Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (1): 47-58.doi: 10.3724/SP.J.1226.2020.00047.

Previous Articles    

Culturable bacterial diversity in hypolithic and peripheral soils in the west of the Hexi Corridor desert and its influencing factors

LiFang He1,ShiWeng Li1(),GaoSen Zhang2,XiuKun Wu2,BingLin Zhang2,Wei Zhang2()   

  1. 1. School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, Gansu 730070, China
    2. Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-08-26 Accepted:2019-11-28 Online:2020-02-29 Published:2020-03-17
  • Contact: ShiWeng Li,Wei Zhang E-mail:lishweng@mail.lzjtu.cn;ziaoshen@163.com

Abstract:

Microbes inhabiting the desert respond sensitively to environmental changes and may be an indicator for changes in the desert ecosystem. Hypolithic microbial communities in the desert play a vital role in ecosystem processes such as soil formation and organic matter accumulation. This study investigated and compared the culturable bacterial community structure and diversity in hypolithic and peripheral soils, and the interaction between bacteria and environmental factors. The bacteria were isolated using four different kinds of media and identified by 16S rRNA gene-sequence analysis. The numbers of culturable bacteria in the hypolithic and peripheral soils ranged from 3.0×104 to 3.6×105 CFU/g and from 6.5×104 to 5.3×105 CFU/g, respectively, indicating that the bacteria number in peripheral soil was higher than that in hypolithic soil. A total of 98 species belonging to 34 genera were identified, among which Arthrobacter, Bacillus,and Streptomyces were found dominantly and widely distributed. The community of culturable bacteria had obvious sample specificity, and the diversity in hypolithic soil was higher than that in peripheral soil. On the regional scale, the distribution of culturable bacteria and the environmental factors showed regular changes. On the local scale, the high heterogeneity of the hypolithic environment determined the specificity of the number and species of culturable bacteria.

Key words: Hexi Corridor, desert hypolithic and peripheral soils, culturable bacteria, diversity

Figure 1

Soil-sample sites located in the west of the Hexi Corridor"

Table 1

Information about soil-sample sites in this experiment"

Sample No Altitude (m) Longitude Latitude Site
S1 764 94°09′E 42°29′N Xinxin gorge
S2 993 93°41′E 40°23′N 50 km south of Yadan in Donghuang
S3 1,124 94°02′E 40°80′N East Erdong village
S4 1,193 91°55′E 41°41′N 220 km south of Kumul
S5 1,395 96°23′E 40°39′N Changle town
S6 1,396 102°00′E 39°10′N Hongsha town
S7 1,639 89°45′E 39°90′N G315 road
S8 1,692 95°23′E 41°00′N Liuyuan
S9 3,059 90°06′E 38°28′N Etonblac town
S10 3,500 94°15′E 41°20′N 20 km north of Subei county

Table 2

Chemical properties of the soils"

Sample No. pH value TN (mg/kg) TOC (mg/kg)
Hypolithic soil Peripheral soil Hypolithic soil Peripheral soil Hypolithic soil Peripheral soil
S1 7.40 7.83 32.7±4.9 32.1±3.9 674.2±45.7 861.6±36.3
S2 7.84 7.52 33.0±1.8 30.0±11.7 988.6±30.3 895.4±41.6
S3 7.33 7.66 26.8±6.2 27.2±5.7 907.0±31.1 906.0±21.1
S4 7.96 7.83 26.8±7.4 61.7±6.2 466.6±40.9 546.1±20.1
S5 7.63 8.13 73.2±9.4 30.5±3.7 1,627.0±17.6 1,206.3±63.4
S6 7.73 8.16 36.7±4.6 35.1±6.0 542.7±19.7 524.3±14.0
S7 8.00 7.70 40.9±14.0 26.5±7.5 938.5±48.4 807.1±11.6
S8 7.76 7.62 39.0±5.4 29.5±0.7 920.5±30.4 1,010.6±10.9
S9 7.90 8.14 35.4±3.3 32.8±2.2 1,023.9±27.0 984.7±13.4
S10 7.05 8.01 24.2±5.3 23.7±4.9 639.1±36.8 625.8±14.1

