Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (1): 47-54.doi: 10.3724/SP.J.1226.2018.00047

Previous Articles     Next Articles

Applicability of an ultra-long-range terrestrial laser scanner to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China

FeiTeng Wang1, ChunHai Xu1,2, ZhongQin Li1, Muhammad Naveed Anjum1,2, Lin Wang1   

  1. 1. State Key Laboratory of Cryospheric Science/Tien Shan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-06-06 Online:2018-02-01 Published:2018-11-23
  • Contact: ZhongQin Li,
  • Supported by:
    This research was supported by the National Natural Science Foundation of China (41601076, 41471058 and 91425303), the "Light of West China" program for Talent Introduction of Chinese Academy. We would like to thank the Tien Shan Glaciological Station for field surveys.

Abstract: Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an ultra-long-range terrestrial laser scanner (TLS) to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China. The Riegl VZ®-6000 TLS is exceptionally well-suited for measuring snowy and icy terrain. Here, we use TLS to create repeated high spatiotemporal resolution DEMs, focusing on the annual mass balance (June 2, 2015 to July 25, 2016). According to TLS-derived high spatial resolution point clouds, the front variation (glacier retreat) of Muz Taw Glacier was 9.3 m. The mean geodetic elevation change was 4.55 m at the ablation area. By comparing with glaciological measurements, the glaciological elevation change of individual stakes and the TLS-derived geodetic elevation change of corresponding points matched closely, and the calculated balance was -3.864±0.378 m w.e.. This data indicates that TLS provides accurate results and is therefore suitable to monitor mass balance evolution of Muz Taw Glacier.

Key words: glacier front variation, geodetic mass balance, Riegl VZ®, -6000 terrestrial laser scanner, Muz Taw Glacier, Sawir Mountains

