Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (2): 97-111.doi: 10.3724/SP.J.1226.2017.00097


Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction

YuLan Zhang1, ShiChang Kang1,2, Min Xu1, Michael Sprenger3, TanGuang Gao4, ZhiYuan Cong2,5, ChaoLiu Li2,5, JunMing Guo5, ZhiQiang Xu6, Yang Li5, Gang Li7, XiaoFei Li1, YaJun Liu1, HaiDong Han1   

  1. 1. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 73000, China;
    2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;
    3. Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland;
    4. Key Laboratory of Western China's Environmental System(Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China;
    5. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China;
    6. Meteorological Bureau of Jimunai County, Jimunai, Xinjiang 836800, China;
    7. Arid Meteorological Research Institute, Lanzhou Meteorological Bureau, Lanzhou, Gansu 730000, China
  • Received:2016-11-17 Revised:2017-02-14 Published:2018-11-23
  • Contact: Prof. ShiChang Kang, State Key Laboratory of Cryospheric Sciences, Northwest Institute of EcoEnvironment and Resources, Chinese Academy of Science, Lanzhou, Gansu 73000, China. E-mail: shichang.kang@
  • Supported by:
    This study is supported by the National Natural Science Foundation of China (41630754, 41671067, and 41501063), the Chinese Academy of Sciences (KJZD-EW-G03-04), the State Key Laboratory of Cryosphere Science (SKLCS-ZZ-2015) and the Foundation for Excellent Youth Scholars of Northwest Institute of Eco-Environment and Resources, CAS.

Abstract: Light-absorbing impurities on glaciers are important factors that influence glacial surface albedo and accelerate glacier melt. In this study, the quantity of light-absorbing impurities on Keqikaer Glacier in western Tien Shan, Central Asia, was measured. We found that the average concentrations of black carbon was 2,180 ng/g, with a range from 250 ng/g to more than 10,000 ng/g. The average concentrations of organic carbon and mineral dust were 1,738 ng/g and 194 μg/g, respectively. Based on simulations performed with the Snow Ice Aerosol Radiative model simulations, black carbon and dust are responsible for approximately 64% and 9%, respectively, of the albedo reduction, and are associated with instantaneous radiative forcing of 323.18 W/m2 (ranging from 142.16 to 619.25 W/m2) and 24.05 W/m2 (ranging from 0.15 to 69.77 W/m2), respectively. For different scenarios, the albedo and radiative forcing effect of black carbon is considerably greater than that of dust. The estimated radiative forcing at Keqikaer Glacier is higher than most similar values estimated by previous studies on the Tibetan Plateau, perhaps as a result of black carbon enrichment by melt scavenging. Light-absorbing impurities deposited on Keqikaer Glacier appear to mainly originate from central Asia, Siberia, western China (including the Taklimakan Desert) and parts of South Asia in summer, and from the Middle East and Central Asia in winter. A footprint analysis indicates that a large fraction (>60%) of the black carbon contributions on Keqikaer Glacier comes from anthropogenic sources. These results provide a scientific basis for regional mitigation efforts to reduce black carbon.

Key words: light-absorbing impurities, black carbon, mineral dust, glacier, snow albedo, Tien Shan

Aizen VB, Aizen EM, Melack JM, et al., 1997. Climatic and hydrological changes in the Tien Shan, central Asia. Journal of Climate, 10: 1393- 1404. DOI: 10.1175/1520-0442(1997)010 < 1393:CAHCIT > 2.0.CO;2.
Andreae MO, Gelencsér A, 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6(10): 3131- 3148. DOI: 10.5194/acp-6-3131- 2006.
Booth B, Bellouin N, 2015. Black carbon and atmospheric feedbacks.Nature Climate Change, 519: 167- 168. DOI: 10.1038/519167a.
Bond TC, Doherty SJ, Fahey DW, et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research-Atmospheres, 118(11): 5380- 5552.DOI: 10.1002/jgrd.50171.
Cao JJ, Lee S, Ho K, et al., 2003. Spatial and seasonal distributions of atmospheric carbonaceous aerosols in Pearl River delta region, China. China Particuology, 1(1): 33- 37. DOI: 10.1016/S1672-2515(07)60097-9.
Chow JC, Watson JG, Chen LWA, et al., 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environmental Science and Technology, 38(16): 4414- 4422. DOI: 10.1021/es034936u.
Di Mauro B, Fava F, Ferrero L, et al., 2015. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV and satellite observations. Journal of Geophysical ResearchAtmospheres, 120: 6080- 6097. DOI: 10.1002/2015JD023287.
Dong ZW, Qin DH, Kang SC, et al., 2016. Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau:Insights into chemical composition and sources. Atmospheric Environment, 138: 114- 124. DOI: 10.1016/j.atmosenv.2016.05.020.
Dumont M, Brun E, Picard G, et al., 2014. Contribution of light-absorbing impurities in snow to Greenland's darkening since 2009.Nature Geoscience, 7: 509- 512. DOI: 10.1038/NGEO2180.
Farinotti D, Longuevergne L, Moholdt G, et al., 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8: 716- 723. DOI: 10.1038/NGEO2513.
Flanner MG, Zender CS, Randerson JT, et al., 2007. Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research-Atmospheres, 112: D11202. DOI:10.1029/2006JD008003.
Gertler CG, Puppala SP, Panday A, et al., 2016. Black carbon and the Himalayan cryosphere: A review. Atmospheric Environment, 125:404- 417. DOI: 10.1016/j.atmosenv.2015.08.078.Gustafsson O, Ramanathan V, 2016. Convergence on climate warming by black carbon. Proceedings of the National Academy of Sciences of the United States of America, 113(16): 4243- 4245. DOI:10.1073/pnas.1603570113.
Hadley OL, Kirchsteller TW, 2012. Black carbon reduction of snow albedo. Nature Climate Change, 2: 437- 440. DOI: 10.1038/nclimate1433.
Han HD, Liu SY, Wang J, et al., 2010. Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environmental Earth Sciences, 61(4): 665- 674. DOI:10.1007/s12665-009-0378-9.
Han HD, Liu SY, Ding YJ, et al., 2006a. Investigation of ice cliffs in the debris-covered area of Koxkar glacier, Tien shan. Journal of Glaciology and Geocryology, 28: 879- 884.
Han HD, Ding YJ, Liu SY, 2006b. A simple model to estimate ice ablation under a thick debris layer. Journal of Glaciology, 52:528- 536. DOI: 10.3189/172756506781828395.
IPCC, 2013. Intergovernmental Panel on Climate Change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner GK, et al.(eds.). New York: Cambridge University Press.
Immerzeel WW, van Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382- 1385.DOI: 10.1126/science.1183188.
Jacobi HW, Lim S, Menegoz M, et al., 2015. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observation and modeling of the impact on snow albedo, melting, and radiative forcing. The Cryosphere, 9: 1685- 1699. DOI: 10.5194/tc-9-1685-2015.
Judson A, Doesken N, 2000. Density of freshly fallen snow in the central Rocky Mountains. Bulletin of the American Meteorological Society, 81(7): 1577- 1587. DOI: 10.1175/1520-0477(2000)081 < 1577:DOFFSI > 2.3.CO;2.
Juen M, Mayer C, Lambrecht A, et al., 2014. Impact of variying debris cover thickness on ablation: a case study for Koxkar glacier in the Tien Shan. The Cryosphere, 8: 377- 386. DOI: 10.5194/tc-8-377-2014.
Kang SC, Xu YW, You QL, et al., 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letter, 5: 015101. DOI: 10.1088/1748-9326/5/1/015101.Karthe D, Chalov S, Borchardt D, 2015. Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environmental Earth Science, 73(2): 487- 499. DOI: 10.1007/s12665-014-3789-1.
Kaspari S, Painter TH, Gysel M, et al., 2014. Seasonal and elevational variations of black carbon and dust in snow and ice in the SoluKhumbu, Nepal and estimated radiative forcings. Atmospheric Chemistry and Physics, 14(15): 8089- 8103. DOI: 10.5194/acp-14-8089-2014.
Li CL, Bosch C, Kang SC, et al., 2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature Communications, 7:12574. DOI: 10.1038/ncomms12574.Li Y, Chen JZ, Kang SC, et al., 2016. Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau. (Personal communication)
Liou KN, Takano Y, Yang P, 2011. Light absorption and scattering by aggregates: Application to black carbon and snow grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 112:1581- 1594. DOI: 10.1016/j.jqsrt.2011.03.007.
Lin GX, Penner JE, Flanner M, et al., 2014. Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon. Journal of Geophysical Research-Atmosphere, 119:7453- 7476. DOI: 10.1002/2013JD021186.
Liu S, Aiken AC, Gorkowski K, et al., 2015. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 6: 8435. DOI: 10.1038/ncomms 9435.
Menon S, Koch D, Beig G, et al., 2010. Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics, 10:4559- 4571. DOI: 10.5194/acp-10-4559-2010.Ming J, Xiao CD, Cachier H, et al., 2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos.Atmospheric Research, 92(1): 114- 123. DOI: 10.1016/j.atmosres.2008.09.007.
Ming J, Xiao CD, Du ZH, et al., 2012. An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance. Advances in Water Resources, 55: 80- 87. DOI: 10.1016/j.advwatres.2012.05.015.
Ming J, Xiao CD, Wang FT, et al., 2016. Grey Tien shan Urumqi Glacier No.1 and light-absorbing impurities. Environmental Science and Pollution Research, 23(10): 9549- 9558. DOI: 10.1007/s11356-016-6182-7.
Paliwal U, Sharma M, Burkhart JF, 2016. Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis. Atmospheric Chemistry and Physics, 16: 12457- 12476. DOI:10.5194/acp-16-12457-2016.
Peng JF, Hu M, Guo S, et al., 2016. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environment. PNAS, 113(6): 4266- 4271. DOI: 10.1073/pnas.1602310113.
Qian Y, Yasunari TJ, Doherty SJ, et al., 2015. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Science, 32(1):64- 91. DOI: 10.1007/s00376-014-0010-0.
Qian Y, Yasunari TJ, Doherty SJ, et al., 2015. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 32:64- 91. DOI: 10.1007/s00376-014-0010-0.
Qu B, Ming J, Kang SC, et al., 2014. The decreasing albedo of the Zhadang glacier onwestern Nyainqentanglha and the role of lightabsorbing impurities. Atmospheric Chemistry and Physics, 14:11117- 11128. DOI: 10.5194/acp-14-11117-2014.
Ramanathan V, Carmichael G, 2008. Global and regional climate changes due to black carbon. Nature Geoscience, 1(4): 221- 227.DOI: 10.1038/ngeo156.
Ramanathan V, Chung C, Kim D, et al., 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle.Proceedings of the National Academy of Sciences of the United States of America, 102(15): 5326- 5333. DOI: 10.1073/pnas.0500656102.
Rose E, 2012. The ABCs of governing the Himalayas in response to glacial melt: atmospheric brown clouds, black carbon, and regional cooperation. Sustainable Development Law & Policy, 12(2):33- 37, 65- 67.
Schmale J, Flanner M, Kang S, et al., 2017. Central Asia anthropogenic black carbon outweighs other impurities in driving regional snow melt. Scientific Report, 7: 40501. DOI: 10.1038/srep40501.
Schmitt CG, All JD, Schwarz JP, et al., 2015. Measurements of lightabsorbing particles on the glaciers in the Cordillera Blanca, Peru.The Cryosphere, 9: 331- 340. DOI: 10.5194/tc-9-331-2015.
Schwarz JP, Gao RS, Perring AE, et al., 2013. Black carbon aerosol size in snow. Scientific Reports, 3: 1356. DOI: 10.1038/srep01356.
Schwarz JP, Doherty SJ, Ruggiero ST, et al., 2012. Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentrations in snow. Atmospheric Measurement Techniques, 5: 2581- 2592. DOI: 10.5194/amt-5-2581-2012.
Shi YF, 2008. Concise Glacier Inventory of China. Shanghai: Shanghai Popular Science Press, pp. 1- 205.
Sjögren B, Brandt O, Nuth C, et al., 2007. Instruments and methods determination of firn density in ice cores using image analysis.Journal of Glaciology, 53(182): 413- 419. DOI: 10.3189/002214307783258369.
Sorg A, Bolch T, Stoffel M, et al., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2: 725- 731. DOI: 10.1038/NCLIMATE1592.
Sprenger M, Wernli H, 2015. The LAGRANTO Lagrangian analysis tool-version 2.0. Geoscientific Model Development, 8: 2569- 2586.DOI: 10.5194/gmd-8-2569-2015.
Stein AF, Draxler RR, Rolph GD, et al., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059- 2077. DOI:10.1175/BAMS-D-14-00110.1.
Unger-Sayesteh K, Vorogushyn S, Farinotti D, et al., 2013. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planetary Change, 110(A):4- 25. DOI: 10.1016/j.gloplacha.2013.02.004.
Wang M, Xu BQ, Cao JJ, et al., 2015. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing. Atmospheric Chemistry and Physics, 15(3): 1191- 1204. DOI:10.5194/acp-15-1191-2015.
Wang R, Tao S, Wang W, et al., 2012. Black carbon emissions in China from 1949 to 2050. Environmental Science & Technology, 46: 7595- 7603. DOI: 10.1021/es3003684.
Wang R, Tao S, Balkanshi, et al., 2014. Exposure to ambient black carbon derived from a unique inventory and high-resolution model.Proceedings of the National Academy of Sciences of the United States of America, 111(7): 2459- 2463. DOI: 10.1073/pnas.1318763111.
Wiedinmyer C, Akagi SK, Yokelson RJ, et al., 2011. The Fire Inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4: 625- 642. DOI: 10.5194/gmd-4-625-2011.
Wernli H, Davies HC, 1997. A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quarterly Journal of the Royal Meteorological Society, 123: 467- 489. DOI:10.1002/(ISSN)1477-870X.
Xie CW, Ding YJ, Chen C, et al., 2007. Study on the change of Keqikaer glacier during the last 30 years, Mt. Tuomuer, Western China. Environmental Geology, 51: 1165- 1170. DOI: 10.1007/s00254-006-0407-x.
Xu BQ, Cao JJ, Hansen J, et al., 2009. Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106(52): 22114- 22118. DOI: 10.1073/pnas.0910444106.
Xu BQ, Cao JJ, Joswiak DR, et al., 2012. Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers. Environmental Research Letters, 7: 014022. DOI:10.1088/1748-9326/7/1/014022.
Yang S, Xu BQ, Cao JJ, et al., 2015. Climate effect of black carbon aerosol in a Tibetan Plateau glacier. Atmospheric Environment, 111: 71- 78. DOI: 10.1016/j.atmosenv.2015.03.016.
Yao TD, Thompson LG, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.Nature Climate Change, 2: 663- 667. DOI: 10.1038/NCLIMATE1580.
Yasunari T, Bonasoni P, Laj P, et al., 2010. Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. Atmospheric Chemistry and Physics, 10(14):6603- 6615. DOI: 10.5194/acp-10-6603-2010.
Zhang XL, Wu GJ, Zhang CL, et al., 2015. What is the real role of iron oxides in the optical properties of dust aerosols? Atmospheric Chemistry and Physics, 15: 12159- 12177. DOI: 10.5194/acp-15-12159- 2015.
Zhang YL, Kang SC, Zhang QG, et al., 2016. Chemical records in snowpits from high altitude glaciers in the Tibetan Plateau and its surroundings. PLoS ONE, 11(5): e0155232. DOI: 10.1371/journal.pone.0155232.
Zhang Y, Liu SY, Ding YJ, et al., 2006. Preliminary study of mass balance on the Keqikaer Baxi Glacier on the south slopes of Tien shan Mountains. Journal of Glaciology and Geocryology, 28: 477- 484.
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357-368.
[2] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[3] WeiZhen Sun, XiaoQing Cui, GuangMing Yu. Source and environmental significance of oxalate in Laohugou Glacier No. 12, Qilian Mountains, Western China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 126-133.
[4] FeiTeng Wang, ChunHai Xu, ZhongQin Li, Muhammad Naveed Anjum, Lin Wang. Applicability of an ultra-long-range terrestrial laser scanner to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 47-54.
[5] JiZu Chen, ShiChang Kang, Xiang Qin, WenTao Du, WeiJun Sun, YuShuo Liu. The mass-balance characteristics and sensitivities to climate variables of Laohugou Glacier No. 12, western Qilian Mountains, China [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 543-553.
[6] Min Xu, HaiDong Han, ShiChang Kang. The temporal and spatial variation of positive degree-day factors on the Koxkar Glacier over the south slope of the Tianshan Mountains, China, from 2005 to 2010 [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 425-431.
[7] YuShuo Liu, Xiang Qin, WenTao Du. Changes of glacier area in the Xiying River Basin, East Qilian Mountain, China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 432-437.
Full text



No Suggested Reading articles found!