Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 179-194.doi: 10.3724/SP.J.1226.2021.20055.
Poonam Thapa1,2,JianZhong Xu1,Bigyan Neupane3()
Andreae MO, 2001. The dark side of aerosols. Nature, 409(6821): 671. DOI: 10.1038/35055640.
doi: 10.1038/35055640 |
|
Arctic Climate Impact Assessment (ACIA), 2005. Arctic Climate Impact Assessment. Cambridge, U.K.: Cambridge University Press, pp. 1042. | |
Baron RE, Montgomery WD, Tuladhar SD, 2009. An Analysis of Black Carbon Mitigation as A Response to Climate Change. Copenhagen: Copenhagen Consensus Center. | |
Bogdal C, Bucheli TD, Agarwal T, et al., 2011. Contrasting temporal trends and relationships of total organic carbon, black carbon, and polycyclic aromatic hydrocarbons in rural low-altitude and remote high-altitude lakes. Journal of environmental monitoring, 13(5): 1316-1326. DOI: 10. 1039/c0em00655f.
doi: 10. 1039/c0em00655f |
|
Bonasoni P, Laj P, Marinoni A, et al., 2010. Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics, 10(15): 7515-7531. DOI: 10.5194/acpd-10-4823-2010.
doi: 10.5194/acpd-10-4823-2010 |
|
Bond TC, Bhardwaj E, Dong R, et al., 2007. Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850-2000. Global Biogeochemical Cycles, 21(2): GB2018. DOI: 10.1029/2006GB002840.
doi: 10.1029/2006GB002840 |
|
Bond TC, Doherty SJ, Fahey D, et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11): 5380-5552. DOI: 10.1002/jgrd.50171.
doi: 10.1002/jgrd.50171 |
|
Boutron CF, 1995. Historical reconstruction of the earth's past atmospheric environment from Greenland and Antarctic snow and ice cores. Environmental Reviews, 3(1): 1-28. DOI: 10.1139/a95-001.
doi: 10.1139/a95-001 |
|
Chellman N, McConnell J, Heyvaert A, et al., 2018. Incandescence-based single-particle method for black carbon quantification in lake sediment cores. Limnology and Oceanography: Methods, 16(11): 711-721. DOI: 10.1002/lom3.10276.
doi: 10.1002/lom3.10276 |
|
Chellman N, McConnell JR, Arienzo M, et al., 2017. Reassessment of the upper Fremont glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology. Environmental Science & Technology, 51(8): 4230-4238. DOI: 10.1021/acs.est.6b06574.
doi: 10.1021/acs.est.6b06574 |
|
Chen XT, Kang SC, Cong ZY, et al., 2018. Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmospheric Chemistry & Physics, 18(17): 12859-12875. DOI: 10.5194/acp-18-12859-2018.
doi: 10.5194/acp-18-12859-2018 |
|
Chýlek P, Johnson B, Damiano P, et al., 1995. Biomass burning record and black carbon in the GISP2 ice core. Geophysical Research Letters, 22(2): 89-92. DOI: 10.1029/94GL02841
doi: 10.1029/94GL02841 |
|
Chýlek P, Srivastava V, Cahenzli L, et al., 1987. Aerosol and graphitic carbon content of snow. Journal of Geophysical Research: Atmospheres, 92(D8): 9801-9809. DOI: 10.1029/JD092iD08p09801
doi: 10.1029/JD092iD08p09801 |
|
Cong ZY, Kang SC, Gao S, et al., 2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environmental science & technology, 47(6): 2579-2586. DOI: 10.1021/es3048202
doi: 10.1021/es3048202 |
|
Dou TF, Xiao CD, 2016. An overview of black carbon deposition and its radiative forcing over the Arctic. Advances in Climate Change Research, 7(3): 115-122. DOI: 10.1016/j.accre.2016.10.003.
doi: 10.1016/j.accre.2016.10.003 |
|
Druffel ER, 2004. Comments on the importance of black carbon in the global carbon cycle. DOI: 10.1029/2004GL019512.