Besl PJ, McKay ND, 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239-256, DOI:10.1109/34.121791.
Cogley JG, 2009. Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology, 50(50): 96-100, DOI:10.3189/172756409787769744.
Cogley JG, Hock R, Rasmussen LA, et al., 2011. Glossary of Glacier Mass Balance and Related Terms. IHP-VⅡ Technical Documents in Hydrology No. 86, IACS Contribution No. 2. Paris: UNESCO-IHP.
Deems JS, Painter TH, Finnegan DC, 2013. Lidar measurement of snow depth: a review. Journal of Glaciology, 59(215): 467-479, DOI:10.3189/2013JoG12J154.
Fischer M, Huss M, Kummert M, et al., 2016. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere, 10(3): 1279-1295, DOI:10.5194/tc-10-1279-2016.
Gabbud C, Micheletti N, Lane SN, 2015. Lidar measurement of surface melt for a temperate Alpine glacier at the seasonal and hourly scales. Journal of Glaciology, 61(299): 963-974, DOI:10.3189/2015JoG14J226.
Gardelle J, Berthier E, Arnaud Y, et al., 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(4): 1263-1286, DOI:10.5194/tc-7-1263-2013.
Hartzell PJ, Gadomski PJ, Glennie CL, et al., 2015. Rigorous error propagation for terrestrial laser scanning with application to snow volume uncertainty. Journal of Glaciology, 61(230): 1147-1158, DOI:10.3189/2015JoG15J031.
Huai BJ, Li ZQ, Wang FT, et al., 2015. Variation of glaciers in the Sawuer Mountain within Chinese territory during 1959~2013. Journal of Glaciology and Geocryology, 37(5): 1141-1149, DOI:10.7522/j.isnn.1000-0240.2015.0128.
Huss M, Bauder A, Funk M, 2009. Homogenization of long-term mass-balance time series. Annals of Glaciology, 50(50): 198-206, DOI:10.3189/172756409787769627.
Huss M, 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere, 7(3): 877-887, DOI:10.5194/tc-7-877-2013.
Intergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Li KM, Li ZQ, Gao WY, et al., 2011. Recent glacial retreat and its effect on water resources in eastern Xinjiang. Chinese Science Bulletin, 56(33): 3596-3604, DOI:10.1007/s11434-011-4720-8.
Li ZQ, Li HL, Chen YN, 2011. Mechanisms and simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. Journal of Earth Science, 22(4): 423-430, DOI:10.1007/s12583-011-0194-5.
Lichti DD, Gordon SJ, Tipdecho T, 2005. Error models and propagation in directly georeferenced terrestrial laser scanner networks. Journal of Surveying Engineering, 131(4): 135-142, DOI:10.1061/(ASCE)0733-9453(2005)131:4(135).
Mukupa W, Roberts GW, Hancock CM, et al., 2017. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49(353): 99-116, DOI:10.1080/00396265.2015.1133039.
Nuth C, Kääb A, 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1): 271-290, DOI:10.5194/tc-5-271-2011.
Perroy RL, Bookhagen B, Asner GP, et al., 2010. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 118(3-4): 288-300, DOI:10.1016/j.geomorph.2010.01.009.
Rabatel A, Deline P, Jaillet S, et al., 2008. Rock falls in high-alpine rock walls quantified by terrestrial LiDAR measurements: a case study in the Mont Blanc area. Geophysical Research Letters, 35(10): L10502, DOI:10.1029/2008GL033424.
RIEGL Laser Measurement Systems, 2013. Preliminary Data Sheet, 07.05.2013; RIEGL VZ®-6000 - 3D Ultra long range terrestrial laser scanner with online waveform processing. Horn, Austria: RIEGL Laser Measurement Systems.
RIEGL Laser Measurement Systems, 2014a. 3D terrestrial laser scanner Riegl VZ®-4000/Riegl VZ®-6000 General Description and Data Interfaces. Horn, Austria: RIEGL Laser Measurement Systems.
RIEGL Laser Measurement Systems, 2014b. RiSCAN PRO® - Version 1.8.1. Horn, Austria: Riegl Laser Measurement Systems.
Rolstad C, Haug T, Denby B, 2009. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. Journal of Gla-ciology, 55(192): 666-680, DOI:10.3189/002214309789470950.
Schnabel R, Klein R, 2006. Octree-based point-cloud compression. In: Proceedings of the 3rd Eurographics/IEEE VGTC Conference On Point-based Graphics. Boston, MA, USA: ACM, 111-120. DOI: 10.2312/SPBG/SPBG06/111-120.
Shangguan DH, Bolch T, Ding YJ, et al., 2015. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data. The Cryosphere, 9(2): 703-717, DOI:10.5194/tc-9-703-2015.
Shi YF, 2005. Concise China Glacier Inventory. Shanghai: Shanghai Popular Science Press, pp. 101-105.
Thibert E, Blanc R, Vincent C, et al., 2008. Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. Journal of Glaciology, 54(186): 522-532, DOI:10.3189/002214308785837093.
Thomson LI, Zemp M, Copland L, et al., 2017. Comparison of geodetic and glaciological mass budgets for White Glacier, Axel Heiberg Island, Canada. Journal of Glaciology, 63(237): 55-66, DOI:10.1017/jog.2016.112.
Wang S, Yao TD, Tian LD, et al., 2017. Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957-2013. Journal of Glaciology, 63(239): 523-534, DOI:10.1017/jog.2017.13.
Wang ZT, 1988. New statistical figures and distribution feature of glaciers on the various Mountains in China. Arid Land Geography, 11(3): 8-14, DOI:10.13826/j.cnki.cn65-1103/x.1988.03.002.
World Glacier Monitoring Service (WGMS), 2017. Global Glacier Change Bulletin No. 2 (2014-2015). In: Zemp M, Nussbaumer SU, Gärtner-Roer I, et al. (eds.), ICSU(WDS)/IUGG(IACS)/ UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, pp.1-7. DOI: 10.5904/wgms-fog-2017-10.
Xie ZC, Liu CH, 2010. Introduction to Glaciology. Shanghai Popular Science Press, Shanghai, pp. 1-490.
Zemp M, Thibert E, Huss M, et al., 2013. Reanalysing glacier mass balance measurement series. The Cryosphere, 7(4): 1227-1245, DOI:10.5194/tc-7-1227-2013.
Zemp M, Frey H, Gärtner-Roer I, et al., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228): 745-762, DOI:10.3189/2015JoG15J017.
Zhang ZY, 1994. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2): 119-152, DOI:10.1007/BF01427149.
Zhu ML, Yao TD, Yang W, et al., 2017. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau. Climate Dynamics. DOI: 10.1007/s00382-017-3817-4. (in Press)
No related articles found!
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong, AiJun Guo, XiaoJuan Yin, JinFeng Cui, Xiao Yang, YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .