Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (1): 38-46.doi: 10.3724/SP.J.1226.2018.00038

Previous Articles     Next Articles

High-resolution mass spectrometric characterization of dissolved organic matter from warm and cold periods in the NEEM ice core

JianZhong Xu1, Amanda Grannas2, CunDe Xiao1, ZhiHeng Du1, Amanda Willoughby3, Patrick Hatcher3, YanQing An1   

  1. 1. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. Department of Chemistry, Villanova University, Villanova, PA 19085, USA;
    3. Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
  • Received:2017-05-22 Online:2018-02-01 Published:2018-11-23
  • Contact: JianZhong Xu, jzxu@lzb.ac.cn;CunDe Xiao, cdxiao@lzb.ac.cn E-mail:jzxu@lzb.ac.cn;cdxiao@lzb.ac.cn
  • Supported by:
    This research was supported by grants from the Hundred Talents Program of the Chinese Academy of Sciences, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (NSFC) (41425003, 41121001), the Ministry of Science and Technology of China (MoST, 2013CBA01804), and the Scientific Research Foundation of the Key Laboratory of Cryospheric Sciences (SKLCS-ZZ-2017-01).

Abstract: Dissolved organic matter (DOM) is an important component of ice cores but is currently poorly characterized. DOM from one Holocene sample (HS, aged at 1600-4500 B.P.) and one Last Glacial Maximum sample (LS, aged at 21000-25000 B.P.) from the North Greenland Eemian Ice Drilling (NEEM) ice core were analyzed by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). CHO compounds contributed 50% of the compounds identified in negative-ionization mode in these two samples, with significant contributions from organic N, S, and P compounds, likely suggesting that marine DOM was an important source in these samples. Overall, the chemical compositions are similar between these two samples, suggesting their consistent DOM sources. However, subtle differences in the DOM between these two samples are apparent and could indicate differences in source strength or chemistry occurring through both pre- and post-depositional processes. For example, higher relative amounts of condensed carbon compounds in the HS DOM (5%), compared to the LS DOM (2%), suggest potentially important contributions from terrestrial sources. Greater incorporation of P in the observed DOM in the LS DOM (22%), compared to the HS DOM (13%), indicate more active microbiological processes that likely contribute to phosphorus incorporation into the DOM pool. Although these two samples present only a preliminary analysis of DOM in glacial/interglacial periods, the data indicate a need to expand the analysis into a broader range of ice-core samples, geographical locations, and glacial/interglacial periods.