Figure 2

Numbers and variation of culturable bacteria in hypolithic and peripheral soils"

Table 3

List of culturable bacterial species isolated from hypolithic and peripheral soils"

Sample Strain number Closest species Nr reference Similarity Distribution
Hypolithic soil Peripheral soil
S1 S1-1 Auraticoccus monumenti MON 2.2 NR_117004.1 99.3% + -
S1-2 Arthrobacter tecti LMG 22282 NR_042251.1 97.8% + -
S1-3 Noviherbaspirillum massiliense JC206 NR_125602.1 97.1% + -
S1-4 Streptomyces spinoverrucosus NBRC 14228 NR_041159.1 98.7% + -
S1-5 Gordonia hongkongensis HKU50 NR_152022.1 100.0% + -
S1-6 Pseudarthrobacter phenanthrenivorans Sphe3 NR_074770.2 99.9% + -
S1-7 Streptomyces hyderabadensis OU-40 NR_116934.1 98.6% + -
S1-8 Brevibacterium] frigoritolerans DSM 8801 NR_117474.1 99.9% + -
S2 S2-1 Bacillus idriensis SMC 4352-2 NR_043268.1 100.0% + -
S2-2 Arthrobacter tecti LMG 22282 NR_042251.1 99.5% + -
S2-3 Streptomyces indoligenes TRM 43006 NR_149274.1 99.9% + -
S2-4 Arthrobacter agilis DSM 20550 NR_026198.1 99.4% + -
S2-5 Streptomyces purpureus NRRL B-5403 NR_118010.1 98.7% + -
S2-6 Kineococcus xinjiangensis S2-20 NR_044522.1 98.7% + -
S2-7 Bacillus subtilis subsp. inaquosorum BGSC 3A28 NR_104873.1 100.0% + -
S2-8 Streptomyces leeuwenhoekii C34 NR_126200.1 99.7% - +
S2-9 Saccharothrix tamanrassetensis SA198 NR_134802.1 99.3% - +
S2-10 Kocuria rosea DSM 20447 NR_044871.1 99.3% + -
S3 S3-1 Streptomyces hyderabadensis OU-40 NR_116934.1 98.8% + -
S3-2 Skermanella rosea M1 NR_152076.1 98.9% - +
S3-3 Devosia submarina Sl74 NR_114333.1 99.7% - +
S3-4 Microvirga makkahensis SV1470 NR_149218.1 98.1% - +
S3-5 phingomonas dokdonensis DS-4 NR_043612.1 98.7% + -
S4 S4-1 Arthrobacter tumbae LMG 19501 NR_042078.1 99.2% - +
S4-2 Pseudarthrobacter oxydans DSM 20119 NR_026236.1 99.1% - +
S4-3 Streptomyces parvulus NBRC 13193 NR_041119.2 99.4% + -
S4-4 Blastococcus saxobsidens BC444 NR_117019.1 99.7% + -
S4-5 Bacillus tequilensis 10b NR_104919.1 99.8% + -
S4-6 Blastococcus endophyticus YIM 68236 NR_108608.1 99.5% + -
S4-7 Kocuria polaris CMS 76or NR_028924.1 99.0% + -
S5 S5-1 Bacillus subtilis JCM 1465 NR_113265.1 99.9% + -
S5-2 Pseudarthrobacter siccitolerans 4J27 NR_108849.1 99.0% + -
S5-3 Belnapia moabensis CP2C NR_042371.1 98.2% + -
S5-4 Auraticoccus monumenti MON 2.2 NR_117004.1 99.3% + -
S6 S6-1 Neorhizobium huautlense SO2 NR_024863.1 98.3% + -
S6-2 Nocardiopsis dassonvillei DSM 43111 NR_074635.1 99.5% + -
S6-3 Bacillus subtilis subsp. spizizenii NBRC 101239 NR_112686.1 99.9% + -
S6-4 Devosia psychrophila Cr7-05 NR_117516.1 98.8% + -
S6-5 Bacillus halotolerans DSM 8802 NR_115063.1 100.0% + -
S6-6 Homoserinimonas aerilata 5317J-19 NR_109608.1 98.0% + -
S6-7 Saccharothrix saharensis SA152 NR_108320.1 99.6% + -
S6-8 Enterobacter hormaechei subsp. xiangfangensis 10-17 NR_126208.1 99.7% + -
S6-9 Arthrobacter globiformis JCM 1332 NR_112192.1 99.6% + -
S6-10 Pseudarthrobacter sulfonivorans ALL NR_025084.1 98.7% + -
S6-11 Arthrobacter pascens DSM 20545 NR_026191.1 98.0% + -
S6-12 Kocuria rosea DSM 20447 NR_044871.1 99.6% + -
S6-13 Streptomyces ambofaciens NBRC 12836 NR_041079.1 99.9% + -
S6-14 Streptomyces marokkonensis LMG 23016 NR_114960.1 99.3% + -
S6-15 Pseudarthrobacter siccitolerans 4J27 NR_108849.1 97.4% + -
S6-16 Bacillus idriensis SMC 4352-2 NR_043268.1 100.0% - +
S6-17 Bacillus tequilensis 10b NR_104919.1 99.8% - +
S6-18 Kineococcus radiotolerans SRS30216 NR_074542.1 99.7% - +
S6-19 Belnapia soli PB-K8 NR_109456.1 98.7% - +
S6-10 Arthrobacter agilis DSM 20550 NR_026198.1 99.3% + -
S6-11 Planomicrobium okeanokoites NBRC 12536 NR_113593.1 98.3% + -
S7 S7-1 Noviherbaspirillum agri K-1-15 NR_156921.1 94.2% + -
S7-2 Modestobacter caceresii KNN 45-2b NR_137398.1 99.9% + -
S7-3 Bacillus halotolerans DSM 8802 NR_115063.1 99.9% + -
S7-4 Pseudomonas zhaodongensis NEAU-ST5-21 NR_134795.1 99.9% - +
S7-5 Ramlibacter rhizophilus THG-YS3.2.7 NR_158124.1 97.9% + -
S8 S8-1 Bacillus atrophaeus JCM 9070 NR_024689.1 99.9% + -
S8-2 Modestobacter marinus 42H12-1 NR_116228.1 99.8% + -
S8-3 Modestobacter caceresii KNN 45-2b NR_137398.1 100.0% + -
S8-4 Planomicrobium okeanokoites NBRC 12536 NR_113593.1 97.9% + -
S8-5 Kocuria rosea DSM 20447 NR_044871.1 99.3% + -
S8-6 Bacillus idriensis SMC 4352-2 NR_043268.1 99.9% - +
S8-7 Bacillus aryabhattai B8W22 NR_115953.1 99.9% - +
S8-8 Homoserinimonas aerilata 5317J-19 NR_109608.1 97.9% - +
S8-9 Microbacterium hibisci THG-T2.14 NR_158048.1 98.1% - +
S8-10 Devosia submarina Sl74 NR_114333.1 99.9% - +
S8-11 Streptomyces albogriseolus NBRC 3413 NR_112487.1 100.0% - +
S8-12 Streptomyces violaceorectus NBRC 13102 NR_041114.1 99.9% - +
S8-13 Kocuria rosea DSM 20447 NR_044871.1 99.5% - +
S8-14 Paenarthrobacter nitroguajacolicus G2-1 NR_027199.1 99.9% - +
S8-15 Dietzia maris DSM 43672 NR_116685.1 99.9% - +
S9 S9-1 Brevibacterium frigoritolerans DSM 8801 NR_117474.1 99.9% + -
S9-2 Nesterenkonia sandarakina YIM 70009 NR_029119.1 99.9% + -
S9-3 Arthrobacter oryzae KV-651 NR_041545.1 98.5% + -
S9-4 Streptomyces sparsus YIM 90018 NR_114938.1 99.9% + -
S9-5 Pseudomonas zhaodongensis NEAU-ST5-21 NR_134795.1 99.8% + -
S9-6 Streptomyces aureus B7319 NR_025663.1 99.3% + -
S9-7 Streptomyces lateritius NBRC 12788 NR_112277.1 99.8% + -
S9-8 Streptomyces pratensis ch24 NR_125619.1 99.9% + -
S9-9 Georgenia satyanarayanai JC82 NR_117051.1 99.8% + -
S9-10 Arthrobacter tecti LMG 22282 NR_042251.1 99.1% - +
S9-11 Bacillus velezensis FZB42 NR_075005.2 99.0% - +
S9-12 Microbacterium paraoxydans CF36 NR_025548.1 99.0% - +
S9-13 Microbacterium oxydans DSM 20578 NR_044931.1 99.3% - +
S9-14 Auraticoccus monumenti MON 2.2 NR_117004.1 99.2% - +
S9-15 Kribbella flavida KACC 20248 NR_042804.1 99.8% - +
S9-16 Agrococcus citreus IAM 15145 NR_041542.1 99.7% - +
S10 S10-1 Arthrobacter tumbae LMG 19501 NR_042078.1 99.4% + -
S10-2 Bacillus subtilis subsp. spizizenii NBRC 101239 NR_112686.1 99.8% + -
S10-3 Arthrobacter agilis DSM 20550 NR_026198.1 99.4% + +
S10-4 Pseudarthrobacter oxydans DSM 20119 NR_026236.1 99.1% + -
S10-5 Arthrobacter subterraneus CH7 NR_043546.1 99.1% - +
S10-6 Agrococcus citreus IAM 15145 NR_041542.1 99.0% + -

