Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (2): 79-90.doi: 10.3724/SP.J.1226.2022.21046.

    Next Articles

Estimating snow depth or snow water equivalent from space

LiYun Dai1,Tao Che1,2()   

  1. 1.Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2021-05-27 Accepted:2021-11-25 Online:2022-04-30 Published:2022-04-25
  • Contact: Tao Che E-mail:chetao@lzb.ac.cn
  • Supported by:
    the National Key Research and Development Program of China(Grand 2020YFA0608501);the National Natural Science Foundation of China(Grand 42171143);the CAS 'Light of West China' Program(E029070101)

Abstract:

Satellite remote sensing is widely used to estimate snow depth and snow water equivalent (SWE) which are two key parameters in global and regional climatic and hydrological systems. Remote sensing techniques for snow depth mainly include passive microwave remote sensing, Synthetic Aperture Radar (SAR), Interferometric SAR (InSAR) and Lidar. Among them, passive microwave remote sensing is the most efficient way to estimate large scale snow depth due to its long time series data and high temporal frequency. Passive microwave remote sensing was utilized to monitor snow depth starting in 1978 when Nimbus-7 satellite with Scanning Multichannel Microwave Radiometer (SMMR) freely provided multi-frequency passive microwave data. SAR was found to have ability to detecting snow depth in 1980s, but was not used for satellite active microwave remote sensing until 2000. Satellite Lidar was utilized to detect snow depth since the later period of 2000s. The estimation of snow depth from space has experienced significant progress during the last 40 years. However, challenges or uncertainties still exist for snow depth estimation from space. In this study, we review the main space remote sensing techniques of snow depth retrieval. Typical algorithms and their principles are described, and problems or disadvantages of these algorithms are discussed. It was found that snow depth retrieval in mountainous area is a big challenge for satellite remote sensing due to complicated topography. With increasing number of freely available SAR data, future new methods combing passive and active microwave remote sensing are needed for improving the retrieval accuracy of snow depth in mountainous areas.

Key words: snow depth, snow water equivalent, remote sensing, satellite

Figure 1

(a) Schematic diagram of microwave emission transfer process of snowpack; (b) Variations in brightness temperatures at 5 frequencies with increasing snow depth at constant snow characteristics"

Table 1

Monthly error coefficient ε in different snow types (Foster et al., 2005)"

MonthSnow types
TundraAlpineTaigaMarinePrairieEphemeral
Oct.-0.20-0.10-0.20-0.20-0.20-0.20
Nov.0.10-0.10-0.20-0.20-0.20-0.20
Dec.0.150.050.05-0.15-0.10-0.20
Jan.0.200.050.05-0.150.05-0.20
Feb.0.250.050.05-0.150.15-0.20
Mar.0.300.050.05-0.150.20-0.20
Apr.0.300.050.25-0.150.20-0.20
May0.300.100.25-0.150.20-0.20

Table 2

Error coefficient γ in different forest cover fraction (Foster et al., 2005)"

ItemForest cover fraction
5%15%25%35%45%55%65%75%85%95%
Error coefficients0.050.050.100.150.200.250.300.400.500.50

Figure 2

Flowchart of SWE retrieval from PM in GlobSnow algorithm (Pullianen, 2006)"

Table 3

Monthly average offsets to remove the influence of variation in grain size with a snow season (Che et al., 2008)"

MonthItem
SMMRSSM/I
Oct.-3.64-4.18
Nov.-3.08-3.58
Dec.-1.91-1.93
Jan.-0.190.29
Feb.1.512.15
Mar.2.653.31
Apr.3.323.80

Figure 3

Backscatter coefficient response to SWE at 9 GHz (Ulaby and Stiles, 1980)"

Figure 4

Geometry of microwave refraction in dry snowpack. The solid line (ΔRs +ΔRa ) is the microwave path in dry snowpack, and the dashed line ΔR0 is the microwave path in the snow-free condition. SD is snow depth"

Barnett TP, Adam JC, Lettenmaier DP, 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303-309.
Barnett TP, Dumenil L, Schlese U, Roeckner E, et al., 1989. The effect of Eurasian snow cover on regional and global climate variations. Journal of the Atmospheric Sciences, 46(5): 661-685. DOI: 10.1175/1520-0469(1989)046<0661:Teoesc>2.0.Co;2 .
doi: 10.1175/1520-0469(1989)046<0661:Teoesc>2.0.Co;2
Bernier M, Fortin JP, 1998. The potential of times series of C-band SAR data to monitor dry and shallow snow cover. Ieee Transactions on Geoscience and Remote Sensing, 36(1): 226-243. DOI: 10.1109/36.655332 .
doi: 10.1109/36.655332
Bernier M, Fortin JP, Gauthier Y, et al., 1999. Determination of snow water equivalent using RADARSAT SAR data in eastern Canada. Hydrological Processes, 13(18): 3041-3051. DOI: 10.1002/(sici)1099-1085(19991230)13:18<3041::aid-hyp14>3.0.co;2-e .
doi: 10.1002/(sici)1099-1085(19991230)13:18<3041::aid-hyp14>3.0.co;2-e
Brown RD, Mote PW, 2009. The response of Northern Hemisphere snow cover to a changing climate. Journal of Climate, 22(8): 2124-2145. DOI: 10.1175/2008jcli2665.1 .
doi: 10.1175/2008jcli2665.1
Chang XL, Jin HJ, Zhang YL, et al., 2015. Study of seasonal snow cover influencing the ground thermal regime on western flank of Da Xing'anling Mountains, northeastern China. Sciences in Cold and Arid Regions, 7(6): 666-674. DOI: 10.3724/SP.J.1226.2015.00666 .
doi: 10.3724/SP.J.1226.2015.00666
Chang A, Foster J, Hall D, 1987. Nimbus-7 SMMR derived global snow cover parameters. Annal of Glaciology, 9: 39-44.
Che T, Dai LY, Zheng XM, et al., 2016. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sensing of Environment, 183: 334-349. DOI: 10.1016/j.rse.2016.06.005 .
doi: 10.1016/j.rse.2016.06.005
Che T, Dai LY, Wang J, et al., 2012. Estimation of snow depth and snow water equivalent distribution using airborne microwave radiometry in the Binggou Watershed, the upper reaches of the Heihe River basin. International Journal of Applied Earth Observation and Geoinformation, 17: 23-32.
Che T, Li X, Jin R, et al., 2014. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sensing of Environment, 143: 54-63. DOI: 10.1016/j.rse.2013.12.009 .
doi: 10.1016/j.rse.2013.12.009
Che T, Li X, Jin R, et al., 2008. Snow depth derived from passive microwave remote-sensing data in China. Annals of Glaciology, 49: 145-154.
Chen T, Pan JM, Chang SL, et al., 2020. Validation of the SNTHERM Model applied for snow depth, grain size, and brightness temperature simulation at meteorological stations in China. Remote Sensing, 12: 507. DOI: Artn 50710. 3390/Rs12030507 , 2020.
doi: Artn 50710. 3390/Rs12030507
Cohen J, 1994. Snow cover and climate. Weather, 49: 150-156.
Cohen J, Rind D, 1991. The effect of snow cover on the climate. Journal of Climate, 4(7): 689-706. DOI: 10.1175/1520-0442(1991)004<0689:Teosco>2.0.Co;2 .
doi: 10.1175/1520-0442(1991)004<0689:Teosco>2.0.Co;2
Conde V, Nico G, Mateus P, et al., 2019. On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application for the Sentinel-1 mission. Journal of Hydrology and Hydromechanics, 67(1): 93-100. DOI: 10.2478/johh-2018-0003 .
doi: 10.2478/johh-2018-0003
Currier WR, Pflug J, Mazzotti G, et al., 2019. Comparing aerial lidar observations with Terrestrial Lidar and Snow-Probe Transects From NASA's 2017 SnowEx Campaign. Water Resources Research, 55(7): 6285-6294. DOI: 10.1029/2018wr024533 .
doi: 10.1029/2018wr024533
Dai LY, Che T, Xie HJ, et al., 2018. Estimation of snow depth over the Qinghai-Tibetan Plateau based on AMSR-E and MODIS Data. Remote Sensing, 10(12): 1989. DOI: Artn 198910.3390/Rs10121989 .
doi: Artn 198910.3390/Rs10121989
Dai L, Che T, Wang J, et al., 2012. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sensing of Environment, 127: 14-29. DOI: 10.1016/j.rse.2011.08.029 .
doi: 10.1016/j.rse.2011.08.029
Dai L, Che T, Xiao L, et al., 2022. Improving the Snow Volume Scattering Algorithm in a Microwave Forward Model by using ground-based remote sensing snow observations. Ieee Transactions on Geoscience and Remote Sensing, 60: 4300617. DOI:10.1109/TGRS.2021.3064309 .
doi: 10.1109/TGRS.2021.3064309
Deeb EJ, Forster RR, Kane DL, 2011. Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA. International Journal of Remote Sensing, 32(14): 3985-4003. DOI: 10.1080/01431161003801351 .
doi: 10.1080/01431161003801351
Deems JS, Painter TH, Finnegan DC, 2013. Lidar measurement of snow depth: a review. Journal of Glaciology, 59(215): 467-479. DOI: 10.3189/2013JoG12J154 .
doi: 10.3189/2013JoG12J154
Ding YJ, Yang JP, Wang SX, et al., 2020. A review of the interaction between the cryosphere and atmosphere. Sciences in Cold and Arid Regions. 12(6): 329-342. DOI: 10.3724/SP.J.1226.2020.00329 .
doi: 10.3724/SP.J.1226.2020.00329
Engen G, Guneriussen T, Overrein O, 2004. Delta-K Interferometric SAR Technique for Snow Water Equivalent (SWE) Retrieval. Ieee Geoscience and Remote Sensing Letters, 1(2): 57-61. DOI: 10.1109/lgrs.2003.822880 .
doi: 10.1109/lgrs.2003.822880
Esmaeily-Gazkohani A, Granberg HB, Gwyn QHJ, 2010. Repeat-pass cross-track interferometric SAR to measure dry snow water equivalent and depth. Canadian Journal of Remote Sensing, 36: 316-326. DOI: 10.5589/M10-064 .
doi: 10.5589/M10-064
Estilow TW, Young AH, Robinson DA, 2015. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth System Science Data, 7(1): 137-142. DOI: 10.5194/essd-7-137-2015 .
doi: 10.5194/essd-7-137-2015
Euskirchen ES, Mcguire AD, Chapin FS, 2007. Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Chang Biol, 13(11): 2425-2438. DOI: 10.1111/j.1365-2486.2007.01450.x .
doi: 10.1111/j.1365-2486.2007.01450.x
Ferrazzoli P, Guerriero L, 1996. Passive microwave remote sensing of forests: A model investigation. Ieee Transactions on Geoscience and Remote Sensing, 34: 433-443.
Foster JL, Chang ATC, Hall DK, 1997. Comparison of snow mass estimates from prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sensing of Environment, 62: 132-142.
Foster JL, Chang ATC, Hall DK, et al., 1991. Derivation of snow water equivalent in boreal forests using microwave radiometry. Arctic, 44: 147-152.
Foster JL, Sun CJ, Walker JP, et al., 2005. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of Environment, 94: 187-203.
Gao J, Williams MW, Fu X, et al., 2012. Spatiotemporal distribution of snow in eastern Tibet and the response to climate change. Remote Sensing of Environment, 121: 1-9.
Gao Y, Xie HJ, Lu N, et al., 2010. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. Journal of Hydrology, 385(1-4): 23-35. DOI: 10. 1016/j.jhydrol.2010.01.022 .
doi: 10. 1016/j.jhydrol.2010.01.022
Goita K, Walker AE, Goodison BE, 2003. Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data. International Journal of Remote Sensing, 24: 1097-1102.
Grippa M, Kergoat L, Le Toan T, et al., 2005. The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophysical Research Letters, 32: L21412. DOI: Artn L2141210.1029/2005gl024286 .
doi: Artn L2141210.1029/2005gl024286
Guneriussen T, Hogda KA, Johnsen H, et al., 2001. InSAR for estimation of changes in snow water equivalent of dry snow. Ieee Transactions on Geoscience and Remote Sensing, 39(10): 2101-2108. DOI: 10.1109/36.957273 .
doi: 10.1109/36.957273
Hall A, Qu X, 2006. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophysical Research Letters, 33: L03502. DOI: 10.1029/2005gl025127 .
doi: 10.1029/2005gl025127
Hall DK, 1987. Influence of depth hoar on microwave emission from snow in Northern Alaska. Cold Regions Science and Technology, 13: 225-231.
Han PF, Long D, Han ZY, et al., 2019. Improved understanding of snowmelt runoff from the headwaters of China's Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sensing of Environment, 224: 44-59. DOI: 10.1016/j.rse.2019.01.041 .
doi: 10.1016/j.rse.2019.01.041
Han ZY, Long D, Fang Y, et al., 2019. Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. Journal of Hydrology, 570: 96-105. DOI: 10.1016/j.jhydrol.2018.12.048 .
doi: 10.1016/j.jhydrol.2018.12.048
Han ZY, Long D, Han PF, et al., 2021. An improved modeling of precipitation phase and snow in the Lancang River Basin in Southwest China. Science China Technological Sciences, 64: 1513-1527. DOI: 10.1038/nature04141 .
doi: 10.1038/nature04141
Hernández-Henríquez MA, Déry SJ, Derksen C, 2015. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014. Environmental Research Letters, 10(4): 044010. DOI: 10.1088/1748-9326/10/4/044010 .
doi: 10.1088/1748-9326/10/4/044010
Hu Y, Che T, Dai L, et al., 2021. Snow depth fusion based on machine learning methods for the Northern Hemisphere. Remote Sensing, 13: 1250. DOI:10.3390/rs13071250 .
doi: 10.3390/rs13071250
Huang XD, Deng J, Ma XF, et al., 2016. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere, 10(5): 2453-2463. DOI: 10.5194/tc-10-2453-2016 .
doi: 10.5194/tc-10-2453-2016
Immerzeel WW, van Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian Water Towers. Science, 328(5984): 1382-1385. DOI: 10.1126/science.1183188 .
doi: 10.1126/science.1183188
Jiang LM, Wang P, Zhang LX, et al., 2014. Improvement of snow depth retrieval for FY3B-MWRI in China. Science China-Earth Sciences, 57: 1278-1292.
Johansson M, Callaghan TV, Bosio J, et al., 2013. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environmental Research Letters, 8(3): 035025. DOI: 10.1088/1748-9326/8/3/035025 .
doi: 10.1088/1748-9326/8/3/035025
Jonas T, Rixen C, Sturm M, et al., 2008. How alpine plant growth is linked to snow cover and climate variability. Journal of Geophysical Research-Biogeosciences, 113: G03013. DOI: 10.1029/2007jg000680 .
doi: 10.1029/2007jg000680
Kelly RE, Chang AT, Tsang L, et al., 2003. A prototype AMSR-E global snow area and snow depth algorithm. Ieee Transactions on Geoscience and Remote Sensing, 41: 230-242.
Kirchner PB, Bales RC, Molotch NP, et al., 2014. LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth System Sciences, 18(10): 4261-4275. DOI: 10.5194/hess-18-4261-2014 .
doi: 10.5194/hess-18-4261-2014
Kouki K, Anttila K, Manninen T, et al., 2019. Intercomparison of snow melt onset date estimates from optical and microwave satellite instruments over the Northern Hemisphere for the period 1982-2015. Journal of Geophysical Research: Atmospheres, 124(21): 11205-11219. DOI: 10. 1029/2018jd030197 .
doi: 10. 1029/2018jd030197
Kruopis N, Praks J, Arslan AN, et al., 1999. Passive microwave measurements of snow-covered forest areas in EMAC'95. Ieee Transactions on Geoscience and Remote Sensing, 37: 2699-2705.
Lemmetyinen J, Kontu A, Pulliainen J, et al., 2016. Nordic Snow Radar Experiment. Geoscientific Instrumentation Methods and Data Systems, 5: 403-415.
Li H, Xiao PF, Feng XZ, et al., 2014. Snow depth derived from repeat-pass InSAR sounding. Journal of Glaciology and Geocryology, 36(3): 517-526. DOI: 1000-0240(2014)36:3<517:JYZGID>2.0.TX;2-F. (in Chinese)
doi: 1000-0240(2014)36:3<517:JYZGID>2.0.TX;2-F.
Lievens H, Demuzere M, Marshall HP, et al., 2019. Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications, 10: 4629. .
Liu JL, Li Z, Huang L, et al., 2014. Hemispheric-scale comparison of monthly passive microwave snow water equivalent products. Journal of Applied Remote Sensing, 8(1): 084688. DOI: 10.1117/1.Jrs.8.084688 .
doi: 10.1117/1.Jrs.8.084688
Marks D, Dozier J, 1992. Climate and energy exchange at the snow surface in the Alpine Region of the Sierra-Nevada.2. Snow Cover Energy-Balance. Water Resources Research, 28(11): 3043-3054. DOI: 10.1029/92wr01483 .
doi: 10.1029/92wr01483
Mortimer C, Mudryk L, Derksen C, et al., 2020. Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14(5): 1579-1594. DOI: 10.5194/tc-14-1579-2020 .
doi: 10.5194/tc-14-1579-2020
Myneni RB, Keeling CD, Tucker CJ, et al., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626): 698-702. DOI: 10.1038/386698a0 .
doi: 10.1038/386698a0
Painter TH, Berisford DF, Boardman JW, et al., 2016. The airborne snow observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sensing of Environment, 184: 139-152. DOI: 10.1016/j.rse.2016. 06.018 .
doi: 10.1016/j.rse.2016. 06.018
Pampaloni P, 2004. Microwave radiometry of forests. Waves in Random Media, 14: 275-298.
Peng S, Piao S, Ciais P, et al., 2013. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters, 8(1): 014008. DOI: 10.1088/1748-9326/8/1/014008 .
doi: 10.1088/1748-9326/8/1/014008
Pettinato S, Santi E, Brogioni M, et al., 2013. The potential of COSMO-SkyMed SAR images in monitoring snow cover characteristics. Ieee Geoscience and Remote Sensing Letters, 10(1): 9-13. DOI: 10.1109/lgrs.2012.2189752 .
doi: 10.1109/lgrs.2012.2189752
Pimentel R, Herrero J, Zeng Y, et al., 2015. Study of snow dynamics at subgrid scale in semiarid environments combining terrestrial photography and data assimilation techniques. Journal of Hydrometeorology, 16(2): 563-578. DOI: http://dx.doi.org/10.1175/JHM-D-14-0046.1 .
doi: 10.1175/JHM-D-14-0046.1
Pivot FC, 2012. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada. Remote Sensing, 4(7): 2133-2155. DOI: 10.3390/rs4072133 .
doi: 10.3390/rs4072133
Poulin A, Brissette F, Leconte R, et al., 2011. Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. Journal of Hydrology, 409(3-4): 626-636. DOI: 10.1016/j.jhydrol.2011. 08.057 .
doi: 10.1016/j.jhydrol.2011. 08.057
Pulliainen J, 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment, 101: 257-269.
Pulliainen J, Luojus K, Derksen C, et al., 2020. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581(7808): 294-298. DOI: 10.1038/s41586-020-2258-0 .
doi: 10.1038/s41586-020-2258-0
Pulliainen JT, Grandell J, Hallikainen MT, 1999. HUT snow emission model and its applicability to snow water equivalent retrieval. Ieee Transactions on Geoscience and Remote Sensing, 37: 1378-1390.
Qin J, Wu JK, Han TD, et al., 2020. Quantitatively estimate the components of natural runoff and identify the impacting factors in a snow-fed river basin of China. Sciences in Cold and Arid Regions, 12(3): 154-164. DOI: 10.3724/SP.J.1226.2020.00154 .
doi: 10.3724/SP.J.1226.2020.00154
Ran YH, Li X, Cheng GD, 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere, 12(2): 595-608. DOI: 10.5194/tc-12-595-2018 .
doi: 10.5194/tc-12-595-2018
Savoie MH, Armstrong RL, Brodzik MJ, et al., 2009. Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau. Remote Sensing of Environment, 113(12): 2661-2669. DOI: 10. 1016/j.rse.2009.08.006 .
doi: 10. 1016/j.rse.2009.08.006
Shi JC, Dozier J, 2000. Estimation of snow water equivalence using SIR-C/X-SAR, part II: Inferring snow depth and particle size. Ieee Transactions on Geoscience and Remote Sensing, 38(6): 2475-2488.
Skaugen T, Melvold K, 2019. Modeling the snow depth variability with a high-resolution lidar data set and nonlinear terrain dependency. Water Resources Research, 55(11): 9689-9704. DOI: 10.1029/2019WR025030 .
doi: 10.1029/2019WR025030
Sturm M, Holmgren J, Liston GE, 1995. A seasonal snow cover classification-system for local to global applications. Journal of Climate, 8: 1261-1283.
Sun S, Che T, Wang J, et al., 2015. Estimation and analysis of snow water equivalents based on C-band SAR data and field measurements. Arctic Antarctic and Alpine Research, 47(2): 313-326. DOI: 10.1657/aaar00c-13-135 .
doi: 10.1657/aaar00c-13-135
Tedesco M, Kim EJ, 2006. Intercomparison of electromagnetic models for passive microwave remote sensing of snow. Ieee Transactions on Geoscience and Remote Sensing, 44: 2654-2666.
Tedesco M, Narvekar PS, 2010. Assessment of the NASA AMSR-E SWE Product. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3: 141-159.
Treichler D, Kaeaeb A, 2017. Snow depth from ICESat laser altimetry—A test study in southern Norway. Remote Sensing of Environment, 191: 389-401. DOI: 10.1016/j.rse.2017. 01.022 .
doi: 10.1016/j.rse.2017. 01.022
Tsang L, Chen CT, Chang ATC, et al., 2000. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow. Radio Science, 35: 731-749.
Ulaby FT, Stiles WH, 1980. The Active and Passive Microwave Response to Snow Parameters.2. Water Equivalent of Dry Snow. Journal of Geophysical Research-Oceans, 85(Nc2): 1045-1049. DOI: 10.1029/Jc085ic02p01045 .
doi: 10.1029/Jc085ic02p01045
Vuyovich CM, Jacobs JM, Daly SF, 2014. Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resources Research, 50(11): 9088-9102. DOI: 10.1002/2013WR014734 .
doi: 10.1002/2013WR014734
Wahren CHA, Walker MD, Bret-Harte MS, 2005. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Chang Biol, 11(4): 537-552. DOI: 10.1111/j.1365-2486.2005.00927.x .
doi: 10.1111/j.1365-2486.2005.00927.x
Wang A, Xu L, Kong X, 2018. Assessments of the Northern Hemisphere snow cover response to 1.5 and 2.0 °C warming. Earth System Dynamics, 9(2): 865-877. DOI: 10.5194/esd-9-865-2018 .
doi: 10.5194/esd-9-865-2018
Wang XF, Xiao JF, Li X, et al., 2017. No consistent evidence for advancing or delaying trends in Spring Phenology on the Tibetan Plateau. Journal of Geophysical Research-Biogeosciences, 122: 3288-3305.
Xiao L, Che T, Dai LY, 2020. Evaluation of remote sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere during 1980-2016. Remote Sensing, 12(19): 3253. DOI: 10.3390/Rs12193253 .
doi: 10.3390/Rs12193253
Xiao XX, Zhang TJ, Zhong XY, et al., 2018. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sensing of Environment, 210: 48-64. DOI: 10.1016/j.rse.2018.03.008 .
doi: 10.1016/j.rse.2018.03.008
Yi Y, Kimball JS, Rawlins MA, et al., 2015. The role of snow cover affecting boreal-arctic soil freeze-thaw and carbon dynamics. Biogeosciences, 12(19): 5811-5829. DOI: 10. 5194/bg-12-5811-2015 .
doi: 10. 5194/bg-12-5811-2015
Yu Z, Liu S, Wang J, et al., 2013. Effects of seasonal snow on the growing season of temperate vegetation in China. Global Change Biology, 19: 2182-2195.
[1] ShengJie Wang,Yang Song,MingJun Zhang,Athanassios A. Argiriou,YuDong Shi. Satellite-measured water vapor isotopologues across the Tianshan Mountains, central Asia [J]. Sciences in Cold and Arid Regions, 2021, 13(6): 488-495.
[2] HuiRan Gao,WanChang Zhang. Coupling numerical simulation with remotely sensed information for the study of frozen soil dynamics [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 404-417.
[3] LiLi Yan,Jian Wang. Glacier mapping based on Chinese high-resolution remote sensing GF-1 satellite and topographic data [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 218-225.
[4] YouHua Ran,Yan Zhao. A landscape management analysis framework and its preliminary application in Ejina Oasis, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 239-247.
[5] HongWei Wang,Yuan Qi,ChunLin Huang,XiaoYing Li,XiaoHong Deng,JinLong Zhang. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 150-158.
[6] ZhiCai Li, Yan Song, Wei Zhang, Jing Zhang, ZiNiu Xiao. Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 524-535.
[7] JiaLi Xie, ChangZhen Yan, ZhiXiang Lu, Sen Li. Remote-sensing data reveals the response of soil erosion intensity to land use change in Loess Plateau,China [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 325-333.
[8] XiuJuan Zhang, ShiYin Liu, Li Liu. Moraine-dammed glacial lake changes during the recent 40 years in the Poiqu River Basin, Himalayas [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 654-665.
[9] JinChang Li, HaiXia Liu, Yong Liu, ZhiZhu Su, ZiQiang Du. Land use and land cover change processes in China's eastern Loess Plateau [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 722-729.
[10] JinChang Li, HaiXia Liu, ZhiZhu Su, Yong Liu, YongGang Yang. Characterizing changes in ecosystem service values in China's eastern Loess Plateau [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 272-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!