1510-1520. DOI: 10.1111/ecog. 05160 .
doi: 10.1111/ecog. 05160
Li LP , Cui WH , Wang T , et al. , 2017a. Plant conservation priorities of Xinjiang region, China. IOP Conference Series: Earth and Environmental Science, 57(1): 012034. DOI: 10.1088/1755-1315/57/1/012034 .
doi: 10.1088/1755-1315/57/1/012034
Li LP , Jia XH , Yin LK , 2017b. Vascular plant range size patterns and the relationship with climate and plant richness in Xinjiang region, China. Scientia Sinica Vitae, 47(3): 314-324. DOI: 10.1360/N052017-00029 .
doi: 10.1360/N052017-00029
Li LP , Mohammat A , Abdusalih N , et al. , 2017c. Plant body size patterns of mountainous trees and grassland herbs in Xinjiang region, China. Biodiversity Science, 25(11): 1202-1212. DOI: 10.17520/biods.2016336 .
doi: 10.17520/biods.2016336
Li LP , Wang Z , Zerbe S , et al. , 2013. Species richness patterns and Water-Energy Dynamics in the drylands of northwest China. PLOS ONE, 8(6): e66450. DOI: 10.1371/journal.pone.0066450 .
doi: 10.1371/journal.pone.0066450
Li LP , Yin LK , Tang ZY , 2011. Distribution patterns of the species richness of plants and animals in Xinjiang, China. Arid Zone Research, 28(1): 1-9. DOI: 10.13866/j.azr.2011. 01.001 .
doi: 10.13866/j.azr.2011. 01.001
Li XH , 2013. Using "random forest" for classification and regression. Chinese Journal of Applied Entomology, 50(4): 1190-1197. DOI: 10.7679/j.issn.2095-1353.2013.163 .
doi: 10.7679/j.issn.2095-1353.2013.163
Li YM , Li XP , Sandel B , et al. , 2016. Climate and topography explain range sizes of terrestrial vertebrates. Nature Climate Change, 6(5): 498-502. DOI: 10.1038/nclimate2895 .
doi: 10.1038/nclimate2895
Lindstedt SL , Miller BJ , Buskirk SW , 1986. Home range, time, and body size in mammals. Ecology, 67(2): 413-418. DOI: 10.2307/1938584 .
doi: 10.2307/1938584
Lyu YM , Wang XP , Luo JC , 2020. Geographic patterns of insect diversity across China's nature reserves: The roles of niche conservatism and range overlapping. Ecology and Evolution, 10(3): 3305-3317. DOI: 10.1002/ece3.6097 .
doi: 10.1002/ece3.6097
Ma M , 2001. A Checklist of Birds in Xinjiang, China. Beijing: Science Press.
McGlone MS , Richardson SJ , Jordan GJ , 2010. Comparative biogeography of New Zealand trees: species richness, height, leaf traits and range sizes. New Zealand Journal of Ecology, 34(1): 137-151. DOI: 10.1111/j.1755-0998.2009. 02796.x .
doi: 10.1111/j.1755-0998.2009. 02796.x
Morueta-Holme N , Enquist BJ , Mcgill BJ , et al. , 2013. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 16(12): 1446-1454. DOI: 10.1111/ele.12184 .
doi: 10.1111/ele.12184
Murray NJ , Keith DA , Bland LM , et al. , 2017. The use of range size to assess risks to biodiversity from stochastic threats. Diversity and Distributions, 23(5): 474-483. DOI: 10.1111/ddi.12533 .
doi: 10.1111/ddi.12533
Myers N , Mittermeier RA , Mittermeier CG , et al. , 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853-858. DOI: 10.1038/35002501 .
doi: 10.1038/35002501
Newsome TM , Wolf C , Nimmo DG , et al. , 2020. Constraints on vertebrate range size predict extinction risk. Global Ecology & Biogeography, 29(1): 76-86. DOI: 10.1111/geb. 13009 .
doi: 10.1111/geb. 13009
Nic Lughadha E , Walker BE , Canteiro C , et al. , 2018. The use and misuse of herbarium specimens in evaluating plant extinction risks. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1763): 20170402. DOI: 10.1098/rstb.2017.0402 .
doi: 10.1098/rstb.2017.0402
Nolte D , Boutaud E , Kotze DJ , et al. , 2019. Habitat specialization, distribution range size and body size drive extinction risk in carabid beetles. Biodiversity and Conservation, 28(5): 1267-1283. DOI: 10.1007/s10531-019-01724-9 .
doi: 10.1007/s10531-019-01724-9
Oakwood M , Jurado E , Leishman M , et al. , 1993. Geographic ranges of plant species in relation to dispersal morphology, growth form and diaspore weight. Journal of Biogeography, 20: 563-571. DOI: 10.2307/2845727 .
doi: 10.2307/2845727
Outomuro D , Johansson F , 2019. Wing morphology and migration status, but not body size, habitat or Rapoport's rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography, 42(2): 309-320. DOI: 10.1111/ecog.03757 .
doi: 10.1111/ecog.03757
Shrestha N , Shen XL , Wang ZH , 2019. Biodiversity hotspots are insufficient in capturing range‐restricted species. Conservation Science and Practice, 1(10): e103. DOI: 10.1111/csp2.103 .
doi: 10.1111/csp2.103
Smith AT , Xie Y , Hoffmann RS , et al. , 2010. A Guide to the Mammals of China. Princeton University Press.
Tao SL , Guo QH , Li C , et al. , 2016. Global patterns and determinants of forest canopy height. Ecology, 97(12): 3265-3270. DOI: 10.1002/ecy.1580 .
doi: 10.1002/ecy.1580
Tomiya S , 2013. Body size and extinction risk in terrestrial mammals above the species level. The American Naturalist, 182(6): E196-E214. DOI: 10.1086/673489 .
doi: 10.1086/673489
Tucker MA , Ord TJ , Rogers TL , 2014. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Global Ecology & Biogeography, 23(10): 1105-1114. DOI: 10.1111/geb.12194 .
doi: 10.1111/geb.12194
Wilman H , Belmaker J , Simpson J , et al. , 2014. EltonTraits 1.0: Species‐level foraging attributes of the world's birds and mammals. Ecology, 95(7): 2027. DOI: 10.1890/13-1917.1 .
doi: 10.1890/13-1917.1
Xu WB , Svenning JC , Chen GK , et al. , 2018. Plant geographical range size and climate stability in China: Growth form matters. Global Ecology & Biogeography, 27(1): 506-517. DOI: 10.1111/geb.12710 .
doi: 10.1111/geb.12710
Yu RY , Liu H , Huang JH , et al. , 2018. Patterns of maximum height of endemic woody seed plants in relation to environmental factors in China. Ecosphere, 9(6): e02319. DOI: 10.1002/ecs2.2319 .
doi: 10.1002/ecs2.2319
Zhang J , Nielsen SE , Mao LF , et al. , 2016. Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 104(2): 469-478. DOI: 10.1111/1365-2745.12510 .
doi: 10.1111/1365-2745.12510
[1] YueDan Zhao,XingDong He,Lei Chen,XinFeng Ding,MengQi Li,PingYi Xu,YuBao Gao. Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 371-381.
[2] YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247.
[3] CuiHua Huang,Fei Peng,Itaru Shibata,Jun Luo,Xian Xue,Kinya Akashi,Atsushi Tsunekawa,Tao Wang. Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 81-92.
[4] MengQi Li, XingDong He, XiangXiang Yang, YueDan Zhao, YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340-346.
[5] XinPing Wang, YaFeng Zhang, Rui Hu, YanXia Pan, HaoJie Xu, Wei Shi, YanXia Jin, Hiroshi Yasuda. Revisit of event-based rainfall characteristics at Shapotou area in northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!