Figure 3

Variation in bacterial number and species distribution in the hypolithic soil samples. Bubbles are sized according to the observed number of bacterial species"

Figure 4

Variation in bacterial number and species distribution in the peripheral soil samples. Bubbles are sized according to the observed number of bacterial species"

Figure 5

Canonical correspondence analysis (CCA) among the soils, species, and environmental factors: (a) Hypolithic soils; and (b) peripheral soils"

An S , Couteau, C, Luo F , et al. , 2013. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microbial Ecology, 66(4): 850-860.DOI:10.1007/s00248-013-0276-2 .
doi: 10.1007/s00248-013-0276-2
Azua-Bustos A , Urrejola C , Vicua R , 2012. Life at the dry edge: Microorganisms of the Atacama Desert. FEBS Letters, 586(18): 2939-2945. DOI:10.1016/j.febslet.2012.07.025 .
doi: 10.1016/j.febslet.2012.07.025
Azua-Bustos A , Gonzalez-Silva C , Mancilla RA , et al. , 2011. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Environmental Microbiology, 61: 568-581. DOI: 10.1007/s00248-010-9784-5 .
doi: 10.1007/s00248-010-9784-5
Bachar A , Soares MIM , Gillor O , 2012. The effect of resource islands on abundance and diversity of bacteria in arid soils. Microbial Ecology, 63(3): 694-700. DOI: 10.1007/s00248-011-9957-x .
doi: 10.1007/s00248-011-9957-x
Bryant R , 2010. Deserts and desert environments-By Julie Laity. Geographical Journal, 176(1): 119-119. DOI: 10.1111/j.1475-4959.2009.00347_6.x .
doi: 10.1111/j.1475-4959.2009.00347_6.x
Cary SC , McDonald IR , Barrett JE , et al. , 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8(2): 129-138. DOI: 10.1038/nrmicro2281 .
doi: 10.1038/nrmicro2281
Chan Y , Lacap DC , Lau MCY , et al. , 2012. Hypolithic microbial communities: between a rock and a hard place. Environmental Microbiology, 14(9): 2272-2282. DOI: 10.1111/j. 1462-2920.2012.02821.x .
doi: 10.1111/j. 1462-2920.2012.02821.x
Chen HH , Li WJ , Zhang YQ , et al. , 2004. Study on isolation and systematic taxonomy of strains of genus Nesterenkonia . Acta Microbiology Sinica, 6: 811-815. DOI: 10.3321/j.issn:0001-6209.2004.06.023 . (in Chinese)
doi: 10.3321/j.issn:0001-6209.2004.06.023
Christian K , Kaestli M , Gibb K , 2017. Spatial patterns of hypolithic cyanobacterial diversity in northern Australia. Ecology and Evolution, 7(17): 7023-7033. DOI: 10.1002/ece3. 3248 .
doi: 10.1002/ece3. 3248
Cowan DA , Sohm JA , Makhalanyane TP , et al. , 2011. Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3(5): 581-586. DOI: 10.1111/j.1758-2229.2011.00266.x .
doi: 10.1111/j.1758-2229.2011.00266.x
Dose K , Bieger-Dose A , Ernst B , et al. , 2001. Survival of microorgansms under the extreme conditions of the Atacama Desert. Journal of the International Society for the Study of the Origin of Life, 31(3): 287-303. DOI: 10.1023/A: 1010788829265 .
doi: 10.1023/A: 1010788829265
Friedmann EI , Ocampo R , 1976, Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science, 193(4259): 1247-1249. DOI: 10.1126/science.193.4259.1247
doi: 10.1126/science.193.4259.1247
Gorbushina AA, Kotlova ER, Sherstneva OA, 2008 Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Studies in Mycology, 61(7): 91-97. DOI: 10.3114/sim.2008.61.09 .
doi: 10.3114/sim.2008.61.09
Hauschild P , Rottig A , Madkour MH , et al. , 2017. Lipid accumulation in prokaryotic microorganisms from arid habitats. Applied Microbiology and Biotechnology, 101(6): 2203-2216. DOI: 10.1007/s00253-017-8149-0 .
doi: 10.1007/s00253-017-8149-0
Lacap DC , Warren-Rhodes KA , McKay CP , et al. , 2011. Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama desert, Chile. Extremophiles, 15(1): 31-38. DOI: 10.1007/s00792-010-0334-3 .
doi: 10.1007/s00792-010-0334-3
Li HY , Hu L , Niu SQ , et al. , 2015. Diversity of culturable actinomycetes in saline-alkali soil in Jiuquan region of Hexi Corridor. Journal of Ecology, 34(2): 367-372. DOI:10. 13292/j.1000-4890.2015.0051 . (in Chinese)
doi: 10. 13292/j.1000-4890.2015.0051
Li JH , Lu PP , Zhang YP , 2010. Studies on physiological characteristics and identification of a Planomicrobium . Northern Horticulture, 17: 165-167. (in Chinese)
Li T , Zhang W , Liu GX , et al. , 2008. Advances in the study of microbial ecology in desert soil. Journal of Desert Research, 38(2): 329-338. DOI:10.7522/j.issn.1000-694X. 2017.00113 . (in Chinese)
doi: 10.7522/j.issn.1000-694X. 2017.00113
Liu GX , Chen T , Li SW , et al. , 2016. Extreme Environmental Microbiology. Beijing: Science Press, pp.: 112-138. (in Chinese)
Liu J , Liu XF , Guan TW , et al. , 2014. Isolation, diversity and antibiotic activity of Actinomycetes from Apis Arana Fabricius. Chinese Journal of Microbiology, 41(12): 2410-2422. DOI: 10.13344/j.microbiol.china.140182 . (in Chinese)
doi: 10.13344/j.microbiol.china.140182
Makhalanyane TP , Valverde A , Birkeland N-Ket al. , 2013. Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 952(8): 343-351. DOI: 10.1038/ismej.2013.94 .
doi: 10.1038/ismej.2013.94
Maier RM , Drees KP , Neilson JW , et al. , 2004. Microbial Life in the Atacama Desert. Science, 306: 1289-1290.
Pasternak Z , Al-Ashhab A , Gatica J , et al. , 2013. Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions. Plos One, 8(7): e69705. DOI: 10. 1371/journal.pone.0069705 .
doi: 10. 1371/journal.pone.0069705
Pointing SB , Warren-Rhodes KA , Lacap DC , et al. , 2010. Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts. Environmental Microbiology, 9(2): 414-424. DOI: 10.1111/j.1462-2920.2006.01153.x .
doi: 10.1111/j.1462-2920.2006.01153.x
Pointing SB , Chan Y , Laca DC , et al. , 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106(47): 19964--19969. DOI: 10.1073/pnas. 0908274106 .
doi: 10.1073/pnas. 0908274106
Qu Y , Zhang X , Yu H , et al. , 2013. Genome sequence of Sphingomonas xenophaga QYY, an anthraquinone-degrading strain. Genome Announcement, 1(1): e00031-12. DOI: 10. 1128/genomeA.00031-12 . (in Chinese)
doi: 10. 1128/genomeA.00031-12
