Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (6): 510-521.doi: 10.3724/SP.J.1226.2021.21012

Previous Articles    

Long-term effects of gravel-sand mulch thickness on soil microbes and enzyme activities in semi-arid Loess Plateau, Northwest China

ChengZheng Zhao1,2,YaJun Wang1(),Yang Qiu1,ZhongKui Xie1,YuBao Zhang1   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-02-22 Accepted:2021-06-06 Online:2021-12-31 Published:2022-01-11
  • Contact: YaJun Wang
  • Supported by:
    the National Key R&D Program(2016YFC0501403-3)


In semi-arid areas of China, gravel and sand mulch is a farming technique with a long history. In this study, a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities. We found that after long term gravel-sand mulch, compared with bare ground, soil organic matter, alkali nitrogen, conductivity decreased, while pH and soil moisture increased. Urease, saccharase and catalase decreased with increased mulch thickness, while alkaline phosphatase was reversed. The results of Illumina MiSeq sequencing shows that after gravel-sand mulch, the bacterial and fungal community structure was different from bare land, and the diversity was reduced. Compared with bare land, the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness, and Actinobacteria was opposite. Also, at the fungal genus level, Fusarium abundance was significantly reduced, and Remersonia was significantly increased, compared with bare land. Redundancy analysis (RDA) revealed that soil environmental factors were important drivers of bacterial community changes. Overall, this study revealed some of the reasons for soil degradation after long term gravel-sand mulch. Therefore, it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality.

Key words: gravel and sand mulch, soil microbes, soil enzyme activities, soil degradation, soil quality

Figure 1

Sparse curves of bacteria and fungi"

Figure 2

Abundance of bacterial and fungal phylum levels"

Figure 3

Fungal genus levels: changes in abundance of Fusarium and Remersonia"

Figure 4

PCA analysis of bacteria and fungi based on OTUs levels"

Figure 5

Activity of four enzymes under different gravel-sand mulch thickness (levels) (a, urease; b, saccharase; c, catalase; d, alkaline phosphatase)"

Figure 6

Soil physical and chemical properties of different mulch thickness (levels)(A: Soil moisture, B: Soil organic matter, C: Alkali-Hydrolyzable nitrogen, D: Available phosphorus, E: pH, F: Conductivity)"

Figure 7

Redundancy analysis (RDA) between bacterial phylum and selected environmental factors and the contribution and significance of each environmental variable to the bacterial community. * indicates that the significance level of the difference is 0.05. ** indicates that the significance level of the difference is 0.01"

Figure 8

Redundancy analysis (RDA) between fungal phylum and selected environmental factors and the contribution and significance of each environmental variable to the bacterial community. * indicates that the significance level of the difference is 0.05. ** indicates that the significance level of the difference is 0.01"

Alef K, Nannipieri P, 1995. Methods in applied soil microbiology and biochemistry. Academic Press, London.
Axelrood PE, Chow ML, Radomski CC, et al., 2002. Erratum: Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Canadian Journal of Microbiology, 48(9): 853-854. DOI: 10.1139/w02-075.
doi: 10.1139/w02-075
Bai YR, Zhao YP, Wang YQ, et al., 2017. Soil infiltration process and model analysis of field mulched with different thickness of gravel-sand in Ningxia. Journal of Soil and Water Conservation, 31(4): 81-85. DOI: 10.13870/j.cnki.stbcxb.2017.04.014.
doi: 10.13870/j.cnki.stbcxb.2017.04.014
Bawa I, 2016. Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. International Journal of Advanced Academic Research, 2(5): 32-42.
Bremner JM, Shaw KJ, 1955. Determination of ammonia and nitrate in Soil. The Journal of Agricultural Science, 46(3): 320-328. DOI: 10.1017/S0021859600040259.
doi: 10.1017/S0021859600040259
DeSantis TZ, Hugenholtz P, Larsen N, et al., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7): 5261-5267. DOI: 10.1128/AEM.03006-05.
doi: 10.1128/AEM.03006-05
Dominika K, Natacha B, B Helenet al., 2020. Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture. FEMS Microbiology Ecology, 96(12): 1-16. DOI: 10.1093/femsec/fiaa205.
doi: 10.1093/femsec/fiaa205
Eric S, Leeflang P, Gommans S, et al., 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67(5): 2284-2291. DOI: 10.1128/AEM.67.5.2284-2291.2001.
doi: 10.1128/AEM.67.5.2284-2291.2001
Fernando TM, Manuel DB, Thomas CJ, et al., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112(51): 15684-15689. DOI: 10.1073/pnas.1516684112.
doi: 10.1073/pnas.1516684112
Fuller MS, Jaworski A, 1987. Zoosporic Fungi in teaching and research. Mycologia, 79(6): 920. DOI: 10.2307/3807702.
doi: 10.2307/3807702
Garibaldi A, Gullino ML, 1991. Soil Solarization in Southern European Countries, with Emphasis on Soilborne Disease Control of Protected Crops. FAO Plant Production and Protection Paper. pp. 109-120.
Hao HT, Zhao X, Wang Y, et al., 2017. Effects of gravel-sand mulching on soil bacterial community and metabolic capability in the semi-arid Loess Plateau, China. World Journal of Microbiology and Biotechnology, 33(11): 3-9. DOI: 10.1007/s11274-017-2367-6.
doi: 10.1007/s11274-017-2367-6
ISO, 1994a. ISO 10390. Soil quality-determination of pH. Geneva: International Organization for Standardization.
ISO, 1994b. ISO 11265. Soil quality-determination of the specific electrical conductivity.
Janna P, Marie P, Erland B, 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology, 52(1): 49-58. DOI: 10.1016/j.femsec.2004.10.002.
doi: 10.1016/j.femsec.2004.10.002
Julia WN, Katy C, Cesar C, et al., 2017. Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2(3): e00195-16. DOI: 10.1128/mSystems.00195-16.
doi: 10.1128/mSystems.00195-16
Juma NG, Tabatabai MA, 1978. Distribution of phosphormonoesterases in soils. Soil Science, 126: 101-108. DOI: 10.1097/00010694-197808000-00006.
doi: 10.1097/00010694-197808000-00006
Karling JS, 1977. Chytridiomycetarum iconographia. Mycologia, 70(6): 1304. DOI: 10.2307/3759343.
doi: 10.2307/3759343
Li XY, Gong JD, Wei HX, 2000. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. Journal of Arid Environments, 46(4): 371-382. DOI: 10.1006/jare.2000.0705.
doi: 10.1006/jare.2000.0705
Li XY, Liu LY, 2003. Effect of gravel mulch on aeolian dust accumulation in the semi-arid region of northwest China. Soil and Tillage Research, 70(1): 73-81. DOI: 10.1016/S0167-1987(02)00137-X.
doi: 10.1016/S0167-1987(02)00137-X
Li XY, Zhang RL, Gong JD, et al., 2002. Soil and water accumulation by gravel and sand mulches in Western Loess Plateau of Northwest China. 12th ISCO Conference, 192-198.
Li XY, 2003. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena, 52(2): 105-127. DOI: 10.1016/S0341-8162(02)00181-9.
doi: 10.1016/S0341-8162(02)00181-9
Lundberg DS, Yourstone S, Mieczkowski P, et al., 2013. Practical innovations for high-throughput amplicon sequencing. Nature Methods, 10(10): 999-1006. DOI: 10.1038/nmeth.2634.