Key words: NEEM ice core, FT-ICR-MS, dissolved organic matter

Altieri KE, Turpin BJ, Seitzinger SP, 2009. Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry. Atmospheric Chemistry and Physics, 9(7): 2533-2542, DOI:10.5194/acp-9-2533-2009.
Andreae MO, Andreae TW, Meyerdierks D, et al., 2003. Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic. Chemosphere, 52(8): 1321-1343, DOI:10.1016/S0045-6535(03)00366-7.
Antony R, Grannas AM, Willoughby AS, et al., 2014. Origin and sources of dissolved organic matter in snow on the East Antarctic Ice Sheet. Environmental Science & Technology, 48(11): 6151-6159, DOI:10.1021/es405246a.
Bateman AP, Nizkorodov SA, Laskin J, et al., 2011. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Physical Chemistry Chemical Physics, 13(26): 12199-12212, DOI:10.1039/C1CP20526A.
Bhatia MP, Das SB, Longnecker K, et al., 2010. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochimica et Cosmochimica Acta, 74(13): 3768-3784, DOI:10.1016/j.gca.2010.03.035.
Buchan A, LeCleir GR, Gulvik CA, et al., 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nature Reviews Microbiology, 12(10): 686-698, DOI:10.1038/nrmicro3326.
Chen HM, Abdulla HAN, Sanders RL, et al., 2014. Production of black carbon-like and aliphatic molecules from terrestrial dissolved organic matter in the presence of sunlight and iron. Environmental Science & Technology Letters, 1(10): 399-404, DOI:10.1021/ez5002598.
Dittmar T, Koch B, Hertkorn N, et al., 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography: Methods, 6(6): 230-235, DOI:10.4319/lom.2008.6.230.
Farrera I, Harrison SP, Prentice IC, et al., 1999. Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dynamics, 15(11): 823-856, DOI:10.1007/s003820050317.
Grannas AM, Hockaday WC, Hatcher PG, et al., 2006. New revelations on the nature of organic matter in ice cores. Journal of Geophysical Research: Atmospheres, 111(D4): D04304, DOI:10.1029/2005jd006251.
Hockaday WC, Purcell JM, Marshall AG, et al., 2009. Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment. Limnology and Oceanography: Methods, 7(1): 81-95, DOI:10.4319/lom.2009.7.81.
Hughey CA, Hendrickson CL, Rodgers RP, et al., 2001. Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Analytical Chemistry, 73(19): 4676-4681, DOI:10.1021/ac010560w.
Kawamura K, Izawa Y, Mochida M, et al., 2012. Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia. Geochimica et Cosmochimica Acta, 99: 317-329, DOI:10.1016/j.gca.2012.08.006.
Koch BP, Dittmar T, 2006. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Communications in Mass Spectrometry, 20(5): 926-932, DOI:10.1002/rcm.2386.
Kujawinski EB, Behn MD, 2006. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Analytical Chemistry, 78(13): 4363-4373, DOI:10.1021/ac0600306.
Lawson EC, Bhatia MP, Wadham JL, et al., 2014. Continuous summer export of nitrogen-rich organic matter from the Greenland Ice sheet inferred by ultrahigh resolution mass spectrometry. Environmental Science & Technology, 48(24): 14248-14257, DOI:10.1021/es501732h.
Legrand M, Preunkert S, Wagenbach D, et al., 2003. A historical record of formate and acetate from a high-elevation Alpine glacier: Implications for their natural versus anthropogenic budgets at the European scale. Journal of Geophysical Research: Atmospheres, 108(D24): 4788, DOI:10.1029/2003JD003594.
Legrand M, Preunkert S, Schock M, et al., 2007. Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores. Journal of Geophysical Research: Atmospheres, 112(D23): D23S11, DOI:10.1029/2006JD008080.
Marsh JJS, Boschi VL, Sleighter RL, et al., 2013. Characterization of dissolved organic matter from a Greenland ice core by nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of Glaciology, 59(214): 225-232, DOI:10.3189/2013JoG12J061.
Mazzoleni LR, Ehrmann BM, Shen XH, et al., 2010. Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environmental Science & Technology, 44(10): 3690-3697, DOI:10.1021/es903409k.
Miyazaki Y, Kawamura K, Jung J, et al., 2011. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmospheric Chemistry and Physics, 11(7): 3037-3049, DOI:10.5194/acp-11-3037-2011.
Mopper K, Stubbins A, Ritchie JD, et al., 2007. Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chemical Reviews, 107(2): 419-442, DOI:10.1021/cr050359b.
Nebbioso A, Piccolo A, 2013. Molecular characterization of dissolved organic matter (DOM): a critical review. Analytical and Bioanalytical Chemistry, 405(1): 109-124, DOI:10.1007/s00216-012-6363-2.
Ng NL, Kwan AJ, Surratt JD, et al., 2008. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmospheric Chemistry and Physics, 8(14): 4117-4140, DOI:10.5194/acp-8-4117-2008.
Otto-Bliesner BL, Brady EC, Clauzet G, et al., 2006. Last glacial maximum and holocene climate in CCSM3. Journal of Climate, 19(11): 2526-2544, DOI:10.1175/JCLI3748.1.
Singer GA, Fasching C, Wilhelm L, et al., 2012. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geoscience, 5(10): 710-714, DOI:10.1038/ngeo1581.
Stubbins A, Spencer RGM, Chen HM, et al., 2010. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnology and Oceanography, 55(4): 1467-1477, DOI:10.4319/lo.2010.55.4.1467.
Stubbins A, Hood E, Raymond PA, et al., 2012. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geoscience, 5(3): 198-201, DOI:10.1038/ngeo1403.
Surratt JD, Kroll JH, Kleindienst TE, et al., 2007. Evidence for organosulfates in secondary organic aerosol. Environmental Science & Technology, 41(2): 517-527, DOI:10.1021/es062081q.
Vairavamurthy A, Mopper K, 1989. Mechanistic Studies of organosulfur (Thiol) formation in coastal marine sediments. In: Saltzman ES, Cooper WJ (eds.). Biogenic Sulfur in the Environment. Washington DC: American Chemical Society, pp. 231-242.
Willoughby AS, Wozniak AS, Hatcher PG, 2014. A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultrahigh-resolution mass spectrometry. Atmospheric Chemistry and Physics, 14(18): 10299-10314, DOI:10.5194/acp-14-10299-2014.
Wolff EW, Barbante C, Becagli S, et al., 2010. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews, 29(1-2): 285-295, DOI:10.1016/j.quascirev.2009.06.013.
Wozniak AS, Willoughby AS, Gurganus SC, et al., 2014. Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise. Atmospheric Chemistry and Physics, 14(16): 8419-8434, DOI:10.5194/acp-14-8419-2014.
Xu JZ, Zhang Q, Wang ZB, et al., 2015. Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai-Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere. Atmospheric Chemistry and Physics, 15(9): 5069-5081, DOI:10.5194/acp-15-5069-2015.
Yee LD, Kautzman KE, Loza CL, et al., 2013. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 13(16): 8019-8043, DOI:10.5194/acp-13-8019-2013.
Zhao Y, Hallar AG, Mazzoleni LR, 2013. Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry. Atmospheric Chemistry and Physics, 13(24): 12343-12362, DOI:10.5194/acp-13-12343-2013.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong, AiJun Guo, XiaoJuan Yin, JinFeng Cui, Xiao Yang, YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .