Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 179-194.doi: 10.3724/SP.J.1226.2021.20055.

    Next Articles

A concise overview on historical black carbon in ice cores and remote lake sediments in the northern hemisphere

Poonam Thapa1,2,JianZhong Xu1,Bigyan Neupane3()   

  1. 1.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
  • Received:2020-06-16 Accepted:2020-09-29 Online:2021-06-30 Published:2021-07-05
  • Contact: Bigyan Neupane E-mail:bigyan.npn@gmail.com
  • Supported by:
    the National Natural Science Foundation of China(41771079);the Strategic Priority Research Program of the Chinese Academy of Sciences-The Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE)(XDA20040501);the Key Laboratory of Cryospheric Sciences Scientific Research Foundation(SKLCS-ZZ-2019)

Abstract:

Black Carbon (BC), as a driver of environmental change, could significantly impact the snow by accelerating melting and decreasing albedo. Systematic documentation of BC studies is crucial for a better understanding of its spatial and temporal trends. This study reviewed the BC studies in the ice core and remote lake sediments and their sources in the northern hemisphere. The literature surveyed points to around 2.9 to 3.7 times increase of BC in the European Alps and up to a three-fold increase of BC in the Himalayan-Tibetan Plateau (HTP) after the onset of industrialization in Europe and Asia, respectively. BC concentration from Greenland ice core showed seven times increase with an interrupted trend after 1950's. South Asian emissions were dominant in the HTP along with a contribution from the Middle East, whereas Western European and local emissions were responsible for the change in BC concentration in the European Alps. In the Arctic, contributions from North America, Europe and Asia persisted. Similarly, a historical reconstruction of lake sediments records demonstrates the effects of emissions from long-range transport, sediment focusing, local anthropogenic activities, precipitation and total input of flux on the BC concentration.

Key words: black carbon, ice core, lake sediment, Himalayan-Tibetan Plateau, Arctic, European Alps

Figure 1

Map showing the locations of BC. (a) ice core records, and (b) lake sediment records"

Figure 2

Historical BC reconstruction by ice cores in the HTP region"

Figure 3

Historical BC reconstruction in the ice cores of Europe, Greenland, North America and the Caucasus"

Figure 4

Estimated emission from France, Italy, Germany and Switzerland (FIGS), European emission and BC trend of Colle Gnifetti glacier, redrawn from Painter et al. (2013)"

Table 1

BC concentration in ice cores from the Arctic, North America and Europe"

LocationsTime frameMethodsBC concentrations(ng/g)References
Greenland
D41788-2002SP21.7 (<1850), 4 (1851-1951), 2.3 (>1952)McConnell et al. (2007)
Summit1742-2010SP21.0 (<1850), 2.2 (1851-1951), 1.1 (>1952)(Keegan et al., 2014)
NEEM 2011-S11778-1997SP22.9 (< 1850) - 4.9 (1851-1951) - 3.0 (>1952)(Sigl et al., 2013)
Svalbard
Holtedahlfonna1700-2004Thermal optical23 (<1850), 36 (1850-1950), 45(>1950)Ruppel et al. (2014)
2005-2015Thermal optical10.4(Ruppel et al., 2017)
Lomonosovfonna1222-2004SP20.5 (<1850), 1.9 (1851-1950), 2.9 (>1951)(Osmont et al., 2018)
2004-2011SP20.5 (median: 0.3) ± 0.4(Osmont et al., 2018)
North America
Devon Island (Canadian Arctic)1810-1990SP21.5±3.2(Zdanowicz et al., 2018)
Upper Fremont Glacier (UFG98)1750-1990SP20.5-10 (1800-1900), 26 (1910: maximum), 6 (1990)(Chellman et al., 2017)
European Alps
Fiescherhorn1650-2002Thermal optical15 (<1850), 26 (1850-1950), 20 (>1950)Jenk et al. (2006), (Gabbi et al., 2015)
Mt. Elbrus1825-2013SP2(mean: 11.0±11.3) (median:7.2)(Lim et al., 2017)

Figure 5

BC trend in ice core of (a) Svalbard, Holtedahlfonna glacier. The black curve represents the concentration at sample resolution and the blue line the running 10-year averages of sample and (b) Greenland, D4 where black and red lines denote monthly and annual BC concentration, redrawn from Ruppel et al. (2014) and McConnell et al. (2007) respectively"

Table 2

Detailed description of the remote lakes for BC investigation"

LakesLocation (altitude, m a.s.l.)Age SpanBC (mg/g)

Fluxes

(g/(m2?a))

MethodsReference
Selin CoTibetan Plateau, 4,552Surface sedimentsAverage: 0.62-TOR-IMPROVE(Neupane et al., 2020)
GokyoNepal-Himalayas, 4,7501853-20050.04-0.300.02-0.21TOR-IMPROVE(Neupane et al., 2019)
GosainkundaNepal-Himalayas, 4,3901895-20109.06-64.51.35-5.78TOR-IMPROVE(Neupane et al., 2019)
Lingge CoTibetan Plateau, 5,0511869-20110.14-0.630.01-0.14TOR-IMPROVE(Neupane et al., 2019)
QiangyongTibetan Plateau, 4,8661922-20111.53-2.580.86-1.83TOR-IMPROVE(Neupane et al., 2019)
TanglhaTibetan Plateau, 5,1521890-20110.81-1.270.23-0.60TOR-IMPROVE(Neupane et al., 2019)
RanwuTibetan Plateau, 3,8001833-20151.15-2.051.16-10.46TOR-IMPROVE(Neupane et al., 2019)
Nam CoTibetan Plateau, 4,7221857-20090.49-1.090.12-0.44TOR-IMPROVE(Cong et al., 2013)
Pumoyum CoTibetan Plateau1860-20100.46-1.480.09-0.61*TOR-IMPROVE(Lin et al., 2017)
Qinghai(north)North TPTibetan Plateau1775-20030.4-1.450.27-0.98TOR-IMPROVE(Han et al., 2015)
Qinghai(south)North TPTibetan Plateau1775-20030.39-0.610.22-0.36TOR-IMPROVE(Han et al., 2015)
GonghaiShanxi, North China1780-20130.66-4.620.1-0.8TOR-IMPROVE(Zhan et al., 2019)
MayinghaiShanxi, North China1789-20130.98-4.200.2-0.9TOR-IMPROVE(Zhan et al., 2019)
DaihaiInner Mongolia, North China1800-20010.52-4.900.6-7TOR-IMPROVE(Han et al., 2010)
Fennoscandian ArcticNorthern Finland, 144-6791830-20120.52-5.10.02-0.5CTO-375(Ruppel et al., 2015)
West Pine PondNew York State, 4841835-20050.6-80.026-0.77TOT-STN(Husain et al., 2008)
Slovenia Alpine LakesAlps, Slovenia, 1,383-2,1501800-19981-110.3-1.3CTO-375(Muri et al., 2002b)
EngstlenAlps, Switzerland, 1,8501963-20081.5-3.32.1-7.4CTO-375(Bogdal et al., 2011)
Stora FrillingenAspvreten, Sweden1000-20051.82-2.950.05-0.40CTO-375(Elmquist et al., 2007)

Figure 6

Historical BC reconstruction in the lake sediment cores of (a) the HTP, (b) Fennoscandian Arctic, (c) USA and (d) Europe"

Figure 7

Historical BC emission data, redrawn from Bond et al. (2007)"

Andreae MO, 2001. The dark side of aerosols. Nature, 409(6821): 671. DOI: 10.1038/35055640.
doi: 10.1038/35055640
Arctic Climate Impact Assessment (ACIA), 2005. Arctic Climate Impact Assessment. Cambridge, U.K.: Cambridge University Press, pp. 1042.
Baron RE, Montgomery WD, Tuladhar SD, 2009. An Analysis of Black Carbon Mitigation as A Response to Climate Change. Copenhagen: Copenhagen Consensus Center.
Bogdal C, Bucheli TD, Agarwal T, et al., 2011. Contrasting temporal trends and relationships of total organic carbon, black carbon, and polycyclic aromatic hydrocarbons in rural low-altitude and remote high-altitude lakes. Journal of environmental monitoring, 13(5): 1316-1326. DOI: 10. 1039/c0em00655f.
doi: 10. 1039/c0em00655f
Bonasoni P, Laj P, Marinoni A, et al., 2010. Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics, 10(15): 7515-7531. DOI: 10.5194/acpd-10-4823-2010.
doi: 10.5194/acpd-10-4823-2010
Bond TC, Bhardwaj E, Dong R, et al., 2007. Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850-2000. Global Biogeochemical Cycles, 21(2): GB2018. DOI: 10.1029/2006GB002840.
doi: 10.1029/2006GB002840
Bond TC, Doherty SJ, Fahey D, et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11): 5380-5552. DOI: 10.1002/jgrd.50171.
doi: 10.1002/jgrd.50171
Boutron CF, 1995. Historical reconstruction of the earth's past atmospheric environment from Greenland and Antarctic snow and ice cores. Environmental Reviews, 3(1): 1-28. DOI: 10.1139/a95-001.
doi: 10.1139/a95-001
Chellman N, McConnell J, Heyvaert A, et al., 2018. Incandescence-based single-particle method for black carbon quantification in lake sediment cores. Limnology and Oceanography: Methods, 16(11): 711-721. DOI: 10.1002/lom3.10276.
doi: 10.1002/lom3.10276
Chellman N, McConnell JR, Arienzo M, et al., 2017. Reassessment of the upper Fremont glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology. Environmental Science & Technology, 51(8): 4230-4238. DOI: 10.1021/acs.est.6b06574.
doi: 10.1021/acs.est.6b06574
Chen XT, Kang SC, Cong ZY, et al., 2018. Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmospheric Chemistry & Physics, 18(17): 12859-12875. DOI: 10.5194/acp-18-12859-2018.
doi: 10.5194/acp-18-12859-2018
Chýlek P, Johnson B, Damiano P, et al., 1995. Biomass burning record and black carbon in the GISP2 ice core. Geophysical Research Letters, 22(2): 89-92. DOI: 10.1029/94GL02841
doi: 10.1029/94GL02841
Chýlek P, Srivastava V, Cahenzli L, et al., 1987. Aerosol and graphitic carbon content of snow. Journal of Geophysical Research: Atmospheres, 92(D8): 9801-9809. DOI: 10.1029/JD092iD08p09801
doi: 10.1029/JD092iD08p09801
Cong ZY, Kang SC, Gao S, et al., 2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environmental science & technology, 47(6): 2579-2586. DOI: 10.1021/es3048202
doi: 10.1021/es3048202
Dou TF, Xiao CD, 2016. An overview of black carbon deposition and its radiative forcing over the Arctic. Advances in Climate Change Research, 7(3): 115-122. DOI: 10.1016/j.accre.2016.10.003.
doi: 10.1016/j.accre.2016.10.003
Druffel ER, 2004. Comments on the importance of black carbon in the global carbon cycle. DOI: 10.1029/2004GL019512.
doi: 10.1029/2004GL019512
Elmquist M, Zencak Z, Gustafsson Ö, 2007. A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden. Environmental Science & Technology, 41(20): 6926-6932. DOI: 10.1021/es070546m.
doi: 10.1021/es070546m
Fagerli H, Legrand M, Preunkert S, et al., 2007. Modeling historical long‐term trends of sulfate, ammonium, and elemental carbon over Europe: A comparison with ice core records in the Alps. Journal of Geophysical Research: Atmospheres, 112: D23S13. DOI: 10.1029/2006JD008044.
doi: 10.1029/2006JD008044
Flanner MG, Zender CS, Randerson JT, et al., 2007. Present‐day climate forcing and response from black carbon in snow. Journal of Geophysical Research: Atmospheres, 112: D11202. DOI: 10.1029/2006JD008003.
doi: 10.1029/2006JD008003
Gabbi J, Huss M, Bauder A, et al., 2015. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. The Cryosphere, 9(4): 1385-1400. DOI: 10.5194/tc-9-1385-2015.
doi: 10.5194/tc-9-1385-2015
Gao C, Knorr KH, Yu Z, et al., 2016. Black carbon deposition and storage in peat soils of the Changbai Mountain, China. Geoderma, 273: 98-105. DOI: 10.1016/j.geoderma.2016. 03.021.
doi: 10.1016/j.geoderma.2016. 03.021
Ghan SJ, Penner JE, 1992. Smoke, effect on climate. Encyclopedia of Earth System Science, 4: 191-198.
Goldberg ED, 1985. Black carbon in the environment: properties and distribution. John Wiley & Sons, New York.
Goldberg ED, Hodge VF, Griffin JJ, et al., 1981. Impact of fossil fuel combustion on the sediments of Lake Michigan. Environmental science & technology, 15(4): 466-471. DOI: 10.1021/es00086a013.
doi: 10.1021/es00086a013
Grahame TJ, Klemm R, Schlesinger RB, 2014. Public health and components of particulate matter: the changing assessment of black carbon. Journal of the Air & Waste Management Association, 64(6): 620-660. DOI: 10.1080/10962247.2014.912692
doi: 10.1080/10962247.2014.912692
Griffin JJ, Goldberg ED, 1983. Impact of fossil fuel combustion on sediments of Lake Michigan: a reprise. Environmental science & technology, 17(4): 244-245. DOI: 10. 1021/es00110a013.
doi: 10. 1021/es00110a013
Grove JM, 2004. Little Ice Ages: Ancient and Modern. Routledge, New York.
Gustafsson Ö, Bucheli TD, Kukulska Z, et al., 2001. Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 15(4): 881-890. DOI: 10.1029/2000GB001380.
doi: 10.1029/2000GB001380
Gustafsson Ö, Haghseta F, Chan C, et al., 1996. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environmental Science & Technology, 31(1): 203-209. DOI: 10.1021/es960317s.
doi: 10.1021/es960317s
Hammer C, Mayewski PA, Peel D, et al., 1997. Preface [to special section on Greenland Summit Ice Cores]. Journal of Geophysical Research: Oceans, 102(C12): 26315-26316. DOI: 10.1029/97JC02835.
doi: 10.1029/97JC02835
Hammes K, Schmidt MW, Smernik RJ, et al., 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles, 21(3): GB3016. DOI: 10.1029/2006GB002914.
doi: 10.1029/2006GB002914
Han Y, An Z, Marlon JR, et al., 2020. Asian inland wildfires driven by glacial-interglacial climate change. Proceedings of the National Academy of Sciences, 117(10): 5184-5189. DOI: 10.1073/pnas.1822035117.
doi: 10.1073/pnas.1822035117
Han Y, Cao J, An Z, et al., 2007. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere, 69(4): 526-533. DOI: 10.1016/j.chemosphere.2007.03.024.
doi: 10.1016/j.chemosphere.2007.03.024
Han Y, Cao J, Jin Z, et al., 2010. Comparison of char and soot variations in sediments from lakes Daihai and Taihu. Quaternary Sciences, 30(3): 550-558. (in Chinese)
Han Y, Wei C, Bandowe B, et al., 2015. Elemental carbon and polycyclic aromatic compounds in a 150-year sediment core from Lake Qinghai, Tibetan Plateau, China: influence of regional and local sources and transport pathways. Environmental science & technology, 49(7): 4176-4183. DOI: 10.1021/es504568m.
doi: 10.1021/es504568m
Hites RA, Laflamme RE, Farrington JW, 1977. Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science, 198(4319): 829-831. DOI: 10.1126/science.198. 4319.829.
doi: 10.1126/science.198. 4319.829
Hodson AJ, 2014. Understanding the dynamics of black carbon and associated contaminants in glacial systems. Wiley Interdisciplinary Reviews: Water, 1(2): 141-149. DOI: 10.1002/wat2.1016.
doi: 10.1002/wat2.1016
Husain L, Khan A, Ahmed T, et al., 2008. Trends in atmospheric elemental carbon concentrations from 1835 to 2005. Journal of Geophysical Research: Atmospheres, 113: D13102. DOI: 10.1029/2007JD009398.
doi: 10.1029/2007JD009398
Janssen N, Gerlofs-Nijland M, Lanki T, et al., 2012. Health effects of black carbon, The WHO European Centre for Environment and Health, Bonn, Germany. World Health Organisation Regional Office for Europe, Copenhagen, Denmark.
Jenk T, Szidat S, Schwikowski M, et al., 2006. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650-1940). Atmospheric chemistry and physics, 6(12): 5381-5390. DOI: 10.5194/acp-6-5381-2006.
doi: 10.5194/acp-6-5381-2006
Jenkins M, Kaspari S, Kang SC, et al., 2016. Tibetan plateau geladaindong black carbon ice core record (1843-1982): recent increases due to higher emissions and lower snow accumulation. Advances in Climate Change Research, 7(3): 132-138. DOI: 10.1016/j.accre.2016.07.002.
doi: 10.1016/j.accre.2016.07.002
Kang S, Huang J, Wang F, et al., 2016. Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. Environmental science & technology, 50(6): 2859-2869. DOI: 10.1021/acs.est.5b04172
doi: 10.1021/acs.est.5b04172
Kang S, Zhang Q, Qian Y, et al., 2019. Linking Atmospheric Pollution to Cryospheric Change in the Third Pole Region: Current Progresses and Future Prospects. National Science Review, 6(4): 796-809. DOI: 10.1093/nsr/nwz031
doi: 10.1093/nsr/nwz031
Kaspari S, Pittenger D, Jenk T, et al., 2020. Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158‐m‐Long Ice Core. Journal of Geophysical Research: Atmospheres, 125(11): e2019JD031126. DOI: 10.1029/2019JD031126.
doi: 10.1029/2019JD031126
Kaspari SD, Schwikowski M, Gysel M, et al., 2011. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning1860-2000 AD. Geophysical Research Letters, 38(4): L04703. DOI: 10.1029/2010GL046096.
doi: 10.1029/2010GL046096
Keegan KM, Albert MR, McConnell JR, et al., 2014. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences, 111(22): 7964-7967. DOI: 10.1073/pnas.1405397111.
doi: 10.1073/pnas.1405397111
Khan A, Swami K, Ahmed T, et al., 2009. Determination of elemental carbon in lake sediments using a thermal-optical transmittance (TOT) method. Atmospheric Environment, 43(38): 5989-5995. DOI: 10.1016/j.atmosenv.2009.08.030.
doi: 10.1016/j.atmosenv.2009.08.030
Koch D, Bauer SE, Del Genio A, et al., 2011. Coupled aerosol-chemistry-climate twentieth-century transient model investigation: Trends in short-lived species and climate responses. Journal of Climate, 24(11): 2693-2714. DOI: 10.1175/2011JCLI3582.1.
doi: 10.1175/2011JCLI3582.1
Koch D, Hansen J, 2005. Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. Journal of Geophysical Research: Atmospheres, 110: D04204. DOI: 10.1029/2004JD005296.
doi: 10.1029/2004JD005296
Kopacz M, Mauzerall D, Wang J, et al., 2011. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 11(6): 2837-2852. DOI: 10.5194/acp-11-2837-2011.
doi: 10.5194/acp-11-2837-2011
Lack DA, Moosmüller H, McMeeking GR, et al., 2014. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Analytical and bioanalytical chemistry, 406(1): 99-122. DOI: 10.1007/s00216-013-7402-3.
doi: 10.1007/s00216-013-7402-3
Lavanchy V, Gäggeler H, Schotterer U, et al., 1999. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). Journal of Aerosol Science, 30: S611-S612. DOI: 10.1029/1999JD900408.
doi: 10.1029/1999JD900408
Legrand M, Preunkert S, Schock M, et al., 2007. Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, acids carboxylic, and cellulose) derived from Alpine ice cores. Journal of Geophysical Research: Atmospheres, 112: D23S11. DOI: 10.1029/2006JD008080.
doi: 10.1029/2006JD008080
Li C, Bosch C, Kang S, et al., 2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature communications, 7: 12574. DOI: 10.1038/ncomms12574.
doi: 10.1038/ncomms12574
Lim S, Faïn X, Ginot P, et al., 2017. Black carbon variability since preindustrial times in the eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, ice cores. Atmos. Chem. Phys, 17(5): 3489-3505. DOI: 10.5194/acp-17-3489-2017.
doi: 10.5194/acp-17-3489-2017
Lim S, Faïn X, Zanatta M, et al., 2014. Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement. Atmospheric Measurement Techniques, 7(10): 3307-3324. DOI: 10.5194/amt-7-3307-2014.
doi: 10.5194/amt-7-3307-2014