doi: 10.1038/nmeth.2634
Lv WC, Qiu Y, Xie ZK, et al., 2019. Gravel mulching effects on soil physicochemical properties and microbial community composition in the Loess Plateau, northwestern China. European Journal of Soil Biology, 94: 1-8. DOI: 10.1016/j.ejsobi.2019.103115.
doi: 10.1016/j.ejsobi.2019.103115
Ma YJ, Li XY, 2011. Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers. Journal of Arid Environments, 75(5): 432-437. DOI: 10.1016/j.jaridenv.2010.12.017.
doi: 10.1016/j.jaridenv.2010.12.017
Mardi D, Janet B, Paul W, 2002. Organic greenhouse tomato production. Appropriate Technology Transfer for Rural Areas, 1-16. DOI: 10.19103/AS.2016.0007.36.
doi: 10.19103/AS.2016.0007.36
Martin A, Sarah B, Elke J, et al., 2007. Intra-and inter-lake variability of free-living and particle-associated Actinobacteria communities. Environmental Microbiology, 9(11): 2728-2741. DOI: 10.1111/j.1462-2920.2007.01385.x.
doi: 10.1111/j.1462-2920.2007.01385.x
McGuire KL, Payne SG, Palmer MI, et al., 2013. Digging the New York City Skyline: Soil fungal communities in green roofs and city parks. PloS ONE, 8(3): 1-13. DOI: 10.1371/journal.pone.0058020.
doi: 10.1371/journal.pone.0058020
Minori U, Lynda HW, Klasson TK, et al., 2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6): 2501-2510. DOI: 10.1021/jf104206c.
doi: 10.1021/jf104206c
Mohammad B, Falk H, Sofia KF, et al., 2018. Structure and function of the global topsoil microbiome. Nature, 560: 233-237. DOI: 10.1038/s41586-018-0386-6.
doi: 10.1038/s41586-018-0386-6
Morgenstern I, Powlowski J, Ishmael N, et al., 2012. A molecular phylogeny of thermophilic fungi. Fungal Biology, 116(4): 489-502. DOI: 10.1016/j.funbio.2012.01.010.
doi: 10.1016/j.funbio.2012.01.010
Olsen SR, Cole CV, Watanabe FS, et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular No. 939, USA Gov. Print Office, Washington, DC, USA, 1-19.
Pang L, Xiao HL, Xie ZK, et al., 2012. Effect of gravel-sand mulching on soil microbial composition (in Chinese). Journal of Desert Research, 32(2): 351-358. DOI:
Qiu Y, Wang YJ, Xie ZK, 2014a. Long-term gravel-sand mulch affects soil physicochemical properties, microbial biomass and enzyme activities in the semi-arid Loess Plateau of North-western China. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 64(4): 294-303. DOI: 10.1080/09064710.2014.896936.
doi: 10.1080/09064710.2014.896936
Qiu Y, Xie ZK, Wang YJ, et al., 2014b. Influence of gravel mulch stratum thickness and gravel grain size on evaporation resistance. Journal of Hydrology, 519: 1908-1913. DOI: 10.1016/j.jhydrol.2014.09.085.
doi: 10.1016/j.jhydrol.2014.09.085
Qiu Y, Xie ZK, Wang YJ, et al., 2015. Long-term effects of gravel-sand mulch on soil organic carbon and nitrogen in the Loess Plateau of northwestern China. Journal of Arid Land, 7(1): 46–53. DOI: 10.1007/s40333-014-0076-7.
doi: 10.1007/s40333-014-0076-7
Qiu Y, Xie ZK, Wang YJ, Wang L, et al., 2018. Impact of long-term gravel mulching on soil bacterial and fungal communities in the Semi-Arid Loess Plateau of Northwestern China. Philippine Agricultural Scientist, 101(4): 379-390.
Richard GB, Jared LD, Jürgen M, et al., 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology & Biochemistry, 58: 216-234. DOI: 10.1016/j.soilbio.2012.11.009.
doi: 10.1016/j.soilbio.2012.11.009
Robert CE, 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10): 996-998. DOI: 10.1038/nmeth.2604.
doi: 10.1038/nmeth.2604
Ryan TJ, Michael SR, Christian LL, et al., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3(4): 442-453. DOI: 10.1038/ismej.2008.1271.
doi: 10.1038/ismej.2008.1271
Schmidt PA, Bálint M, Greshake B, et al., 2013. Illumina metabarcoding of a soil fungal community. Soil Biology & Biochemistry, 65: 128-132. DOI: 10.1016/j.soilbio.2013.05.014.
doi: 10.1016/j.soilbio.2013.05.014
Seaton FM, George PBL, Lebron I, et al., 2020. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144: 107766. DOI: 10.1016/j.soilbio.2020.107766.
doi: 10.1016/j.soilbio.2020.107766
Sonia MT, John L, Daniel AH, et al., 2002. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 21(1): 31-48. DOI: 10.1016/S0929-1393(02)00040-9.
doi: 10.1016/S0929-1393(02)00040-9
Spiers GA, McGill WB, 1979. Effects of phosphorus addition and energy supply on acid phosphatase production and activity in soils. Soil Biology & Biochemistry, 11(1): 3-8. DOI: 10.1016/0038-0717(79)90110-X.
doi: 10.1016/0038-0717(79)90110-X
Tomonori K, Shota Y, Noriatsu O, et al., 2012. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science & Technology, 66(12): 2556-2561. DOI: 10.2166/wst.2012.479.
doi: 10.2166/wst.2012.479
Walkley A, Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38. DOI: 10.1097/00010694-193401000-00003.
doi: 10.1097/00010694-193401000-00003
Wang JN, Xie ZK, Guo ZH, et al., 2010. Simulating the effect of gravel-sand mulched field degradation on soil temperature and evaporation. Journal of Desert Research, 30(2): 388-393. DOI: 10.1097/MOP.0b013e3283423f35. (in Chinese)
doi: 10.1097/MOP.0b013e3283423f35.
Wang Q, George MG, James MT, et al., 2007. Naı¨ve Bayesian Classifier for rapid assignment of rRNA sequencesinto the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16): 5261-5267. DOI: 10.1128/AEM.00062-07.
doi: 10.1128/AEM.00062-07
Wang YJ, Xie ZK, Malhi SS, et al., 2009. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agricultural Water Management, 96(3): 374-382. DOI: 10.1016/j.agwat.2008.09.012.
doi: 10.1016/j.agwat.2008.09.012
Wang YJ, Xie ZK, Malhi SS, et al., 2014. Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecologica Sinica, 34(5): 261-265. DOI: 10.1016/j.chnaes.2014.05.007.
doi: 10.1016/j.chnaes.2014.05.007
Wu FP, Jia ZK, Wang SG, et al., 2013. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils, 49: 555-565. DOI: 10.1007/s00374-012-0745-7.
doi: 10.1007/s00374-012-0745-7
Xie ZK, Wang YY, Cheng GD, et al., 2010. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of northwest China. Agricultural Water Management, 97(6): 917-923. DOI: 10.1016/j.agwat.2010.01.023.
doi: 10.1016/j.agwat.2010.01.023
Xie ZK, Wang YJ, Jiang WL, et al., 2006. Evaporation and evapotranspiration in a watermelon field mulched with gravel of different sizes in northwest China. Agricultural Water Management, 81(1-2): 173-184. DOI: 10.1016/j.agwat.2005.04.004.
doi: 10.1016/j.agwat.2005.04.004
Yin YL, Wang YQ, Li SX, et al., 2019. Soil microbial character response to plant community variation after grazing prohibition for 10 years in a Qinghai-Tibetan alpine meadow. Plant and Soil, 458: 175-189. DOI: 10.1007/s11104-019-04044-7.
doi: 10.1007/s11104-019-04044-7
Yoo GY, Hojeong K, 2012. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. Journal of Environmental Quality, 41(4): 1193-1202. DOI: 10.2134/jeq2011.0157.
doi: 10.2134/jeq2011.0157
Yu XY, Ying GG, Rai SK, 2006. Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Environmental Quality, 54(22): 8545-8550. DOI: 10.1021/jf061354y.
doi: 10.1021/jf061354y
Yuki M, Yoshimasa W, Satoshi O, 2007. Significance of chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal waste water. Environmental Science & Technology, 41(22): 7787-7794. DOI: 10.1021/es071263x.
doi: 10.1021/es071263x
Zhao CZ, Wang YJ, Xie ZK, et al., 2020. Long-term effects of gravel-sand mulch on diurnal variation of soil respiration in semi-arid Loess Plateau, China. Journal of Desert Research, 40(2): 232-239. DOI: 10.7522 /j.issn.1000-694X.2019.00119.
doi: 10.7522 /j.issn.1000-694X.2019.00119
Zhou Y, Xie T, 2015. Effects of different thicknesses of gravel covering on daily soil evaporation. Agricultural Science and Technology, 16(10): 2347-2349, 2353. DOI: 10.16175/j.cnki.1009-4229.2015.10.061.
doi: 10.16175/j.cnki.1009-4229.2015.10.061
Zhou ZD, Yan TT, Qian Zhu Q, et al., 2019. Bacterial community structure shifts induced by biochar amendment to karst calcareous soil in southwestern areas of China. Journal of Soils and Sediments, 19(1): 356-365. DOI: 10.1007/s11368-018-2035-y.
doi: 10.1007/s11368-018-2035-y
No related articles found!
Full text



No Suggested Reading articles found!