Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (6): 488-495.doi: 10.3724/SP.J.1226.2021.21001

Previous Articles     Next Articles

Satellite-measured water vapor isotopologues across the Tianshan Mountains, central Asia

ShengJie Wang1,2,Yang Song1,2,MingJun Zhang1,2(),Athanassios A. Argiriou3,YuDong Shi1,2   

  1. 1.College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu 730070, China
    2.Key Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou, Gansu 730070, China
    3.Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR -26500 Patras, Greece
  • Received:2021-01-05 Accepted:2021-06-07 Online:2021-12-31 Published:2022-01-11
  • Contact: MingJun Zhang
  • Supported by:
    the National Natural Science Foundation of China(41971034);the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112);the Northwest Normal University(NWNU-LKZD2021-04)


The satellite-based water vapor stable isotope measurements have been widely used in modern hydrological and atmospheric studies. Their use is important for arid areas where the precipitation events are limited, and below-cloud evaporation is strong. This study presents the spatial and temporal characteristics of water vapor isotopologue across the Tianshan Mountains in arid central Asia using the NASA Aura Tropospheric Emission Spectrometer (TES). The near-surface water vapor stable isotopes are enriched in summer and depleted in winter, consistent with the seasonality of precipitation isotopes. From the surface to 200 hPa, the isotope values in water vapor show a decreasing trend as the atmospheric pressure decreases and elevation rises. The vapor isotope values in the lower atmosphere in the southern basin of the Tianshan Mountains are usually higher than that in the northern basin, and the seasonal difference in vapor isotopes is slightly more significant in the southern basin. In addition, bottom vapor isotopologue in summer shows a depletion trend from west to east, consistent with the rainout effect of the westerly moisture path in central Asia. The isotopic signature provided by the TES is helpful to understand the moisture transport and below-cloud processes influencing stable water isotopes in meteoric water.

Key words: water vapor isotopes, satellite measurement, Tianshan Mountains, central Asia

Figure 1

Location of the Tianshan Mountains in central Asia"

Figure 2

Box plot showing the monthly variations of precipitable water amount (PW) across the Tianshan Mountains (The top and bottom of a box represent the 25th and 75th percentiles, and the horizontal line within a box represents the median; the whiskers show the 90th and 10th percentiles, and the empty points above and below the whiskers are the 95th and 5th percentiles)"

Figure 3

Vertical profiles of δ2H in water vapor across the Tianshan Mountains: (a) January 2005, 2006, 2007 and 2008, (b) July 2005, 2007, 2008 and 2010"

Figure 4

Monthly variation of the vertical profile of δ2H in water vapor in 2007 across the Tianshan Mountains"

Figure 5

Spatial distribution of δ2H in water vapor at 825 hPa (a, b and c) and 681 hPa (d, e and f) in January 2007 (a and d) and July 2007 (b and e) and their difference (c and f) across the Tianshan Mountains"

Figure 6

Monthly variations of δ2H in water vapor at 825 hPa (a and b) and 681 hPa (c and d) in 2007 for different latitudes (a and c) and longitudes (b and d) across the Tianshan Mountains"

Figure 7

Variations of the vertical profile of δ2H in water vapor in 2007 for different north latitudes (a and c) and east longitudes (b and d) across the Tianshan Mountains"

Aggarwal PK, Romatschke U, Araguas-Araguas L, et al., 2016. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9(8): 624-629. DOI: 10.1038/ngeo2739.
doi: 10.1038/ngeo2739
Araguás‐Araguás L, Froehlich K, Rozanski K, 1998. Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research, 103(D22): 28721-28742. DOI: 10.1029/98JD02582.
doi: 10.1029/98JD02582
Bailey A, Blossey PN, Noone D, et al., 2017. Detecting shifts in tropical moisture imbalances with satellite-derived isotope ratios in water vapor. Journal of Geophysical Research: Atmospheres, 122(11): 5763-5779. DOI: 10.1002/2016JD026222.
doi: 10.1002/2016JD026222
Bershaw J, 2018. Controls on deuterium excess across Asia. Geosciences, 8(7): 257. DOI: 10.3390/geosciences8070257.
doi: 10.3390/geosciences8070257
Bowen GJ, Cai Z, Fiorella RP, et al., 2019. Isotopes in the water cycle: regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences, 47: 453-479. DOI: 10.1146/annurev-earth-053018-060220.
doi: 10.1146/annurev-earth-053018-060220
Chen FH, Chen JH, Huang W, et al., 2019. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews, 192: 337-354. DOI: 10.1016/j.earscirev.2019.03.005.
doi: 10.1016/j.earscirev.2019.03.005
Crawford J, Hollins SE, Meredith KT, et al., 2017. Precipitation stable isotope variability and subcloud evaporation processes in a semi-arid region. Hydrological Processes, 31(1): 20-34. DOI: 10.1002/hyp.10885.
doi: 10.1002/hyp.10885
Field RD, Kim D, LeGrande AN, et al., 2014. Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES. Geophysical Research Letters, 41(16): 6030-6036. DOI: 10.1002/2014GL060572.
doi: 10.1002/2014GL060572
Galewsky J, Steen-Larsen HC, Field RD, et al., 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54(5): 809-865. DOI: 10.1002/2015RG000512.
doi: 10.1002/2015RG000512
Herman RL, Cherry JE, Young J, et al., 2014. Aircraft validation of Aura Tropospheric Emission Spectrometer retrievals of HDO/H2O. Atmospheric Measurement Techniques, 7(9): 3127-3138. DOI: 10.5194/amt-7-3127-2014.
doi: 10.5194/amt-7-3127-2014
Hu ZY, Zhou QM, Chen X, et al., 2018. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. International Journal of Climatology, 38(9): 3475-3493. DOI: 10.1002/joc.5510.
doi: 10.1002/joc.5510
Jasechko S, 2019. Global isotope hydrogeology—Review. Reviews of Geophysics, 57(3): 835-965. DOI: 10.1029/2018RG000627.
doi: 10.1029/2018RG000627
Juhlke TR, Meier C, van Geldern R, et al., 2019. Assessing moisture sources of precipitation in the Western Pamir Mountains (Tajikistan, Central Asia) using deuterium excess. Tellus B: Chemical and Physical Meteorology, 71(1): 1601987. DOI: 10.1080/16000889.2019.1601987.
doi: 10.1080/16000889.2019.1601987
Kong YL, Pang ZH, 2016. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. Journal of Hydrology, 542: 222-230. DOI: 10.1016/j.jhydrol. 2016.09.007.
doi: 10.1016/j.jhydrol. 2016.09.007
Lacour JL, Risi C, Worden J, et al., 2018. Importance of depth and intensity of convection on the isotopic composition of water vapor as seen from IASI and TES δD observations. Earth and Planetary Science Letters, 481: 387-394. DOI: 10.1016/j.epsl.2017.10.048.
doi: 10.1016/j.epsl.2017.10.048
Lee JE, Risi C, Fung I, et al., 2012. Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. Journal of Geophysical Research, 117(D15): D15112. DOI: 10.1029/2011JD017133.
doi: 10.1029/2011JD017133
Leroy-Dos Santos C, Masson-Delmotte V, Casado M, et al., 2020. A 4.5 year-long record of Svalbard water vapor isotopic composition documents winter air mass origin. Journal of Geophysical Research: Atmospheres, 125(23): e2020JD032681. DOI: 10.1029/2020JD032681.
doi: 10.1029/2020JD032681
Li YJ, An WL, Pang HX, et al., 2020. Variations of stable isotopic composition in atmospheric water vapor and their controlling factors—a six-year continuous sampling study in Nanjing, Eastern China. Journal of Geophysical Research: Atmospheres, 125(22): e2019JD031697. DOI: 10.1029/2019JD031697.
doi: 10.1029/2019JD031697
Liu JR, Song XF, Yuan GF, et al., 2014. Stable isotopic compositions of precipitation in China. Tellus B: Chemical and Physical Meteorology, 66(1): 22567. DOI: 10.3402/tellusb.v66.22567.
doi: 10.3402/tellusb.v66.22567
Liu ZF, Tian LD, Chai XR, et al., 2008. A model-based determination of spatial variation of precipitation δ18O over China. Chemical Geology, 249(1-2): 203-212. DOI: 10.1016/j.chemgeo.2007.12.011.
doi: 10.1016/j.chemgeo.2007.12.011
Liu ZF, Yoshimura K, Kennedy CD, et al., 2014. Water vapor δD dynamics over China derived from SCIAMACHY satellite measurements. Science China Earth Sciences, 57(4): 813-823. DOI: 10.1007/s11430-013-4687-1.