Schlesinger WH , Mahall BE , 2003. Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology, 84(12): 3222-3231. DOI: 10.1890/02-0549 .
doi: 10.1890/02-0549
Sun HM , Yu LY , Zhang YQ , 2015. Recent advance in Geodermatophilaceae-A review. Acta Microbiology Sinica, 55(12): 1521-1529. DOI: 10.13343/j.cnki.wsxb.20150128 . (in Chinese)
doi: 10.13343/j.cnki.wsxb.20150128
Van Goethem MW , Makhalanyane TP , Valverde A , et al. , 2016. Characterization of bacterial communities in lithobionts and soil niches from victoria valley, Antarctica. FEMS Microbiology Ecology, 924: fiw 051. DOI: 10.1093/femsec/fiw051 .
doi: 10.1093/femsec/fiw051
Van Goethem MW , Makhalanyane TP , Cowan DA , et al. , 2017. Cyanobacteria and alphaproteobacteria may facilitate cooperative interactions in niche communities. Frontiers in Microbiology, 8: 2099. DOI: 10.3389/fmicb.2017.02099 .
doi: 10.3389/fmicb.2017.02099
Vikram S , Guerrero LD , Makhalanyane TP , et al. , 2016. Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environmental Microbiology, 18(6): 1875-1888. DOI: 10.1111/1462-2920.13088 .
doi: 10.1111/1462-2920.13088
Warrenrhodes K , Rhodes K , Boyle L , et al. , 2007. Cyanobacterial ecology across environmental gradients and spatial scales in china's hot and cold deserts. FEMS Microbiology Ecology, 61(3): 470-482. DOI: 10.1111/j.1574-6941.2007. 00351.x .
doi: 10.1111/j.1574-6941.2007. 00351.x
Warren-Rhodes KA , Rhodes KL , Pointing SB , et al. , 2006. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology, 52(3): 389-398. DOI:10.1007/s00248-006-90557 .
doi: 10.1007/s00248-006-90557
Wu MH , Zhang GS , Chen T , et al. , 2017. Advance in lithophilous microorganisms. Journal of Microbiology, 37(4): 64-73. DOI: 10.3969/j.issn.1005-7021.2017.04.011 . (in Chinese)
doi: 10.3969/j.issn.1005-7021.2017.04.011
Zhang JE , 2007. A Common Experimental Study of Methods and Techniques on Ecology. Beijing: Chemical Industry Publishing House, pp: 225.
Zhang W , Zhang GS , Liu GX , et al. , 2012. Characteristics of culturable microbial community number and structure at the southeast edge of Tengger Desert. Acta Ecologica Sinica, 32(2): 567-577. DOI: 10.5846/stxb201012141779 . (in Chinese)
doi: 10.5846/stxb201012141779
Zhu YM , Xu MX , Liu QH , et al. , 2009. Identification of a new Planococcus strain and analysis of its indigenous plasmids pPCZ1 and pPCZ2. Acta Microbiology Sinica, 4 (9): 294-1298. DOI: 10.1016/S1003-6326(09)60084-4 . (in Chinese)
doi: 10.1016/S1003-6326(09)60084-4
[1] Bing Liu,WenZhi Zhao,YangYang Meng,Chan Liu. Biodiversity, productivity, and temporal stability in a natural grassland ecosystem of China [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 293-304.
[2] CaiXia Zhang, XiaoZe Li, Zhong Sun, JinChang Li. Elemental composition and its environmental significance for the varicolored hills in the northern foothills of the Qilian Mountains of Sunan Yugur Autonomous County, China [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 257-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!