Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (6): 522-532.doi: 10.3724/SP.J.1226.2021.20102

Previous Articles    

Seasonal variation of airborne fungi of the Tiantishan Grottoes and Western Xia Museum, Wuwei, China

YuLong Duan1,5,FaSi Wu2,3,DongPeng He2,4,RuiHong Xu2,HuYuan Feng3,Tuo Chen1,GuangXiu Liu1,WanFu Wang1,2,3()   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, Gansu 736200, China
    3.MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
    4.School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China
    5.Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, Inner Mongolia 028300, China
  • Received:2020-12-22 Accepted:2021-04-21 Online:2021-12-31 Published:2022-01-11
  • Contact: WanFu Wang E-mail:wwanfu@hotmail.com
  • Supported by:
    the National Natural Science Foundation of China(32060258);Science and Technology Plan of Gansu Province(20YF8WF016);the "Light of West China" Program of the Chinese Academy of Sciences and Project of Gansu Cultural Relics Bureau(GWJ202011)

Abstract:

In this study, a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum, China. A bio-aerosol sampler was used for sampling in four seasons in 2016. Culture-dependent and -independent methods were taken to acquire airborne fungal concentration and purified strains; by the extraction of genomic DNA, amplification of fungal ITS rRNA gene region, sequencing, and phylogenetic analysis, thereafter the fungal community composition and distribution characteristics of different study sites were clarified. We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites. The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m3, no significant difference between the two sites at the Tiantishan Grottoes, with obvious characteristics of seasonal variation, in winter and spring were higher than in summer and autumn. Also, there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum, the outside of the museum was far more than the inside of the museum in the four seasons, particularly in the winter. Eight fungal genera were detected, including Cladosporium, Penicillium, Alternaria, and Filobasidium as the dominant groups. The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution. Relative humidity, temperature and seasonal rainfall influence airborne fungal distribution. Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings. This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.

Key words: airborne fungi, community characteristics, ancient wall paintings, monitoring and pre-warning

Figure 1

Four sampling sites for airborne fungi at the Tiantishan Grottoes and the Western Xia Museum. (a) Location of the Tiantishan Grottoes in Gansu Province; (b-c) Caves 13 and 18 of the Tiantishan Grottoes, respectively; (d-e) Inside and outside of the Western Xia Museum, respectively"

Table 1

Total airborne fungi (CFU/m3) enumerated onPDA agar plates from the four sites"

Sampling sitesMeanMedianMinimumMaximum
TT18559 ± 81b561226887
TT13504 ± 43bc475374689
TMO1,057 ± 117a9008521,576
TMI291 ± 74c23813674
Sum603 ± 57525131,576

Figure 2

Fungi concentrations (CFU/m3) at the four sites in different seasons (April, June, October, December). Different lower-case letters indicate significant differences (P <0.05) among different sampling sites in different season"

Table 2

Pearson correlation analysis for fungal concentrations (CFU/m3) and environmental parameters"

FactorsT (℃)RHRainfall (mm)
TT18-0.787-0.778%-0.843
TT13-0.246-0.332%-0.181
TMO0.1240.837%0.531
TMI0.3610.536%NA

Figure 3

Phylogenetic tree of airborne fungi based on ITS sequences"

Figure 4

Proportions of fungal genera detected inatmosphere environment of the TiantishanGrottoes and the Western Xia Museum"

Figure 5

Seasonal changes in Shannon-Weiner index ofairborne fungal communities at the four sampling sites"

Figure 6

Relative abundance of the dominant fungal genera at the four sites"

Figure 7

Canonical correlation analysis for fungal communities and environmental parameters from the four sites in different seasons"

Anaya M, Borrego SF, Gámez E, et al., 2016. Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia, 32(3): 513-527. DOI: 10.1007/s10453-016-9429-3.
doi: 10.1007/s10453-016-9429-3
Bastian F, Alabouvette C, Jurado V, et al., 2009. Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Science of Nature, 96(7): 863-868. DOI: 10.1007/s00114-009-0540-y.
doi: 10.1007/s00114-009-0540-y
Bastian F, Jurado V, Nováková A, et al., 2010. The microbiology of Lascaux Cave. Microbiology, 156(3): 644-652. DOI: 10.1099/mic.0.036160-0.
doi: 10.1099/mic.0.036160-0
Bonazza A, Nuntiis PD, Mandrioli P, et al., 2016. Aerosol impact on cultural heritage: deterioration processes and strategies for preventive conservation. Wiley-VCH Verlag GmbH & Co. KGaA.
Burch M, Levetin E, 2002. Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46(3): 107-117. DOI: 10.1007/s00484-002-0127-1.
doi: 10.1007/s00484-002-0127-1
Burge HA, Rogers CA, 2000. Outdoor allergens. Environmental Health Perspectives, 108: 653-659. DOI: 10.2307/3454401.
doi: 10.2307/3454401
Carlo ED, Chisesi R, Barresi G, et al., 2016. Fungi and bacteria in indoor cultural heritage environments: microbial related risks for artworks and human health. Environment and Ecology Research, 4(5): 257-264. DOI: 10.13189/eer.2016.040504.
doi: 10.13189/eer.2016.040504
DeAraujo A, Vasanthakumar A, Sepulveda M, et al., 2016. Investigation of the recent microbial degradation of the skin of the Chinchorro mummies of Ancient Chile. Journal of Cultural Heritage, 22: 999-1005. DOI: 10.1016/j.culher.2015.11.004.
doi: 10.1016/j.culher.2015.11.004
Docampo S, Trigo MM, Recio M, et al., 2011. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): Diversity and origin. Science of the Total Environment, 409(4): 835-843. DOI: 10.1016/j.scitotenv.2010.10.048.
doi: 10.1016/j.scitotenv.2010.10.048
Duan YL, Wu FS, Wang WF, et al., 2018. Differences of microbial community on the wall paintings preserved in situ and ex situ of the Tiantishan Grottoes, China. International Biodeterioration & Biodegradation, 132: 102-113. DOI: 10.1016/j.ibiod.2018.02.013.
doi: 10.1016/j.ibiod.2018.02.013
Duan YL, Wu FS, Wang WF, et al., 2017. The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. Plos One, 12(7): e0179718. DOI: 10.1371/journal.pone.0179718.
doi: 10.1371/journal.pone.0179718
Duan YL, Wu FS, Wang WF, et al., 2019. Spatial and temporal distribution characteristics of the airborne bacteria in the Maijishan grottoes, China. Acta Microbiologica Sinica, 59(1): 145-156. DOI: 10.13343/j.cnki.wsxb.20180094. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20180094.
Dupont J, Jacquet C, Dennetière B, et al., 2007. Invasion of the French paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia, 99(4): 526-533. DOI: 10.1080/15572536.2007.11832546.
doi: 10.1080/15572536.2007.11832546
E J, Wu FS, Wang WF, et al., 2013. Monitoring and research on microbes in the environment of the wall paintings in No. 5 of the Wei and Jin Tombs. Dunhuang Research, (6): 109-116. DOI: 10.3969/j.issn.1000-4106.2013.06.015. (in Chinese)
doi: 10.3969/j.issn.1000-4106.2013.06.015.
Fang ZG, Ouyang ZY, Hu LF, et al., 2005. Culturable airborne fungi in outdoor environments in Beijing, China. Science of the Total Environment, 350: 47-58. DOI: 10.1007/s00248-007-9216-3.
doi: 10.1007/s00248-007-9216-3
Felice BD, Pasquale V, Tancredi N, et al., 2010. Genetic fingerprint of microorganisms associated with the deterioration of an historical tuff monument in Italy. Journal of Genetics, 89(2): 253-257. DOI: 10.1007/s12041-010-0035-9.
doi: 10.1007/s12041-010-0035-9
Fernandez-Cortes A, Cuezva S, Sanchez-Moral S, et al., 2011. Detection of human-induced environmental disturbances in a show cave. Environmental Science & Pollution Research, 18(6): 1037-1045. DOI: 10.1007/s11356-011-0513-5.
doi: 10.1007/s11356-011-0513-5
Gaüzère C, Moletta-Denat M, Blanquart H, et al., 2014. Stability of airborne microbes in the Louvre Museum over time. Indoor Air, 24(1): 29-40. DOI: 10.1111/ina.12053.
doi: 10.1111/ina.12053
Gaüzère C, Moletta-Denat M, Bousta F, et al., 2013. Reliable procedure for molecular analysis of airborne microflora in three indoor environments: an office and two different museum contexts. Clean Soil, Air, Water, 41(3): 226-234. DOI: 10.1002/clen.201100699.
doi: 10.1002/clen.201100699
Gonzalez JM, Portillo MC, Saiz-Jimenez C, 2008. Diverse microbial communities and the conservation of prehistoric paintings. Microbe, 3: 72-77.
Gu JD, 2007. Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: A review. International Biodeterioration & Biodegradation, 59(3): 170-179. DOI: 10.1016/j.ibiod.2006.08.010.
doi: 10.1016/j.ibiod.2006.08.010
Hu HL, Ding SP, Katayama Y, et al., 2013. Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. International Biodeterioration & Biodegradation, 76: 112-117. DOI: 10.1016/j.ibiod.2012.06.022.
doi: 10.1016/j.ibiod.2012.06.022
Jones AM, Harrison RM, 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations―a review. Science of the Total Environment, 326(1-3): 151-180. DOI: 10.1016/j.scitotenv.2003.11.021.
doi: 10.1016/j.scitotenv.2003.11.021
Lazaridis M, Katsivela E, Kopanakis I, et al., 2015. Indoor/outdoor particulate matter concentrations and microbial load in cultural heritage collections. Heritage Science, 3: 34. DOI: 10.1186/s40494-015-0063-0.
doi: 10.1186/s40494-015-0063-0
Ma YT, Zhang H, Du Y, et al., 2015. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Scientific Reports, 5: 7752. DOI: 10.1038/srep07752.
doi: 10.1038/srep07752
Michaelsen A, Pinzari F, Ripka K, et al., 2006. Application of molecular techniques for identification of fungal communities colonising paper material. International Biodeterioration & Biodegradation, 58(3-4): 133-141. DOI: 10.1016/j.ibiod.2006.06.019.
doi: 10.1016/j.ibiod.2006.06.019
Nugari MP, Realini M, Roccardi A, 1993. Contamination of mural paintings by indoor airborne fungal spores. Aerobiologia, 9(2): 131-139. DOI: 10.1007/BF02066254.
doi: 10.1007/BF02066254
Paiva de Carvalho H, Mesquita N, Trovão J, et al., 2018. Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: Are current norms and reference values adequate?Journal of Cultural Heritage, 34: 268-276. DOI: 10.1016/j.culher.2018.05.001.
doi: 10.1016/j.culher.2018.05.001
Pepe O, Sannino L, Palomba S, et al., 2010. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiological Research, 165: 21-32. DOI: 10.1016/j.micres.2008.03.005.
doi: 10.1016/j.micres.2008.03.005
Pinar G, Sterflinger K, Ettenauer J, et al., 2015. A combined approach to assess the microbial contamination of the Archimedes Palimpsest. Microbial Ecology, 69(1): 118-134. DOI: 10.1007/s00248-014-0481-7.
doi: 10.1007/s00248-014-0481-7
Portillo MC, Saiz-Jimenez C, Gonzalez JM, 2009. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain. Research in Microbiology, 160(1): 41-47. DOI: 10.1016/j.resmic.2008.10.002.
doi: 10.1016/j.resmic.2008.10.002
Pusz W, Ogórek R, Knapik R, et al., 2015. The occurrence of fungi in the recently discovered Jarkowicka Cave in the Karkonosze Mts. (Poland). Geomicrobiology Journal, 32(1): 59-67. DOI: 10.1080/01490451.2014.925010.
doi: 10.1080/01490451.2014.925010
Sabariego S, CDDL Guardia, Alba F, 2000. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44(1): 1-5. DOI: 10.1007/s004840050131.
doi: 10.1007/s004840050131
Saiz-jimenez C, Cuezva S, Jurado V, et al., 2011. Paleolithic art in peril: Policy and science collide at Altamira Cave. Science, 334(6052): 42-43. DOI: 10.1126/science.1206788.
doi: 10.1126/science.1206788
Savković Z, Stupar M, Unković N, et al., 2019. In vitro biodegradation potential of airborne Aspergilli and Penicillia. Science of Nature, 106(3-4): 8. DOI: 10.1007/s00114-019-1603-3.
doi: 10.1007/s00114-019-1603-3
Schabereiter-Gurtner C, Saiz‐Jimenez C, Guadalupe P, et al., 2002. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environmental Microbiology, 4(7): 392-400. DOI: 10.1046/j.1462-2920.2002.00303.x.
doi: 10.1046/j.1462-2920.2002.00303.x
Schabereiter-Gurtner C, Saiz‐Jimenez C, Guadalupe P, et al., 2004. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). Fems Microbiology Ecology, 47(2): 235-247. DOI: 10.1016/S0168-6496(03)00280-0.
doi: 10.1016/S0168-6496(03)00280-0
Song LH, Song WM, Shi W, 2000. Health effects of atmospheric microbiological pollution on respiratory system among children in Shanghai. Journal of Environment & Health, 17(3): 135-138.
Stennett PJ, Beggs PJ, 2004. Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. International Journal of Biometeorology, 49(2): 98-105. DOI: /10.1007/s00484-004-0217-3.
doi: /10.1007/s00484-004-0217-3
Sterflinger K, 2010. Fungi: Their role in deterioration of cultural heritage. Fungal Biology Reviews, 24 (1-2): 47-55. DOI: 10.1016/j.fbr.2010.03.003.
doi: 10.1016/j.fbr.2010.03.003
Tanaka D, Terada Y, Nakashima T, et al., 2015. Seasonal variations in airborne bacterial community structures at a suburban site of central Japan over a 1-year time period using PCR-DGGE method. Aerobiologia, 31(2): 143-157. DOI: 10.1007/s10453-014-9353-3.
doi: 10.1007/s10453-014-9353-3
Tang H, Fan WQ, Wang C, et al., 2017. A dynamic study on the species and quantity of microorganisms in the micro-environment, Chongqing China Three Gorges Museum. Sciences of Conservation & Archaeology, 29(1): 35-43. DOI:10.16334/j.cnki.cn31-1652/k.2017.01.006. (in Chinese)
doi: 10.16334/j.cnki.cn31-1652/k.2017.01.006.
Troutt C, Levetin E, 2001. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45(2): 64-74. DOI: 10.1007/s004840100087.
doi: 10.1007/s004840100087
Vanderwolf KJ, Malloch D, McAlpine DF, et al., 2013. A world review of fungi, yeasts, and slime molds in caves. International Journal of Speleology, 42(1): 77-96. DOI: 10.5038/1827-806X.42.1.9.
doi: 10.5038/1827-806X.42.1.9
Wang WF, Ma X, Ma YT, et al., 2010a. Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. International Biodeterioration & Biodegradation, 64(6): 461-466. DOI: 10.1016/j.ibiod.2010.05.005.
doi: 10.1016/j.ibiod.2010.05.005
Wang WF, Ma YT, Ma X, et al., 2010b. Seasonal variations of airborne bacteria in the Mogao Grottoes, Dunhuang, China. International Biodeterioration & Biodegradation, 64(4): 309-315. DOI: 10.1016/j.ibiod.2010.03.004.
doi: 10.1016/j.ibiod.2010.03.004
Wang WF, Ma YT, Ma X, et al., 2012. Diversity and seasonal dynamics of airborne bacteria in the Mogao Grottoes, Dunhuang, China. Aerobiologia, 28(1): 27-38. DOI: 10.1007/s10453-011-9208-0.
doi: 10.1007/s10453-011-9208-0
Wang WF, Zhao LY, Pei QQ, et al., 2015. Exploration and practice of conservation of wall paintings in the museum: the case of conservation of wall paintings collected in the Gansu Museum from Tiantishan Grottoes, Wuwei. Sciences of Conservation & Archaeology, 27(4): 101-112. CNKI:SUN:WWBF.0.2015-04-017. (in Chinese)
Weber RW, 2003. Meteorologic variables in aerobiology. Immunology & Allergy Clinics of North America, 23(3): 411-422. DOI: 10.1016/S0889-8561(03)00062-6.
doi: 10.1016/S0889-8561(03)00062-6
White TJ, Bruns T, Lee S, et al., 1990. Amplification and direct seqencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Ols: A Guide to Methods and Applications. Academic Press, New York: 315-322.
Wu WT, He HP, Yan L, et al., 2012. The isolation and identification of bacteria in the air of Capital Museum and their significance for protection of cultural relics. Sciences of Conservation & Archaeology, 24(1): 76-82. (in Chinese)
Xue LG, Jiang JR, Famous E, 2017. Progress in research and monitoring of urban airborne microbes. Environmental Engineering, 35(3): 152-157; 162. DOI: 10.13205/j.hjgc.201703032. (in Chinese)
doi: 10.13205/j.hjgc.201703032.
Yan F, Ge QY, Li Q, et al., 2012. Analysis of microbial community on the surface of the historic stone and nearby rock samples in Yungang Grottoes. Acta Microbiologica Sinica, 52(5): 629-636. DOI: CNKI:SUN:WSXB.0.2012-05-013.(in Chinese)
doi: CNKI:SUN:WSXB.0.2012-05-013.
Zhang GB, Xue P, Hou WF, et al., 2005. The study on micro-environment of the cave affected by the visitors of the Mogao Grottoes. Dunhuang Research, (4): 83-86. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!