doi: 10.1007/s11430-013-4687-1
Munksgaard NC, Zwart C, Haig J, et al., 2020. Coupled rainfall and water vapour stable isotope time series reveal tropical atmospheric processes on multiple timescales. Hydrological Processes, 34(1): 111-124. DOI: 10.1002/hyp.13576.
doi: 10.1002/hyp.13576
Rahul P, Ghosh P, Bhattacharya SK, et al., 2016. Controlling factors of rainwater and water vapor isotopes at Bangalore, India: Constraints from observations in 2013 Indian monsoon. Journal of Geophysical Research: Atmospheres, 121(23): 13936-13952. DOI: 10.1002/2016JD025352.
doi: 10.1002/2016JD025352
Rao ZG, Tian YP, Li YX, et al., 2020. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances. Sciences in Cold and Arid Regions, 12(6): 371-379. DOI: 10.3724/SP.J.1226. 2020.00371.
doi: 10.3724/SP.J.1226. 2020.00371
Rao ZG, Wu DD, Shi FX, et al., 2019. Reconciling the 'westerlies' and 'monsoon' models: A new hypothesis for the Holocene moisture evolution of the Xinjiang region, NW China. Earth-Science Reviews, 191: 263-272. DOI: 10.1016/j.earscirev.2019.03.002.
doi: 10.1016/j.earscirev.2019.03.002
Salamalikis V, Argiriou AA, Dotsika E, 2016. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Science of the Total Environment, 544: 1059-1072. DOI: 10. 1016/j.scitotenv.2015.11.072.
doi: 10. 1016/j.scitotenv.2015.11.072
Schneider A, Borsdorff T, Aemisegger F, et al., 2020. First data set of H2O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI). Atmospheric Measurement Techniques, 13(1): 85-100. DOI: 10.5194/amt-13-85-2020.
doi: 10.5194/amt-13-85-2020
Shi XY, Risi C, Pu T, et al., 2020. Variability of isotope composition of precipitation in the Southeastern Tibetan Plateau from the synoptic to seasonal time scale. Journal of Geophysical Research: Atmospheres, 125(6): e2019JD031751. DOI: 10.1029/2019JD031751.
doi: 10.1029/2019JD031751
Shi YD, Wang SJ, Wang LW, et al., 2021. Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia. Atmospheric Research, 259: 105698. DOI: 10.1016/j.atmosres.2021.105698.
doi: 10.1016/j.atmosres.2021.105698
Tian LD, Yao TD, MacClune K, et al., 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research, 112(D10): D10112. DOI: 10.1029/2006JD007718.
doi: 10.1029/2006JD007718
Tian LD, Yu WS, Schuster PF, et al., 2020. Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau. Journal of Hydrology, 580: 124237. DOI: 10.1016/j.jhydrol.2019.124237.
doi: 10.1016/j.jhydrol.2019.124237
Wang LW, Zhang MJ, Wang SJ, et al., 2020. Stable isotope signatures and moisture transport of a typical heavy precipitation case in the Southern Tianshan Mountains. Chinese Geographical Science, 30(1): 180-188. DOI: 10.1007/s11769-019-1091-6.
doi: 10.1007/s11769-019-1091-6
Wang SJ, Jiao R, Zhang MJ, et al. 2021. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China. Journal of Geophysical Research: Atmospheres, 126(7): e2020JD033075. DOI: 10. 1029/2020JD033075.
doi: 10. 1029/2020JD033075
Wang SJ, Zhang MJ, Che YJ, et al., 2016a. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resources Research, 52(4): 3246-3257. DOI: 10.1002/2015WR018135.
doi: 10.1002/2015WR018135
Wang SJ, Zhang MJ, Che YJ, et al., 2016b. Influence of below-cloud evaporation on deuterium excess in precipitation of arid central Asia and its meteorological controls. Journal of Hydrometeorology, 17(7): 1973-1984. DOI: 10.1175/JHM-D-15-0203.1.
doi: 10.1175/JHM-D-15-0203.1
Wang SJ, Zhang MJ, Crawford J, et al., 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research: Atmospheres, 122(5): 2667-2682. DOI: 10.1002/2015JD024626.
doi: 10.1002/2015JD024626
Wang SJ, Zhang MJ, Hughes CE, et al., 2016c. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, central Asia. Tellus B: Chemical and Physical Meteorology, 68(1): 26206. DOI: 10.3402/tellusb.v68.26206.
doi: 10.3402/tellusb.v68.26206
Wei ZW, Lee XH, Aemisegger F, et al., 2019. A global database of water vapor isotopes measured with high temporal resolution infrared laser spectroscopy. Scientific Data, 6(1): 180302. DOI: 10.1038/sdata.2018.302.
doi: 10.1038/sdata.2018.302
Worden J, Bowman K, Noone D, et al., 2006. Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio: estimation approach and characterization. Journal of Geophysical Research, 111(D16): D16309. DOI: 10.1029/2005JD006606.
doi: 10.1029/2005JD006606
Worden J, Noone D, Galewsky J, et al., 2011. Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory. Atmospheric Chemistry and Physics, 11(9): 4491-4503. DOI: 10.5194/acp-11-4491-2011.
doi: 10.5194/acp-11-4491-2011
Worden JR, Kulawik SS, Fu DJ, et al., 2019. Characterization and evaluation of AIRS-based estimates of the deuterium content of water vapor. Atmospheric Measurement Techniques, 12(4): 2331-2339. DOI: 10.5194/amt-12-2331-2019.
doi: 10.5194/amt-12-2331-2019
Wu HW, Li XY, Zhang J, et al., 2019. Stable isotopes of atmospheric water vapour and precipitation in the northeast Qinghai-Tibetan Plateau. Hydrological Processes, 33(23): 2997-3009. DOI: 10.1002/hyp.13541.
doi: 10.1002/hyp.13541
Yang T, Li Q, Chen X, et al., 2020. Spatiotemporal variability of the precipitation concentration and diversity in Central Asia. Atmospheric Research, 241: 104954. DOI: 10.1016/j.atmosres.2020.104954.
doi: 10.1016/j.atmosres.2020.104954
Yao JQ, Chen YN, Zhao Y, et al., 2020. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. Journal of Hydrology, 585: 124823. DOI: 10.1016/j.jhydrol.2020.124823.
doi: 10.1016/j.jhydrol.2020.124823
Yao JQ, Hu WF, Chen YN, et al., 2019. Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Science of the Total Environment, 660: 724-732. DOI: 10.1016/j.scitotenv.2019.01.084.
doi: 10.1016/j.scitotenv.2019.01.084
Yao JQ, Liu XC, Hu WF, 2021. Stable isotope compositions of precipitation over Central Asia. PeerJ, 9: e11312. DOI: 10.7717/peerj.11312.
doi: 10.7717/peerj.11312
Yao TD, Masson-Delmotte V, Gao J, et al., 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics, 51(4): 525-548. DOI: 10.1002/rog.20023.
doi: 10.1002/rog.20023
Yao TC, Zhang XP, Guan HD, et al., 2018. Climatic and environmental controls on stable isotopes in atmospheric water vapor near the surface observed in Changsha, China. Atmospheric Environment, 189: 252-263. DOI: 10.1016/j.atmosenv.2018.07.008.
doi: 10.1016/j.atmosenv.2018.07.008
Yu WS, Tian LD, Risi C, et al., 2016. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions. Earth and Planetary Science Letters, 456: 146-156. DOI: 10.1016/j.epsl.2016. 10.001.
doi: 10.1016/j.epsl.2016. 10.001
Zhang MJ, Wang SJ, 2016. A review of precipitation isotope studies in China: Basic pattern and hydrological process. Journal of Geographical Sciences, 26(7): 921-938. DOI: 10.1007/s11442-016-1307-y.
doi: 10.1007/s11442-016-1307-y
Zhang MJ, Wang SJ, 2018. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia. Sciences in Cold and Arid Regions, 10(1): 27-37. DOI: 10.3724/SP.J.1226.2018.00027.
doi: 10.3724/SP.J.1226.2018.00027
Zhang XP, Zhang XZ, Guan HD, et al., 2012. Spatiotemporal distributions of δD in atmospheric water vapor based on TES data during 2004-2009. Acta Meteorologica Sinica, 26(6): 683-699. DOI: 10.1007/s13351-012-0602-5.
doi: 10.1007/s13351-012-0602-5
[1] ZhiGuo Rao,YiPing Tian,YunXia Li,HaiChun Guo,XinZhu Zhang,Guang Han,XinPing Zhang. Holocene precipitation δ18O as an indicator of temperature history in arid central Asia: an overview of recent advances [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 371-379.
[2] ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388.
[3] MingJun Zhang, ShengJie Wang. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 27-37.
[4] XiaoYu Zhang, ShengJie Wang, Xin Zhang, Ping Zhou, Shuang Jin, ZhongQin Li, Nozomu Takeuchi. Chemistry and environmental significance of aerosols collected in the eastern Tianshan [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 455-466.
Full text



[1] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[2] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .
[3] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207 -218 .
[4] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[5] Yan Xie, Jun Wen, Rong Liu, Xin Wang, DongYu Jia. Analysis of water vapour flux between alpine wetlands underlying surface and atmosphere in the source region of the Yellow River[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 305 -316 .
[6] MengQi Li, XingDong He, XiangXiang Yang, YueDan Zhao, YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340 -346 .
[7] ShuangQing Liu, ZuHan Liu, WeiGuo Wang, YuePing Lu, XiaoLiang Zhu, Bin Guo. Multifractal process of runoff fluctuation of the Kaidu River in Xinjiang, China[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 232 -239 .
[8] JunZhan Wang, JianJun Qu, LiHai Tan, KeCun Zhang. A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 145 -150 .
[9] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[10] ShaoYang Liu, NingKe Hu, Jin Zhang, ZhiChao Lv. Spatiotemporal change of carbon storage in the Loess Plateau of northern Shaanxi, based on the InVEST Model[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 240 -250 .