Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (3): 218-225.doi: 10.3724/SP.J.1226.2019.00218.

Previous Articles    

Glacier mapping based on Chinese high-resolution remote sensing GF-1 satellite and topographic data

LiLi Yan(),Jian Wang   

  1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-01-07 Accepted:2019-04-24 Online:2019-06-30 Published:2019-07-01
  • Contact: LiLi Yan


The precise glacier boundary is a fundamental requirement for glacier inventory, the assessment of climate change and water management in remote mountain areas. However, some glaciers in mountain areas are covered by debris. The high spatial resolution images bring opportunities in mapping debris-covered glaciers. To discuss the capability of Chinese GaoFen-1 satellite lacking the short wave infrared band and thermal infrared band in mapping glaciers, this study distinguished supraglacial terrain from surrounding debris by combining GaoFen-1 (GF-1) wide-field-view (WFV) images, the ratio of the thermal infrared imagery and morphometric parameters (DEM and slope) with 30 m resolution. The overall accuracy of 90.94% indicated that this method was effective for mapping supraglacial terrain in mountain areas. Comparing this result with the combination of GF-1 WFV and low-resolution morphometric parameters shows that a high-quality DEM and the thermal infrared band enhanced the accuracy of glacier mapping especially debris-covered ice in steep terrain. The user's and producer's accuracies of glacier area were also improved from 89.67% and 85.95% to 92.83% and 90.34%, respectively. GF data is recommended for mapping heavily debris-covered glaciers and will be combined with SAR data for future studies.

Key words: glacier mapping, GaoFen-1 satellite, high-quality DEM, morphometric parameters, debris-covered glaciers

Figure 1

Location of the study area. GF-1 WFV image with false colour composite of bands 432"

Table 1

Data used in this study"

Sensor Date Spatial resolution
GF-1 WFV 2015.09.01 16 m
Landsat 8 OLI/TIR/PAN 2015.07.08 30 m/100 m/15 m
SRTM 2000.11.02 30 m
CGI-2 2009

Figure 2

Flowchart of glacier mapping based on GF-1 and Landsat 8 satellite"

Table 2

The knowledge rules for glacier mapping"

Types Clean ice Ice tongue
Rules band 1>0.085, DEM>3,761 m Thermal ratio <170 & 3,569 m<DEM<4,179 m, & band 1<0.085 & texture (thermal ratio)<0.0236 & band 2<0.046 and Thermal ratio>170 & 3,601 m<DEM<4,216 m & band 1/band 4>1.33, slope<19 & texture range(band 1)>0.074 & band 2<0.04

Table 3

Overall accuracy and kappa coefficient for glacier mapping"

Overall accuracy Kappa coefficient Glacier area Non-glacier area
User's accuracy Producer's accuracy User's accuracy Producer's accuracy
90.94% 0.81 92.83% 90.34% 88.81% 92.66%

Figure 3

Comparisons of the classification results"

Aizen VB , Kuzmichenok VA , Surazakov AB , et al ., 2007. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Global & Planetary Change, 56(3-4): 328-340. DOI:10.1016/j.gloplacha. 2006.07.016 .
doi: 10.1016/j.gloplacha. 2006.07.016
Albert TH, 2002. Evaluation of remote sensing techniques for ice-area classification applied to the Tropical Quelccaya ice cap, Peru. Polar Geography, 26: 210-226. DOI: 10.1080/789610193 .
doi: 10.1080/789610193
Alifu H , Tateishi R , Johnson B , 2015. A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. International Journal of Remote Sensing, 36: 2063-2075. DOI: 10.1080/2150704X.2015.1034886 .
doi: 10.1080/2150704X.2015.1034886
Bishop MP , Bonk R , Kamp U , et al ., 2001. Terrain analysis and data modeling for alpine glacier mapping. Polar Geography, 25: 182-201. DOI: 10.1080/10889370109377712 .
doi: 10.1080/10889370109377712
Blaschke T, 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16. DOI: 10.1016/j.isprsjprs.2009.06.004 .
doi: 10.1016/j.isprsjprs.2009.06.004
Bolch T , Buchroithner MF , Kunert A , et al ., 2007. Automated Delineation of Debris-Covered Glaciers Based on ASTER Data. In: Proceedings of 27th EARSel Symposium, Bozen, Italy, June 4-7, 2007.
Bolch T , Buchroithner MF , Pieczonka T , 2008. Planimetric and volumetric glacier changes in the Khumbu Himalaya 1962-2005 using Corona and ASTER data. Journal of Glaciology, 54(187): 562-600. DOI: 10.3189/0022143087865 70782 .
doi: 10.3189/0022143087865 70782
Jacobs JD , Simms ÉL , Simms A , 1997. Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. Journal of Glaciology, 43(143): 98-102. DOI: 10. 1017/S0022143000002859 .
doi: 10. 1017/S0022143000002859
Jin X, 2012. Segmentation-based image processing system. U.S. Patent 8,260,048, filed November 14, 2007, and issued September 4, 2012.
Kääb A , Huggel C , Paul F , et al ., 2002. Glacier monitoring from ASTER imagery: accuracy and applications. Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space, Bern, pp. 43-53.
Kargel JS , Abrams MJ , Bishop MP , et al ., 2005. Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99(1-2): 187-219. DOI: 10.1080/014311699213442 .
doi: 10.1080/014311699213442
Karimi N , Farokhnia A , Karimi L , et al ., 2012. Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Regions Science and Technology, 71(4): 73-83. DOI: 10.1016/j.coldregions.2011.10.004 .
doi: 10.1016/j.coldregions.2011.10.004
Kraaijenbrinka PDA , Sheab JM , Pellicciottic F , et al ., 2016. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186(1): 581-595. DOI: 10.1016/j.rse.2016.09.013 .
doi: 10.1016/j.rse.2016.09.013
Lemke PJ , Ren RB , Alley I , et al ., 2007. Observations: changes in snow, ice and frozen ground. In: Solomon S , Qin DH , Manning M , et al . (eds.).Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Britain, pp . 337-383.
Lougeay R, 1974. Detection of buried glacial and ground ice with thermal infrared remote sensing. In: Santeford HS, Smith JL (eds.). Advanced concepts and techniques in the study of snow and ice resources. National Academy of Sciences, Washington DC , pp . 487-494.
Paul F, 2002. Combined technologies allow rapid analysis of glacier changes. EOS, Transactions, American Geophysical Union, American, 83: 253, 260-261. DOI: 10.1029/2002 EO000177 .
doi: 10.1029/2002 EO000177
Paul F , Huggel C , Kääb A , 2004. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4): 510-518. DOI: 10.1016/j.rse.2003.11.007 .
doi: 10.1016/j.rse.2003.11.007
Paul F , Huggel C , Kääb A , et al ., 2003. Comparison of TM-derived glacier areas with higher resolution data sets. EARSeL Workshop on Remote Sensing of Land Ice and Snow, Bern, 11.-13.3. EARSeL eProceedings, 2: 15-21.
Ranzi R , Grossi G , Iacovelli L , et al ., 2004. Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project. International Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA.
Rastner P , Bolch T , Notarnicola C , et al ., 2014. A comparison of pixel- and object-based glacier classification with optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3): 984-993. DOI: 10.1109/JSTARS.2013.2274668 .
doi: 10.1109/JSTARS.2013.2274668
Robinson DJ , Redding NJ , Crisp DJ , 2002. Implementation of a fast algorithm for segmenting SAR imagery. Scientific and Technical Report. Australia: Defense Science and Technology Organization.
Robson BA, Hölbling D , Nuth C , et al ., 2016. Decadal scale changes in glacier area in the Hohe Tauern national park (Austria) determined by object-based image analysis. Remote Sensing, 8: 67. DOI: 10.3390/rs8010067 .
doi: 10.3390/rs8010067
Robson BA, Nuth C , Dahl SO , et al ., 2015. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170(1): 372-387. DOI: 10. 1016/j.rse.2015.10.001 .
doi: 10. 1016/j.rse.2015.10.001
Shukla A , Arora MK , Gupta RP , 2010b. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7): 1378-1387. DOI: 10.1016/j.rse.2010.01.015 .
doi: 10.1016/j.rse.2010.01.015
Shukla A , Arora MK , Gupta RP , 2010a. Delineation of debris-covered glacier boundaries using optical and thermal remote sensing data. Remote Sensing Letters, 1(1): 11-17. DOI: 10.1080/01431160903159316 .
doi: 10.1080/01431160903159316
Sidjak RW , Wheate RD , 1999. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2): 273-284. DOI: 10.1080/014311699213442 .
doi: 10.1080/014311699213442
Taschner S , Ranzi R , 2002. Comparing Opportunities of Landsat-TM and ASTER Data for Monitoring a Debris-Covered Glacier in the Italian Alps within the GLIMS Project. International Geoscience and Remote Sensing Symposium, Toronto, Canada.
Xiao PF , Feng XZ , Xie SP , 2015. Research progresses of high-resolution remote sensing of snow in Manasi River Basin in Tianshan Mountains, Xinjiang Province. Journal of Nanjing University (Natural Sciences), 51(5): 909-920. (in Chinese)
No related articles found!
Full text



No Suggested Reading articles found!