Lin H, Wang X, Gong P, et al., 2017. The influence of climate change on the accumulation of polycyclic aromatic hydrocarbons, black carbon and mercury in a shrinking remote lake of the southern Tibetan Plateau. The Science of the total environment, 601: 1814-1823. DOI: 10.1016/j.scitotenv.2017.06.038.
doi: 10.1016/j.scitotenv.2017.06.038
Masiello C, Druffel E, 1998. Black carbon in deep-sea sediments. Science, 280(5371): 1911-1913. DOI: 10.1126/science.280.5371.1911.
doi: 10.1126/science.280.5371.1911
McConnell JR, 2010. New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation. AtmEn, 44(21): 2665-2666. DOI: 10.1016/j.atmosenv.2010.04.004.
doi: 10.1016/j.atmosenv.2010.04.004
McConnell JR, Edwards R, Kok GL, et al., 2007. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317(5843): 1381-1384. DOI: 10.1126/science.1144856.
doi: 10.1126/science.1144856
Menon S, Koch D, Beig G, et al., 2010. Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics, 10(10): 4559-4571. DOI: 10.5194/acp-10-4559-2010.
doi: 10.5194/acp-10-4559-2010
Ming J, Cachier H, Xiao C, et al., 2008. Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmospheric Chemistry and Physics, 8(5): 1343-1352. DOI: 10.5194/acp-8-1343-2008.
doi: 10.5194/acp-8-1343-2008
Ming J, Xiao C, Cachier H, et al., 2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research, 92(1): 114-123. DOI: 10.1016/j.atmosres.2008.09.007.
doi: 10.1016/j.atmosres.2008.09.007
Ming J, Xiao C, Du Z, et al., 2013. An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance. Advances in Water Resources, 55: 80-87. DOI: 10.1016/j.advwatres.2012.05.015.
doi: 10.1016/j.advwatres.2012.05.015
Muri G, Cermelj B, Faganeli J, et al., 2002a. Determination of black carbon in lacustrine and coastal marine sediments by thermal oxidation. Acta Chimica Slovenica, 49(1): 29-42. DOI: 10.1126/science.129.3340.14.
doi: 10.1126/science.129.3340.14
Muri G, Cermelj B, Faganeli J, et al., 2002b. Black carbon in Slovenian alpine lacustrine sediments. Chemosphere, 46(8): 1225-1234. DOI: 10.1016/S0045-6535(01)00295-8.
doi: 10.1016/S0045-6535(01)00295-8
Muri G, Wakeham SG, Faganeli J, 2003. Polycyclic aromatic hydrocarbons and black carbon in sediments of a remote alpine lake (Lake Planina, northwest Slovenia). Environmental toxicology and chemistry, 22(5): 1009-1016. DOI: 10.1002/etc.5620220508.
doi: 10.1002/etc.5620220508
Neff PD, Steig EJ, Clark DH, et al., 2012. Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. Journal of Glaciology, 58(212): 1165-1175. DOI:10.3189/2012JoG12J078.
doi: 10.3189/2012JoG12J078
Neupane B, Kang S, Chen P, et al., 2019. Historical Black Carbon Reconstruction from the Lake Sediments of the Himalayan-Tibetan Plateau. Environmental Science & Technology, 53(10): 5641-5651. DOI: 10.1021/acs.est.8b07025.
doi: 10.1021/acs.est.8b07025
Neupane B, Wang J, Kang S, et al., 2020. Black carbon and mercury in the surface sediments of Selin Co, central Tibetan Plateau: Covariation with total carbon. Science of The Total Environment, 721: 137752. DOI: 10.1016/j.scitotenv. 2020.137752
doi: 10.1016/j.scitotenv. 2020.137752
Osmont D, Wendl IA, Schmidely L, et al., 2018. An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard. Atmospheric Chemistry and Physics, 18(17): 12777-12795. DOI: 10.5194/acp-18-12777-2018.
doi: 10.5194/acp-18-12777-2018
Painter TH, Flanner MG, Kaser G, et al., 2013. End of the Little Ice Age in the Alps forced by industrial black carbon. Proceedings of the national academy of sciences, 110(38): 15216-15221. DOI: 10.1073/pnas.1302570110.
doi: 10.1073/pnas.1302570110
Petzold A, Ogren JA, Fiebig M, et al., 2013. Recommendations for reporting" black carbon" measurements. Atmospheric Chemistry and Physics, 13(16): 8365-8379. DOI: 10.5194/acp-13-8365-2013.
doi: 10.5194/acp-13-8365-2013
Qian Y, Yasunari TJ, Doherty SJ, et al., 2015. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 32(1): 64-91. DOI: 10.1007/s00376-014-0010-0.
doi: 10.1007/s00376-014-0010-0
Ramanathan, Carmichael G, 2008. Global and regional climate changes due to black carbon. Nature geoscience, 1(4): 221-227. DOI: 10.1038/ngeo156.