doi: 10.1029/2004GL019512 |
|
Elmquist M, Zencak Z, Gustafsson Ö, 2007. A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden. Environmental Science & Technology, 41(20): 6926-6932. DOI: 10.1021/es070546m.
doi: 10.1021/es070546m |
|
Fagerli H, Legrand M, Preunkert S, et al., 2007. Modeling historical long‐term trends of sulfate, ammonium, and elemental carbon over Europe: A comparison with ice core records in the Alps. Journal of Geophysical Research: Atmospheres, 112: D23S13. DOI: 10.1029/2006JD008044.
doi: 10.1029/2006JD008044 |
|
Flanner MG, Zender CS, Randerson JT, et al., 2007. Present‐day climate forcing and response from black carbon in snow. Journal of Geophysical Research: Atmospheres, 112: D11202. DOI: 10.1029/2006JD008003.
doi: 10.1029/2006JD008003 |
|
Gabbi J, Huss M, Bauder A, et al., 2015. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. The Cryosphere, 9(4): 1385-1400. DOI: 10.5194/tc-9-1385-2015.
doi: 10.5194/tc-9-1385-2015 |
|
Gao C, Knorr KH, Yu Z, et al., 2016. Black carbon deposition and storage in peat soils of the Changbai Mountain, China. Geoderma, 273: 98-105. DOI: 10.1016/j.geoderma.2016. 03.021.
doi: 10.1016/j.geoderma.2016. 03.021 |
|
Ghan SJ, Penner JE, 1992. Smoke, effect on climate. Encyclopedia of Earth System Science, 4: 191-198. | |
Goldberg ED, 1985. Black carbon in the environment: properties and distribution. John Wiley & Sons, New York. | |
Goldberg ED, Hodge VF, Griffin JJ, et al., 1981. Impact of fossil fuel combustion on the sediments of Lake Michigan. Environmental science & technology, 15(4): 466-471. DOI: 10.1021/es00086a013.
doi: 10.1021/es00086a013 |
|
Grahame TJ, Klemm R, Schlesinger RB, 2014. Public health and components of particulate matter: the changing assessment of black carbon. Journal of the Air & Waste Management Association, 64(6): 620-660. DOI: 10.1080/10962247.2014.912692
doi: 10.1080/10962247.2014.912692 |
|
Griffin JJ, Goldberg ED, 1983. Impact of fossil fuel combustion on sediments of Lake Michigan: a reprise. Environmental science & technology, 17(4): 244-245. DOI: 10. 1021/es00110a013.
doi: 10. 1021/es00110a013 |
|
Grove JM, 2004. Little Ice Ages: Ancient and Modern. Routledge, New York. | |
Gustafsson Ö, Bucheli TD, Kukulska Z, et al., 2001. Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 15(4): 881-890. DOI: 10.1029/2000GB001380.
doi: 10.1029/2000GB001380 |
|
Gustafsson Ö, Haghseta F, Chan C, et al., 1996. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environmental Science & Technology, 31(1): 203-209. DOI: 10.1021/es960317s.
doi: 10.1021/es960317s |
|
Hammer C, Mayewski PA, Peel D, et al., 1997. Preface [to special section on Greenland Summit Ice Cores]. Journal of Geophysical Research: Oceans, 102(C12): 26315-26316. DOI: 10.1029/97JC02835.
doi: 10.1029/97JC02835 |
|
Hammes K, Schmidt MW, Smernik RJ, et al., 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles, 21(3): GB3016. DOI: 10.1029/2006GB002914.
doi: 10.1029/2006GB002914 |
|
Han Y, An Z, Marlon JR, et al., 2020. Asian inland wildfires driven by glacial-interglacial climate change. Proceedings of the National Academy of Sciences, 117(10): 5184-5189. DOI: 10.1073/pnas.1822035117.
doi: 10.1073/pnas.1822035117 |
|
Han Y, Cao J, An Z, et al., 2007. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere, 69(4): 526-533. DOI: 10.1016/j.chemosphere.2007.03.024.
doi: 10.1016/j.chemosphere.2007.03.024 |
|
Han Y, Cao J, Jin Z, et al., 2010. Comparison of char and soot variations in sediments from lakes Daihai and Taihu. Quaternary Sciences, 30(3): 550-558. (in Chinese) | |
Han Y, Wei C, Bandowe B, et al., 2015. Elemental carbon and polycyclic aromatic compounds in a 150-year sediment core from Lake Qinghai, Tibetan Plateau, China: influence of regional and local sources and transport pathways. Environmental science & technology, 49(7): 4176-4183. DOI: 10.1021/es504568m.
doi: 10.1021/es504568m |
|
Hites RA, Laflamme RE, Farrington JW, 1977. Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science, 198(4319): 829-831. DOI: 10.1126/science.198. 4319.829.
doi: 10.1126/science.198. 4319.829 |
|
Hodson AJ, 2014. Understanding the dynamics of black carbon and associated contaminants in glacial systems. Wiley Interdisciplinary Reviews: Water, 1(2): 141-149. DOI: 10.1002/wat2.1016.
doi: 10.1002/wat2.1016 |
|
Husain L, Khan A, Ahmed T, et al., 2008. Trends in atmospheric elemental carbon concentrations from 1835 to 2005. Journal of Geophysical Research: Atmospheres, 113: D13102. DOI: 10.1029/2007JD009398.
doi: 10.1029/2007JD009398 |
|
Janssen N, Gerlofs-Nijland M, Lanki T, et al., 2012. Health effects of black carbon, The WHO European Centre for Environment and Health, Bonn, Germany. World Health Organisation Regional Office for Europe, Copenhagen, Denmark. | |
Jenk T, Szidat S, Schwikowski M, et al., 2006. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650-1940). Atmospheric chemistry and physics, 6(12): 5381-5390. DOI: 10.5194/acp-6-5381-2006.
doi: 10.5194/acp-6-5381-2006 |
|
Jenkins M, Kaspari S, Kang SC, et al., 2016. Tibetan plateau geladaindong black carbon ice core record (1843-1982): recent increases due to higher emissions and lower snow accumulation. Advances in Climate Change Research, 7(3): 132-138. DOI: 10.1016/j.accre.2016.07.002.
doi: 10.1016/j.accre.2016.07.002 |
|
Kang S, Huang J, Wang F, et al., 2016. Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. Environmental science & technology, 50(6): 2859-2869. DOI: 10.1021/acs.est.5b04172
doi: 10.1021/acs.est.5b04172 |
|
Kang S, Zhang Q, Qian Y, et al., 2019. Linking Atmospheric Pollution to Cryospheric Change in the Third Pole Region: Current Progresses and Future Prospects. National Science Review, 6(4): 796-809. DOI: 10.1093/nsr/nwz031
doi: 10.1093/nsr/nwz031 |
|
Kaspari S, Pittenger D, Jenk T, et al., 2020. Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158‐m‐Long Ice Core. Journal of Geophysical Research: Atmospheres, 125(11): e2019JD031126. DOI: 10.1029/2019JD031126.
doi: 10.1029/2019JD031126 |
|
Kaspari SD, Schwikowski M, Gysel M, et al., 2011. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning1860-2000 AD. Geophysical Research Letters, 38(4): L04703. DOI: 10.1029/2010GL046096.
doi: 10.1029/2010GL046096 |
|
Keegan KM, Albert MR, McConnell JR, et al., 2014. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences, 111(22): 7964-7967. DOI: 10.1073/pnas.1405397111.
doi: 10.1073/pnas.1405397111 |
|
Khan A, Swami K, Ahmed T, et al., 2009. Determination of elemental carbon in lake sediments using a thermal-optical transmittance (TOT) method. Atmospheric Environment, 43(38): 5989-5995. DOI: 10.1016/j.atmosenv.2009.08.030.
doi: 10.1016/j.atmosenv.2009.08.030 |
|
Koch D, Bauer SE, Del Genio A, et al., 2011. Coupled aerosol-chemistry-climate twentieth-century transient model investigation: Trends in short-lived species and climate responses. Journal of Climate, 24(11): 2693-2714. DOI: 10.1175/2011JCLI3582.1.
doi: 10.1175/2011JCLI3582.1 |
|
Koch D, Hansen J, 2005. Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. Journal of Geophysical Research: Atmospheres, 110: D04204. DOI: 10.1029/2004JD005296.
doi: 10.1029/2004JD005296 |
|
Kopacz M, Mauzerall D, Wang J, et al., 2011. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 11(6): 2837-2852. DOI: 10.5194/acp-11-2837-2011.
doi: 10.5194/acp-11-2837-2011 |
|
Lack DA, Moosmüller H, McMeeking GR, et al., 2014. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Analytical and bioanalytical chemistry, 406(1): 99-122. DOI: 10.1007/s00216-013-7402-3.
doi: 10.1007/s00216-013-7402-3 |
|
Lavanchy V, Gäggeler H, Schotterer U, et al., 1999. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). Journal of Aerosol Science, 30: S611-S612. DOI: 10.1029/1999JD900408.
doi: 10.1029/1999JD900408 |
|
Legrand M, Preunkert S, Schock M, et al., 2007. Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, acids carboxylic, and cellulose) derived from Alpine ice cores. Journal of Geophysical Research: Atmospheres, 112: D23S11. DOI: 10.1029/2006JD008080.
doi: 10.1029/2006JD008080 |
|
Li C, Bosch C, Kang S, et al., 2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature communications, 7: 12574. DOI: 10.1038/ncomms12574.
doi: 10.1038/ncomms12574 |
|
Lim S, Faïn X, Ginot P, et al., 2017. Black carbon variability since preindustrial times in the eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, ice cores. Atmos. Chem. Phys, 17(5): 3489-3505. DOI: 10.5194/acp-17-3489-2017.
doi: 10.5194/acp-17-3489-2017 |
|
Lim S, Faïn X, Zanatta M, et al., 2014. Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement. Atmospheric Measurement Techniques, 7(10): 3307-3324. DOI: 10.5194/amt-7-3307-2014.
doi: 10.5194/amt-7-3307-2014 |
|
Lin H, Wang X, Gong P, et al., 2017. The influence of climate change on the accumulation of polycyclic aromatic hydrocarbons, black carbon and mercury in a shrinking remote lake of the southern Tibetan Plateau. The Science of the total environment, 601: 1814-1823. DOI: 10.1016/j.scitotenv.2017.06.038.
doi: 10.1016/j.scitotenv.2017.06.038 |
|
Masiello C, Druffel E, 1998. Black carbon in deep-sea sediments. Science, 280(5371): 1911-1913. DOI: 10.1126/science.280.5371.1911.
doi: 10.1126/science.280.5371.1911 |
|
McConnell JR, 2010. New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation. AtmEn, 44(21): 2665-2666. DOI: 10.1016/j.atmosenv.2010.04.004.
doi: 10.1016/j.atmosenv.2010.04.004 |
|
McConnell JR, Edwards R, Kok GL, et al., 2007. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317(5843): 1381-1384. DOI: 10.1126/science.1144856.
doi: 10.1126/science.1144856 |
|
Menon S, Koch D, Beig G, et al., 2010. Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics, 10(10): 4559-4571. DOI: 10.5194/acp-10-4559-2010.
doi: 10.5194/acp-10-4559-2010 |
|
Ming J, Cachier H, Xiao C, et al., 2008. Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmospheric Chemistry and Physics, 8(5): 1343-1352. DOI: 10.5194/acp-8-1343-2008.
doi: 10.5194/acp-8-1343-2008 |
|
Ming J, Xiao C, Cachier H, et al., 2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research, 92(1): 114-123. DOI: 10.1016/j.atmosres.2008.09.007.
doi: 10.1016/j.atmosres.2008.09.007 |
|
Ming J, Xiao C, Du Z, et al., 2013. An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance. Advances in Water Resources, 55: 80-87. DOI: 10.1016/j.advwatres.2012.05.015.
doi: 10.1016/j.advwatres.2012.05.015 |
|
Muri G, Cermelj B, Faganeli J, et al., 2002a. Determination of black carbon in lacustrine and coastal marine sediments by thermal oxidation. Acta Chimica Slovenica, 49(1): 29-42. DOI: 10.1126/science.129.3340.14.
doi: 10.1126/science.129.3340.14 |
|
Muri G, Cermelj B, Faganeli J, et al., 2002b. Black carbon in Slovenian alpine lacustrine sediments. Chemosphere, 46(8): 1225-1234. DOI: 10.1016/S0045-6535(01)00295-8.
doi: 10.1016/S0045-6535(01)00295-8 |
|
Muri G, Wakeham SG, Faganeli J, 2003. Polycyclic aromatic hydrocarbons and black carbon in sediments of a remote alpine lake (Lake Planina, northwest Slovenia). Environmental toxicology and chemistry, 22(5): 1009-1016. DOI: 10.1002/etc.5620220508.
doi: 10.1002/etc.5620220508 |
|
Neff PD, Steig EJ, Clark DH, et al., 2012. Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. Journal of Glaciology, 58(212): 1165-1175. DOI:10.3189/2012JoG12J078.
doi: 10.3189/2012JoG12J078 |
|
Neupane B, Kang S, Chen P, et al., 2019. Historical Black Carbon Reconstruction from the Lake Sediments of the Himalayan-Tibetan Plateau. Environmental Science & Technology, 53(10): 5641-5651. DOI: 10.1021/acs.est.8b07025.
doi: 10.1021/acs.est.8b07025 |
|
Neupane B, Wang J, Kang S, et al., 2020. Black carbon and mercury in the surface sediments of Selin Co, central Tibetan Plateau: Covariation with total carbon. Science of The Total Environment, 721: 137752. DOI: 10.1016/j.scitotenv. 2020.137752
doi: 10.1016/j.scitotenv. 2020.137752 |
|
Osmont D, Wendl IA, Schmidely L, et al., 2018. An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard. Atmospheric Chemistry and Physics, 18(17): 12777-12795. DOI: 10.5194/acp-18-12777-2018.
doi: 10.5194/acp-18-12777-2018 |
|
Painter TH, Flanner MG, Kaser G, et al., 2013. End of the Little Ice Age in the Alps forced by industrial black carbon. Proceedings of the national academy of sciences, 110(38): 15216-15221. DOI: 10.1073/pnas.1302570110.
doi: 10.1073/pnas.1302570110 |
|
Petzold A, Ogren JA, Fiebig M, et al., 2013. Recommendations for reporting" black carbon" measurements. Atmospheric Chemistry and Physics, 13(16): 8365-8379. DOI: 10.5194/acp-13-8365-2013.
doi: 10.5194/acp-13-8365-2013 |
|
Qian Y, Yasunari TJ, Doherty SJ, et al., 2015. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 32(1): 64-91. DOI: 10.1007/s00376-014-0010-0.
doi: 10.1007/s00376-014-0010-0 |
|
Ramanathan, Carmichael G, 2008. Global and regional climate changes due to black carbon. Nature geoscience, 1(4): 221-227. DOI: 10.1038/ngeo156.
doi: 10.1038/ngeo156 |
|
Rose NL, Ruppel M, 2015. Environmental archives of contaminant particles. Environmental Contaminants. In: J. | |
M. | |
Blais, Rosen M.R., Smol (Eds J.P..), Environmental Contaminants: Using Natural Archives to Track Sources and Long-term Trends of Pollution. Developments in Paleoenvironmental Research Volume 18, Springer, Dordecht (2015), pp. 187-221. | |
Ruppel M, Isaksson E, Ström J, et al., 2014. Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard). Atmospheric Chemistry and Physics, 14(20): 11447-11460. DOI: 10.5194/acp-14-11447-2014.
doi: 10.5194/acp-14-11447-2014 |
|
Ruppel M, Lund MT, Grythe H, et al., 2013. Comparison of spheroidal carbonaceous particle data with modelled atmospheric black carbon concentration and deposition and air mass sources in Northern Europe, 1850-2010. Advances in Meteorology, ID393926. DOI: 10.1155/2013/393926.
doi: 10.1155/2013/393926 |
|
Ruppel MM, Or Gustafsson, Rose NL, et al., 2015. Spatial and temporal patterns in black carbon deposition to dated Fennoscandian Arctic Lake sediments from 1830 to 2010. Environmental science & technology, 49(24): 13954-13963. DOI: 10.1021/acs.est.5b01779.
doi: 10.1021/acs.est.5b01779 |
|
Ruppel MM, Soares J, Gallet J-C, et al., 2017. Do contemporary (1980-2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?Atmospheric Chemistry and Physics, 17(20): 12779-12795. DOI: 10.5194/acp-17-12779-2017.
doi: 10.5194/acp-17-12779-2017 |
|
Salako GO, Hopke PK, Cohen DD, et al., 2012. Exploring the variation between EC and BC in a variety of locations. Aerosol and Air Quality Research, 12(1): 1-7. DOI: 10. 4209/aaqr.2011.09.0150.
doi: 10. 4209/aaqr.2011.09.0150 |
|
Saldarriaga JG, West DC, 1986. Holocene fires in the northern Amazon basin. Quaternary Research, 26(3): 358-366. | |
Shrestha G, Traina SJ, Swanston CW, 2010. Black carbon's properties and role in the environment: a comprehensive review. Sustainability, 2(1): 294-320. DOI: 10.3390/su2010294.
doi: 10.3390/su2010294 |
|
Sigl M, Abram N, Gabrieli J, et al., 2018. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers.The Cryosphere, 12: 3311-3331. DOI: 10.5194/tc-12-3311-2018.
doi: 10.5194/tc-12-3311-2018 |
|
Sigl M, McConnell JR, Layman L, et al., 2013. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research: Atmospheres, 118(3): 1151-1169. DOI: 10.1029/2012JD018603.
doi: 10.1029/2012JD018603 |
|
Stohl A, 2006. Characteristics of atmospheric transport into the Arctic troposphere. Journal of Geophysical Research: Atmospheres, 111: D02305. DOI: 10.1029/2005JD006888.
doi: 10.1029/2005JD006888 |
|
Thevenon F, Anselmetti FS, Bernasconi SM, et al., 2009. Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. Journal of Geophysical Research: Atmospheres, 114: D17102. DOI: 10.1029/2008JD011490.
doi: 10.1029/2008JD011490 |
|
Wang Q, Jacob DJ, Fisher JA, et al., 2011. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmospheric Chemistry and Physics, 11(23): 12453-12473. DOI: 10.5194/acp-11-12453-2011.
doi: 10.5194/acp-11-12453-2011 |
|
Wik M, Natkanski J, 1990. British and Scandinavian lake sediment records of carbonaceous particles from fossil-fuel combustion. Philosophical Transactions of the Royal Society (Series D), 327(1240): 319-323. DOI: 10.1098/rstb. 1990.0068.
doi: 10.1098/rstb. 1990.0068 |
|
Xu B, Cao J, Hansen J, et al., 2009a. Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106(52): 22114-22118. DOI: 10.1073/pnas.0910444106.
doi: 10.1073/pnas.0910444106 |
|
Xu BQ, Wang M, Joswiak DR, et al., 2009b. Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. Journal of Geophysical Research: Atmospheres, 114: D17209. DOI: 10.1029/2008JD011510.
doi: 10.1029/2008JD011510 |
|
Xu H, Ai L, Tan L, et al., 2006. Geochronology of a surface core in the northern basin of Lake Qinghai: Evidence from 210 Pb and 137 Cs radionuclides. Chinese Journal of Geochemistry, 25(4): 301-306. DOI: 10.1007/s11631-006-0301-y.
doi: 10.1007/s11631-006-0301-y |
|
Yang J, Kang S, Ji Z, et al., 2018. Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions. Journal of Geophysical Research: Atmospheres, 123(2): 671-692. DOI: 10. 1002/2017JD027282.
doi: 10. 1002/2017JD027282 |
|
Yao TD, Pu J, Lu A, et al., 2007. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research, 39(4): 642-650. DOI: 10.1657/1523-0430(07-510)[yao]2.0.co;2.
doi: 10.1657/1523-0430(07-510 |
|
Yao TD, Thompson LG, Mosbrugger V, et al., 2012. Third pole environment (TPE). Environmental Development, 3: 52-64. DOI: 10.1016/j.envdev.2012.04.002.
doi: 10.1016/j.envdev.2012.04.002 |
|
Zdanowicz C, Proemse B, Edwards P, et al., 2018. Historical black carbon deposition in the Canadian High Arctic: a> 250-year long ice-core record from Devon Island. Atmospheric Chemistry and Physics, 18(16): 12345-12361. DOI: 10.5194/acp-18-12345-2018.
doi: 10.5194/acp-18-12345-2018 |
|
Zennaro P, Kehrwald N, McConnell JR, et al., 2014. Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Climate of the Past, 10(5): 1905-1924. DOI: 10.5194/cp-10-1905-2014.
doi: 10.5194/cp-10-1905-2014 |
|
Zhan C, Wan D, Han Y, et al., 2019. Historical variation of black carbon and PAHs over the last ~200 years in central North China: Evidence from lake sediment records. Science of the Total Environment, 690: 891-899. DOI: 10. 1016/j.scitotenv.2019.07.008.
doi: 10. 1016/j.scitotenv.2019.07.008 |
|
Zhang Y, Kang S, Li C, et al., 2017. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of The Total Environment, 607: 1237-1249. DOI: 10.1016/j.scitotenv.2017.07.100.
doi: 10.1016/j.scitotenv.2017.07.100 |
[1] | ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379. |
[2] | ZhongMing Guo,NingLian Wang,BaoShou Shen,ZhuJun Gu,HongBo Wu,YuWei Wu,AnAn Chen,Xi Jiang. Quantitative estimation of the influence factors on snow/ice albedo [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 83-94. |
[3] | LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326. |
[4] | ChuanJin Li,JiaWen Ren,CunDe Xiao,MingHu Ding,AiHong Xie,ZhiHeng Du,XiangYu Ma,DaHe Qin. Accumulation and geochemical evidence for the Little Ice Age episode in eastern Antarctica [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 50-61. |
[5] | AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369-378. |
[6] | HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218. |
[7] | XingXing Jiang, ShuGui Hou, YuanSheng Li, HongXi Pang, Rong Hua, Mayewski Paul, Sneed Sharon, ChunLei An, Handley Michael, Ke Liu, WangBin Zhang. Spatial variations of Pb, As, and Cu in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 219-231. |
[8] | WeiZhen Sun, XiaoQing Cui, GuangMing Yu. Source and environmental significance of oxalate in Laohugou Glacier No. 12, Qilian Mountains, Western China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 126-133. |
[9] | JianZhong Xu, Amanda Grannas, CunDe Xiao, ZhiHeng Du, Amanda Willoughby, Patrick Hatcher, YanQing An. High-resolution mass spectrometric characterization of dissolved organic matter from warm and cold periods in the NEEM ice core [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 38-46. |
[10] | YuLan Zhang, ShiChang Kang, Min Xu, Michael Sprenger, TanGuang Gao, ZhiYuan Cong, ChaoLiu Li, JunMing Guo, ZhiQiang Xu, Yang Li, Gang Li, XiaoFei Li, YaJun Liu, HaiDong Han. Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 97-111. |
[11] | ZhiCai Li, Yan Song, Wei Zhang, Jing Zhang, ZiNiu Xiao. Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 524-535. |
[12] | Stuart A. Harris. Probable effects of heat advection on the adjacent environment during oil production at Prudhoe Bay, Alaska [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 451-460. |
[13] | WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006 [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 367-377. |
[14] | ZhongMing Guo, NingLian Wang, XiaoBo Wu, HongBo Wu, YuWei Wu. Estimate the influence of snow grain size and black carbon on albedo [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 111-120. |
|