Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (1): 47-54.doi: 10.3724/SP.J.1226.2018.00047
Previous Articles Next Articles
FeiTeng Wang1, ChunHai Xu1,2, ZhongQin Li1, Muhammad Naveed Anjum1,2, Lin Wang1
Besl PJ, McKay ND, 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239-256, DOI:10.1109/34.121791. Cogley JG, 2009. Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology, 50(50): 96-100, DOI:10.3189/172756409787769744. Cogley JG, Hock R, Rasmussen LA, et al., 2011. Glossary of Glacier Mass Balance and Related Terms. IHP-VⅡ Technical Documents in Hydrology No. 86, IACS Contribution No. 2. Paris: UNESCO-IHP. Deems JS, Painter TH, Finnegan DC, 2013. Lidar measurement of snow depth: a review. Journal of Glaciology, 59(215): 467-479, DOI:10.3189/2013JoG12J154. Fischer M, Huss M, Kummert M, et al., 2016. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere, 10(3): 1279-1295, DOI:10.5194/tc-10-1279-2016. Gabbud C, Micheletti N, Lane SN, 2015. Lidar measurement of surface melt for a temperate Alpine glacier at the seasonal and hourly scales. Journal of Glaciology, 61(299): 963-974, DOI:10.3189/2015JoG14J226. Gardelle J, Berthier E, Arnaud Y, et al., 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(4): 1263-1286, DOI:10.5194/tc-7-1263-2013. Hartzell PJ, Gadomski PJ, Glennie CL, et al., 2015. Rigorous error propagation for terrestrial laser scanning with application to snow volume uncertainty. Journal of Glaciology, 61(230): 1147-1158, DOI:10.3189/2015JoG15J031. Huai BJ, Li ZQ, Wang FT, et al., 2015. Variation of glaciers in the Sawuer Mountain within Chinese territory during 1959~2013. Journal of Glaciology and Geocryology, 37(5): 1141-1149, DOI:10.7522/j.isnn.1000-0240.2015.0128. Huss M, Bauder A, Funk M, 2009. Homogenization of long-term mass-balance time series. Annals of Glaciology, 50(50): 198-206, DOI:10.3189/172756409787769627. Huss M, 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere, 7(3): 877-887, DOI:10.5194/tc-7-877-2013. Intergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Li KM, Li ZQ, Gao WY, et al., 2011. Recent glacial retreat and its effect on water resources in eastern Xinjiang. Chinese Science Bulletin, 56(33): 3596-3604, DOI:10.1007/s11434-011-4720-8. Li ZQ, Li HL, Chen YN, 2011. Mechanisms and simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. Journal of Earth Science, 22(4): 423-430, DOI:10.1007/s12583-011-0194-5. Lichti DD, Gordon SJ, Tipdecho T, 2005. Error models and propagation in directly georeferenced terrestrial laser scanner networks. Journal of Surveying Engineering, 131(4): 135-142, DOI:10.1061/(ASCE)0733-9453(2005)131:4(135). Mukupa W, Roberts GW, Hancock CM, et al., 2017. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49(353): 99-116, DOI:10.1080/00396265.2015.1133039. Nuth C, Kääb A, 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1): 271-290, DOI:10.5194/tc-5-271-2011. Perroy RL, Bookhagen B, Asner GP, et al., 2010. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 118(3-4): 288-300, DOI:10.1016/j.geomorph.2010.01.009. Rabatel A, Deline P, Jaillet S, et al., 2008. Rock falls in high-alpine rock walls quantified by terrestrial LiDAR measurements: a case study in the Mont Blanc area. Geophysical Research Letters, 35(10): L10502, DOI:10.1029/2008GL033424. RIEGL Laser Measurement Systems, 2013. Preliminary Data Sheet, 07.05.2013; RIEGL VZ®-6000 - 3D Ultra long range terrestrial laser scanner with online waveform processing. Horn, Austria: RIEGL Laser Measurement Systems. RIEGL Laser Measurement Systems, 2014a. 3D terrestrial laser scanner Riegl VZ®-4000/Riegl VZ®-6000 General Description and Data Interfaces. Horn, Austria: RIEGL Laser Measurement Systems. RIEGL Laser Measurement Systems, 2014b. RiSCAN PRO® - Version 1.8.1. Horn, Austria: Riegl Laser Measurement Systems. Rolstad C, Haug T, Denby B, 2009. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. Journal of Gla-ciology, 55(192): 666-680, DOI:10.3189/002214309789470950. Schnabel R, Klein R, 2006. Octree-based point-cloud compression. In: Proceedings of the 3rd Eurographics/IEEE VGTC Conference On Point-based Graphics. Boston, MA, USA: ACM, 111-120. DOI: 10.2312/SPBG/SPBG06/111-120. Shangguan DH, Bolch T, Ding YJ, et al., 2015. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data. The Cryosphere, 9(2): 703-717, DOI:10.5194/tc-9-703-2015. Shi YF, 2005. Concise China Glacier Inventory. Shanghai: Shanghai Popular Science Press, pp. 101-105. Thibert E, Blanc R, Vincent C, et al., 2008. Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. Journal of Glaciology, 54(186): 522-532, DOI:10.3189/002214308785837093. Thomson LI, Zemp M, Copland L, et al., 2017. Comparison of geodetic and glaciological mass budgets for White Glacier, Axel Heiberg Island, Canada. Journal of Glaciology, 63(237): 55-66, DOI:10.1017/jog.2016.112. Wang S, Yao TD, Tian LD, et al., 2017. Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957-2013. Journal of Glaciology, 63(239): 523-534, DOI:10.1017/jog.2017.13. Wang ZT, 1988. New statistical figures and distribution feature of glaciers on the various Mountains in China. Arid Land Geography, 11(3): 8-14, DOI:10.13826/j.cnki.cn65-1103/x.1988.03.002. World Glacier Monitoring Service (WGMS), 2017. Global Glacier Change Bulletin No. 2 (2014-2015). In: Zemp M, Nussbaumer SU, Gärtner-Roer I, et al. (eds.), ICSU(WDS)/IUGG(IACS)/ UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, pp.1-7. DOI: 10.5904/wgms-fog-2017-10. Xie ZC, Liu CH, 2010. Introduction to Glaciology. Shanghai Popular Science Press, Shanghai, pp. 1-490. Zemp M, Thibert E, Huss M, et al., 2013. Reanalysing glacier mass balance measurement series. The Cryosphere, 7(4): 1227-1245, DOI:10.5194/tc-7-1227-2013. Zemp M, Frey H, Gärtner-Roer I, et al., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228): 745-762, DOI:10.3189/2015JoG15J017. Zhang ZY, 1994. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2): 119-152, DOI:10.1007/BF01427149. Zhu ML, Yao TD, Yang W, et al., 2017. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau. Climate Dynamics. DOI: 10.1007/s00382-017-3817-4. (in Press) |
No related articles found! |
|