doi: 10.1038/ngeo156
Rose NL, Ruppel M, 2015. Environmental archives of contaminant particles. Environmental Contaminants. In: J.
M.
Blais, Rosen M.R., Smol (Eds J.P..), Environmental Contaminants: Using Natural Archives to Track Sources and Long-term Trends of Pollution. Developments in Paleoenvironmental Research Volume 18, Springer, Dordecht (2015), pp. 187-221.
Ruppel M, Isaksson E, Ström J, et al., 2014. Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard). Atmospheric Chemistry and Physics, 14(20): 11447-11460. DOI: 10.5194/acp-14-11447-2014.
doi: 10.5194/acp-14-11447-2014
Ruppel M, Lund MT, Grythe H, et al., 2013. Comparison of spheroidal carbonaceous particle data with modelled atmospheric black carbon concentration and deposition and air mass sources in Northern Europe, 1850-2010. Advances in Meteorology, ID393926. DOI: 10.1155/2013/393926.
doi: 10.1155/2013/393926
Ruppel MM, Or Gustafsson, Rose NL, et al., 2015. Spatial and temporal patterns in black carbon deposition to dated Fennoscandian Arctic Lake sediments from 1830 to 2010. Environmental science & technology, 49(24): 13954-13963. DOI: 10.1021/acs.est.5b01779.
doi: 10.1021/acs.est.5b01779
Ruppel MM, Soares J, Gallet J-C, et al., 2017. Do contemporary (1980-2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?Atmospheric Chemistry and Physics, 17(20): 12779-12795. DOI: 10.5194/acp-17-12779-2017.
doi: 10.5194/acp-17-12779-2017
Salako GO, Hopke PK, Cohen DD, et al., 2012. Exploring the variation between EC and BC in a variety of locations. Aerosol and Air Quality Research, 12(1): 1-7. DOI: 10. 4209/aaqr.2011.09.0150.
doi: 10. 4209/aaqr.2011.09.0150
Saldarriaga JG, West DC, 1986. Holocene fires in the northern Amazon basin. Quaternary Research, 26(3): 358-366.
Shrestha G, Traina SJ, Swanston CW, 2010. Black carbon's properties and role in the environment: a comprehensive review. Sustainability, 2(1): 294-320. DOI: 10.3390/su2010294.
doi: 10.3390/su2010294
Sigl M, Abram N, Gabrieli J, et al., 2018. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers.The Cryosphere, 12: 3311-3331. DOI: 10.5194/tc-12-3311-2018.
doi: 10.5194/tc-12-3311-2018
Sigl M, McConnell JR, Layman L, et al., 2013. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research: Atmospheres, 118(3): 1151-1169. DOI: 10.1029/2012JD018603.
doi: 10.1029/2012JD018603
Stohl A, 2006. Characteristics of atmospheric transport into the Arctic troposphere. Journal of Geophysical Research: Atmospheres, 111: D02305. DOI: 10.1029/2005JD006888.
doi: 10.1029/2005JD006888
Thevenon F, Anselmetti FS, Bernasconi SM, et al., 2009. Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. Journal of Geophysical Research: Atmospheres, 114: D17102. DOI: 10.1029/2008JD011490.
doi: 10.1029/2008JD011490
Wang Q, Jacob DJ, Fisher JA, et al., 2011. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmospheric Chemistry and Physics, 11(23): 12453-12473. DOI: 10.5194/acp-11-12453-2011.
doi: 10.5194/acp-11-12453-2011
Wik M, Natkanski J, 1990. British and Scandinavian lake sediment records of carbonaceous particles from fossil-fuel combustion. Philosophical Transactions of the Royal Society (Series D), 327(1240): 319-323. DOI: 10.1098/rstb. 1990.0068.
doi: 10.1098/rstb. 1990.0068
Xu B, Cao J, Hansen J, et al., 2009a. Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106(52): 22114-22118. DOI: 10.1073/pnas.0910444106.
doi: 10.1073/pnas.0910444106
Xu BQ, Wang M, Joswiak DR, et al., 2009b. Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. Journal of Geophysical Research: Atmospheres, 114: D17209. DOI: 10.1029/2008JD011510.
doi: 10.1029/2008JD011510
Xu H, Ai L, Tan L, et al., 2006. Geochronology of a surface core in the northern basin of Lake Qinghai: Evidence from 210 Pb and 137 Cs radionuclides. Chinese Journal of Geochemistry, 25(4): 301-306. DOI: 10.1007/s11631-006-0301-y.
doi: 10.1007/s11631-006-0301-y
Yang J, Kang S, Ji Z, et al., 2018. Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions. Journal of Geophysical Research: Atmospheres, 123(2): 671-692. DOI: 10. 1002/2017JD027282.
doi: 10. 1002/2017JD027282
Yao TD, Pu J, Lu A, et al., 2007. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research, 39(4): 642-650. DOI: 10.1657/1523-0430(07-510)[yao]2.0.co;2.
doi: 10.1657/1523-0430(07-510
Yao TD, Thompson LG, Mosbrugger V, et al., 2012. Third pole environment (TPE). Environmental Development, 3: 52-64. DOI: 10.1016/j.envdev.2012.04.002.
doi: 10.1016/j.envdev.2012.04.002
Zdanowicz C, Proemse B, Edwards P, et al., 2018. Historical black carbon deposition in the Canadian High Arctic: a> 250-year long ice-core record from Devon Island. Atmospheric Chemistry and Physics, 18(16): 12345-12361. DOI: 10.5194/acp-18-12345-2018.
doi: 10.5194/acp-18-12345-2018
Zennaro P, Kehrwald N, McConnell JR, et al., 2014. Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Climate of the Past, 10(5): 1905-1924. DOI: 10.5194/cp-10-1905-2014.
doi: 10.5194/cp-10-1905-2014
Zhan C, Wan D, Han Y, et al., 2019. Historical variation of black carbon and PAHs over the last ~200 years in central North China: Evidence from lake sediment records. Science of the Total Environment, 690: 891-899. DOI: 10. 1016/j.scitotenv.2019.07.008.
doi: 10. 1016/j.scitotenv.2019.07.008
Zhang Y, Kang S, Li C, et al., 2017. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of The Total Environment, 607: 1237-1249. DOI: 10.1016/j.scitotenv.2017.07.100.
doi: 10.1016/j.scitotenv.2017.07.100
[1] ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379.
[2] ZhongMing Guo,NingLian Wang,BaoShou Shen,ZhuJun Gu,HongBo Wu,YuWei Wu,AnAn Chen,Xi Jiang. Quantitative estimation of the influence factors on snow/ice albedo [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 83-94.
[3] LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326.
[4] ChuanJin Li,JiaWen Ren,CunDe Xiao,MingHu Ding,AiHong Xie,ZhiHeng Du,XiangYu Ma,DaHe Qin. Accumulation and geochemical evidence for the Little Ice Age episode in eastern Antarctica [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 50-61.
[5] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369-378.
[6] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[7] XingXing Jiang, ShuGui Hou, YuanSheng Li, HongXi Pang, Rong Hua, Mayewski Paul, Sneed Sharon, ChunLei An, Handley Michael, Ke Liu, WangBin Zhang. Spatial variations of Pb, As, and Cu in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 219-231.
[8] WeiZhen Sun, XiaoQing Cui, GuangMing Yu. Source and environmental significance of oxalate in Laohugou Glacier No. 12, Qilian Mountains, Western China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 126-133.
[9] JianZhong Xu, Amanda Grannas, CunDe Xiao, ZhiHeng Du, Amanda Willoughby, Patrick Hatcher, YanQing An. High-resolution mass spectrometric characterization of dissolved organic matter from warm and cold periods in the NEEM ice core [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 38-46.
[10] YuLan Zhang, ShiChang Kang, Min Xu, Michael Sprenger, TanGuang Gao, ZhiYuan Cong, ChaoLiu Li, JunMing Guo, ZhiQiang Xu, Yang Li, Gang Li, XiaoFei Li, YaJun Liu, HaiDong Han. Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 97-111.
[11] ZhiCai Li, Yan Song, Wei Zhang, Jing Zhang, ZiNiu Xiao. Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 524-535.
[12] Stuart A. Harris. Probable effects of heat advection on the adjacent environment during oil production at Prudhoe Bay, Alaska [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 451-460.
[13] WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006 [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 367-377.
[14] ZhongMing Guo, NingLian Wang, XiaoBo Wu, HongBo Wu, YuWei Wu. Estimate the influence of snow grain size and black carbon on albedo [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 111-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .