Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (6): 516-521.doi: 10.3724/SP.J.1226.2018.00000

•   • Previous Articles     Next Articles

Biological improvement of saline alkali soil reference system: A review

XueQin Wang1,2,*(),Xu Xing1,FengJu Zhang3,Kong Xin4   

  1. 1 Agricultural College of Ningxia University, Yinchuan, Ningxia 750021, China
    2 Ningxia Science and Technology Development Strategy and Information Research Institute, Yinchuan, Ningxia 750021, China
    3 Institute of Environmental Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
    4 Ningxia Science and Technology Development Strategy and Information Research Institute, Yinchuan, Ningxia 750021, China
  • Online:2018-12-01 Published:2018-12-29
  • Contact: XueQin Wang E-mail:404039969@qq.com

Abstract:

This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system. There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.

Key words: biological improvement, saline alkali soil, reference system

Agarwal PK, Shukla PS, Gupta K, et al Bioengineering for salinity tolerance in plants: state of the art Molecular Biotechnology 2013 54 1 102 123 Agarwal PK, Shukla PS, Gupta K, et al., 2013. Bioengineering for salinity tolerance in plants: state of the art. Molecular Biotechnology, 54(1): 102–123. DOI: 10.1007/s12033-012-9538-3.
doi: 10.1007/s12033-012-9538-3
Agarwal S, Ahmad Z Contribution of the Rhiizobium inoculation on plant growth and productivity of two cultivars of Berseem (Trifolium alexandrinum L.) in saline soil. Asian Journal of Plant Sciences 2010 9 6 344 350 Agarwal S, Ahmad Z, 2010. Contribution of the Rhiizobium inoculation on plant growth and productivity of two cultivars of Berseem (Trifolium alexandrinum L.) in saline soil. Asian Journal of Plant Sciences, 9(6): 344–350. DOI: 10.3923/ajps.2010.344.350.
doi: 10.3923/ajps.2010.344.350
Arabbeigi M, Arzani A, Majidi MM, et al Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers Acta Physiologiae Plantarum 2014 36 8 2243 2251 Arabbeigi M, Arzani A, Majidi MM, et al., 2014. Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiologiae Plantarum, 36(8): 2243–2251. DOI: 10.1007/s11738-014-1602-0.
doi: 10.1007/s11738-014-1602-0
Arzani A Improving salinity tolerance in crop plants: a biotechnological view In Vitro Cellular & Developmental Biology—Plant 2008 44 5 373 383 Arzani A, 2008. Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular & Developmental Biology—Plant, 44(5): 373–383. DOI: 10.1007/s11627-008-9157-7.
doi: 10.1007/s11627-008-9157-7
Arzani A, Ashraf M Smart engineering of genetic resources for enhanced salinity tolerance in crop plants Critical Reviews in Plant Sciences 2016 35 3 146 189 Arzani A, Ashraf M, 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35(3): 146–189. DOI: 10.1080/07352689.2016.1245056.
doi: 10.1080/07352689.2016.1245056
Ashraf M, Wu L Breeding for salinity tolerance in plants Critical Reviews in Plant Sciences 1994 13 1 17 42 Ashraf M, Wu L, 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1): 17–42. DOI: 10.1080/07352689409701906.
doi: 10.1080/07352689409701906.
Ashraf M, Akram NA Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison Biotechnology Advances 2009 27 6 744 752 Ashraf M, Akram NA, 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances, 27(6): 744–752. DOI: 10.1016/j.biotechadv.2009.05.026.
doi: 10.1016/j.biotechadv.2009.05.026
Chen L, Dick WA, Nelson S Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality Environmental Pollution 2001 114 2 161 168 Chen L, Dick WA, Nelson S, 2001. Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality. Environmental Pollution, 114(2): 161–168. DOI: 10.1016/S0269-7491(00)00220-7.
doi: 10.1016/S0269-7491(00)00220-7
Chun S, Nishiyama M, Matsumoto S Sodic soils reclaimed with by-product from flue gas desulfurization: Corn production and soil quality Environmental Pollution 2001 114 3 453 459 Chun S, Nishiyama M, Matsumoto S, 2001. Sodic soils reclaimed with by-product from flue gas desulfurization: Corn production and soil quality. Environmental Pollution, 114(3): 453–459. DOI: 10.1016/S0269-7491(00)00226-8.
doi: 10.1016/S0269-7491(00)00226-8
Chun S, Nishiyama M, Matsmoto S Response of corn growth in salt-affected soils of northeast china to flue-gas desulfurization by-product Communications in Soil Science and Plant Analysis 2007 38 5-6 813 825 Chun S, Nishiyama M, Matsmoto S, 2007. Response of corn growth in salt-affected soils of northeast china to flue-gas desulfurization by-product. Communications in Soil Science and Plant Analysis, 38(5–6): 813–825. DOI: 10.1080/00103620701220833.
doi: 10.1080/00103620701220833
Dagar JC, Lal K, Ram J, et al Eucalyptus geometry in agroforestry on waterlogged saline soils influences plant and soil traits in North-West India Agriculture, Ecosystems & Environment 2016 233 33 42 Dagar JC, Lal K, Ram J, et al., 2016. Eucalyptus geometry in agroforestry on waterlogged saline soils influences plant and soil traits in North-West India. Agriculture, Ecosystems & Environment, 233: 33–42. DOI: 10.1016/j.agee.2016.08.025.
doi: 10.1016/j.agee.2016.08.025
Di C, Shi FC, Koike T, et al Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River delta in China Clean-Soil, Air, Water 2014 42 10 1433 1440 Di C, Shi FC, Koike T, et al., 2014. Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River delta in China. Clean-Soil, Air, Water, 42(10): 1433–1440. DOI: 10.1002/clen.201300007.
doi: 10.1002/clen.201300007
Dong XX, Wang XJ, Liu ZH, et al., 2008. Research progress on biological improvement and utilization of saline alkali soil. In: Proceedings of the 11th National Congress of the Chinese Soil Society and the Seventh Symposium on Soil and Fertilizer Symposium on Both Sides of the Taiwan Straits. Beijing: Soil Science Society of China, pp. 288–291.
Doran JW, Joleman DC, Bezdicek DF, et al Defining soil quality for a sustainable environment Madison, Wisconsin SSSA Spec Publ 1994 Doran JW, Joleman DC, Bezdicek DF, et al., 1994. Defining soil quality for a sustainable environment. Madison, Wisconsin: SSSA Spec Publ..
Han YS, Wang W, Sun J, et al Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants Journal of Experimental Botany 2013 64 14 4225 4238 Han YS, Wang W, Sun J, et al., 2013. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of Experimental Botany, 64(14): 4225–4238. DOI: 10.1093/jxb/ert229.
doi: 10.1093/jxb/ert229
Hong D, Tian Y, Zu HY, et al Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha Euphytica 2015 206 3 775 783 Hong D, Tian Y, Zu HY, et al., 2015. Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica, 206(3): 775–783. DOI: 10.1007/s10681-015-1515-z.
doi: 10.1007/s10681-015-1515-z
Hou HH, 2014. Study of improvement effects by biological measures in The Yellow River delta saline-alkali soil. Tai'an: Shandong Agricultural University.
Joseph B, Jini D Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants Journal of Plant Sciences 2010 5 4 376 390 Joseph B, Jini D, 2010. Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. Journal of Plant Sciences, 5(4): 376–390. DOI: 10.3923/jps.2010.376.390.
doi: 10.3923/jps.2010.376.390
Katerji N, van Hoorn JW, Hamdy A, et al Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods Agricultural Water Management 2003 62 1 37 66 Katerji N, van Hoorn JW, Hamdy A, et al., 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1): 37–66. DOI: 10.1016/S0378-3774(03)00005-2.
doi: 10.1016/S0378-3774(03)00005-2
Kim S, Rayburn AL, Voigt T, et al Salinity effects on germination and plant growth of prairie cordgrass and switchgrass Bioenergy Research 2012 5 1 225 235 Kim S, Rayburn AL, Voigt T, et al., 2012. Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Research, 5(1): 225–235. DOI: 10.1007/s12155-011-9145-3.
doi: 10.1007/s12155-011-9145-3
Kursakova V S The effect of perennial herbs on the physical properties of saline soils Eurasian Soil Science 2006 39 7 748 752 Kursakova V S, 2006. The effect of perennial herbs on the physical properties of saline soils. Eurasian Soil Science, 39(7): 748–752. DOI: 10.1134/S1064229306070088.
doi: 10.1134/S1064229306070088
Larson WE, Pierce FJ, 1994. The dynamics of soil quality as a measure of sustainable management. In: Defining Soil Quality for a Sustainable Environment. Madison, Wisconsin: Soil Science Society of America, pp. 37–51.
Li ZJ, Li JH, Ma WP, et al., 2006. Study on biological improvement and utilization of saline soil. In: National Exchange of Soil Pollution Control. Remediation and Salt Soil Improvement. Shenzhen: Chinese Society for Environmental Sciences, pp. 352–354.
Lin XZ, Chen KS, He PQ, et al The effects of Suaeda salsa L. planting on the soil microflora in coastal saline soil Acta Ecologica Sinica 2006 26 3 801 807 Lin XZ, Chen KS, He PQ, et al., 2006. The effects of Suaeda salsa L. planting on the soil microflora in coastal saline soil. Acta Ecologica Sinica, 26(3): 801–807.
Liu SL, Maimaitiaili B, Joergensen RG, et al Response of soil microorganisms after converting a saline desert to arable land in central Asia Applied Soil Ecology 2016 98 1 7 Liu SL, Maimaitiaili B, Joergensen RG, et al., 2016. Response of soil microorganisms after converting a saline desert to arable land in central Asia. Applied Soil Ecology, 98: 1–7. DOI: 10.1016/j.apsoil.2015.08.024.
doi: 10.1016/j.apsoil.2015.08.024
Liu YM, Zhang XZ, Miao JM, et al Evaluation of salinity tolerance and genetic diversity of thirty-three Switchgrass (Panicum virgatum) populations Bioenergy Research 2014 7 4 1329 1342 Liu YM, Zhang XZ, Miao JM, et al., 2014. Evaluation of salinity tolerance and genetic diversity of thirty-three Switchgrass (Panicum virgatum) populations. Bioenergy Research, 7(4): 1329–1342. DOI: 10.1007/s12155-014-9466-0.
doi: 10.1007/s12155-014-9466-0
Liu YX, Xie XD Biological improvement of salt-tolerant plant on salt lands Journal of Shandong Agricultural University (Natural Science) 2007 38 2 183 188 Liu YX, Xie XD, 2007. Biological improvement of salt-tolerant plant on salt lands. Journal of Shandong Agricultural University (Natural Science), 38(2): 183–188. DOI: 10.3969/j.issn.1000-2324.2007.02.006.
doi: 10.3969/j.issn.1000-2324.2007.02.006
Luo TB, Ren W, Xie CH Necessity and feasibility of biotic improving the saline and alkaline land in Xinjiang Arid Zone Research 2001 18 1 46 48 Luo TB, Ren W, Xie CH, 2001. Necessity and feasibility of biotic improving the saline and alkaline land in Xinjiang. Arid Zone Research, 18(1): 46–48. DOI: 10.13866/j.azr.2001.01.011.
doi: 10.13866/j.azr.2001.01.011
Mooring MT, Cooper AW, Seneca ED Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina American Journal of Botany 1971 58 1 48 55 Mooring MT, Cooper AW, Seneca ED, 1971. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina. American Journal of Botany, 58(1): 48–55. DOI: 10.1002/j.1537-2197.1971.tb09944.x.
doi: 10.1002/j.1537-2197.1971.tb09944.x
Moser LE, Vogel KP, 1995. Switchgrass, big bluestem, and indiangrass. In: Barnes RF, Miller DA, Nelson CJ, et al. (eds.). Forages Vol. 1: An Introduction to Grassland Agriculture. Ames, Iowa: Iowa State University Press, pp. 409–420.
Munns R Comparative physiology of salt and water stress Plant, Cell & Environment 2002 25 2 239 250 Munns R, 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2): 239–250. DOI: 10.1046/j.0016-8025.2001.00808.x.
doi: 10.1046/j.0016-8025.2001.00808.x
Nedjimi B Salt tolerance strategies of Lygeum spartum L.: A new fodder crop for Algerian saline steppes Flora 2009 204 10 747 754 Nedjimi B, 2009. Salt tolerance strategies of Lygeum spartum L.: A new fodder crop for Algerian saline steppes. Flora, 204(10): 747–754. DOI: 10.1016/j.flora.2008.11.004.
doi: 10.1016/j.flora.2008.11.004
Pongwichian P, Yuwaniyama A, Dissataporn C, et al Utilization of Salt tolerant species for rehabilitation of coastal saline soil in Petchaburi Province Thailand Indian Journal of Ecology 2014 41 53 56 Pongwichian P, Yuwaniyama A, Dissataporn C, et al., 2014. Utilization of Salt tolerant species for rehabilitation of coastal saline soil in Petchaburi Province Thailand. Indian Journal of Ecology, 41: 53–56.
Qin Y, Druzhinina IS, Pan XY, et al Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture Biotechnology Advances 2016 34 7 1245 1259 Qin Y, Druzhinina IS, Pan XY, et al., 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 34(7): 1245–1259. DOI: 10.1016/j.biotechadv.2016.08.005.
doi: 10.1016/j.biotechadv.2016.08.005
Rabie GH, Aboul-Nasr MB, Al-Humiany A Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense Mycobiology 2005 33 1 51 60 Rabie GH, Aboul-Nasr MB, Al-Humiany A, 2005. Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology, 33(1): 51–60. DOI: 10.4489/MYCO.2005.33.1.051.
doi: 10.4489/MYCO.2005.33.1.051
Ren W, Luo TB, Wang BJ, et al Biological improvement of saline and alkaline land in Xinjiang Agricultural Research in the Arid Areas 2004 22 4 211 214 Ren W, Luo TB, Wang BJ, et al., 2004. Biological improvement of saline and alkaline land in Xinjiang. Agricultural Research in the Arid Areas, 22(4): 211–214. DOI: 10.3321/j.issn:1000-7601.2004.04.042.
doi: 10.3321/j.issn:1000-7601.2004.04.042
Sakai Y, Matsumoto S, Sadakata M Alkali soil reclamation with flue gas desulfurization gypsum in China and assessment of metal content in corn grains Soil and Sediment Contamination: An International Journal 2012 13 1 65 80 Sakai Y, Matsumoto S, Sadakata M, 2012. Alkali soil reclamation with flue gas desulfurization gypsum in China and assessment of metal content in corn grains. Soil and Sediment Contamination: An International Journal, 13(1): 65–80. DOI: 10.1080/10588330490269840.
doi: 10.1080/10588330490269840
Shannon MC Adaptation of plants to salinity Advances in Agronomy 1997 60 75 120 Shannon MC, 1997. Adaptation of plants to salinity. Advances in Agronomy, 60: 75–120. DOI: 10.1016/S0065-2113(08)60601-X.
doi: 10.1016/S0065-2113(08)60601-X.
Singh S, Singh M Genotypic basis of response to saliniity stress in some crosses of spring wheat Triticum aestivum L Euphytica 2000 115 3 209 214 Singh S, Singh M, 2000. Genotypic basis of response to saliniity stress in some crosses of spring wheat Triticum aestivum L. Euphytica, 115(3): 209–214. DOI: 10.1023/A:1004014400061.
doi: 10.1023/A:1004014400061.
Smith JL, Halvorson JJ, Papendick RI Using multiple-variable indicator kriging for evaluating soil quality Soil Science Society of America Journal 1993 57 3 743 749 Smith JL, Halvorson JJ, Papendick RI, 1993. Using multiple-variable indicator kriging for evaluating soil quality. Soil Science Society of America Journal, 57(3): 743–749. DOI: 10.2136/sssaj1993.03615995005700030020x.
doi: 10.2136/sssaj1993.03615995005700030020x
Tang J, Li YF, Lin NF, et al Effects of biotechnology on improving the degraded soil—An example of planting Melilotus offcinalia for improving saline-alkaline soil Ecology and Environment 2004 13 1 51 53 Tang J, Li YF, Lin NF, et al., 2004. Effects of biotechnology on improving the degraded soil—An example of planting Melilotus offcinalia for improving saline-alkaline soil. Ecology and Environment, 13(1): 51–53, 60. DOI: 10.3969/j.issn.1674-5906.2004.01.016.
doi: 10.3969/j.issn.1674-5906.2004.01.016
Tao JJ Discussion on ecological nature view and sustainable development Business 2013 18 330 Tao JJ, 2013. Discussion on ecological nature view and sustainable development. Business, (18): 330.
Wang L, Wang SP, Shao HB, et al Simulated water balance of forest and farmland in the hill and gully region of the Loess Plateau in China Plant Biosystems 2012 146 S1 226 243 Wang L, Wang SP, Shao HB, et al., 2012. Simulated water balance of forest and farmland in the hill and gully region of the Loess Plateau in China. Plant Biosystems, 146(S1): 226–243. DOI: 10.1080/11263504.2012.709198.
doi: 10.1080/11263504.2012.709198
Wang M, Qi ST, Ge ML Research progress on the biological improvement of the coastal saline soil by halophytes Journal of Anhui Agricultural Sciences 2008 36 7 2898 2899 Wang M, Qi ST, Ge ML, 2008. Research progress on the biological improvement of the coastal saline soil by halophytes. Journal of Anhui Agricultural Sciences, 36(7): 2898–2899, 2954. DOI: 10.3969/j.issn.0517-6611.2008.07.122.
doi: 10.3969/j.issn.0517-6611.2008.07.122
Wang ZY, Shi CF, Leng XY, et al Research progress on biological waste improving saline-alkali land Journal of Biology 2016 33 5 100 102 Wang ZY, Shi CF, Leng XY, et al., 2016. Research progress on biological waste improving saline-alkali land. Journal of Biology, 33(5): 100–102. DOI: 10.3969/j.issn.2095-1736.2016.05.100.
doi: 10.3969/j.issn.2095-1736.2016.05.100
Wu LQ, Jiang YJ, Zhou LR, et al Effect of biological improvements on the enzyme activities in the soda meadow saline soil Heilongjiang Agricultural Sciences 2009 1 45 46,49 Wu LQ, Jiang YJ, Zhou LR, et al., 2009. Effect of biological improvements on the enzyme activities in the soda meadow saline soil. Heilongjiang Agricultural Sciences, (1): 45–46, 49. DOI: 10.3969/j.issn.1002-2767.2009.01.019.
doi: 10.3969/j.issn.1002-2767.2009.01.019
Wu XH, Zhang HS, Li G, et al Ameliorative effect of castor bean (Ricinus communis L.) planting on physico-chemical and biological properties of seashore saline soil Ecological Engineering 2012 38 1 97 100 Wu XH, Zhang HS, Li G, et al., 2012. Ameliorative effect of castor bean (Ricinus communis L.) planting on physico-chemical and biological properties of seashore saline soil. Ecological Engineering, 38(1): 97–100. DOI: 10.1016/j.ecoleng.2011.10.016.
doi: 10.1016/j.ecoleng.2011.10.016
Yu SH, Wang W, Wang B Recent progress of salinity tolerance research in plants Russian Journal of Genetics 2012 48 5 497 505 Yu SH, Wang W, Wang B, 2012. Recent progress of salinity tolerance research in plants. Russian Journal of Genetics, 48(5): 497–505.
Zhang FS, Shao QL, Cao ZY, 2001. The biological approaches and examples of improving the saline soils in the Yellow River Delta. In: International Symposium on the Utilization of Halophytes and the Sustainable Development of Regional Agriculture in 2001. Huanghua: Shijiazhuang Institute of Agricultural Modernization, Chinese Academy of Sciences, pp. 217–220.
Zhang L, Yan K, Shao H Photosynthetic characterization of three dominant plant species in the saline-alkaline soil of the Yellow River Delta, China Plant Biosystems 2014 148 6 1247 1254 Zhang L, Yan K, Shao H, 2014. Photosynthetic characterization of three dominant plant species in the saline-alkaline soil of the Yellow River Delta, China. Plant Biosystems, 148(6): 1247–1254. DOI: 10.1080/11263504.2014.980354.
doi: 10.1080/11263504.2014.980354
Zhang YH Desalination effects of salttolerant plants growing in alkali-saline soil in Ningxia Gansu Agricultural Science and technology 2005 3 48 49 Zhang YH, 2005. Desalination effects of salttolerant plants growing in alkali-saline soil in Ningxia. Gansu Agricultural Science and technology, (3): 48–49. DOI: 10.3969/j.issn.1001-1463.2005.03.021.
doi: 10.3969/j.issn.1001-1463.2005.03.021
Zhao KF, Zhang WJ, Fan H, et al Biological measures for utilization and development of salinized soil Chinese Journal of Soil Science 2001 32 S1 115 119 Zhao KF, Zhang WJ, Fan H, et al., 2001. Biological measures for utilization and development of salinized soil. Chinese Journal of Soil Science, 32(S1): 115–119. DOI: 10.3321/j.issn:0564-3945.2001.z1.031.
doi: 10.3321/j.issn:0564-3945.2001.z1.031
Zhu JK Plant salt tolerance Trends in Plant Science 2001 6 2 66 71 Zhu JK, 2001. Plant salt tolerance. Trends in Plant Science, 6(2): 66–71. DOI: 10.1016/S1360-1385(00)01838-0.
doi: 10.1016/S1360-1385(00)01838-0
Zuccarini P Biological and technological strategies against soil and water salinization I- Rhizosphere Journal of Plant Nutrition 2010 33 9 1287 1300 Zuccarini P, 2010. Biological and technological strategies against soil and water salinization I- Rhizosphere. Journal of Plant Nutrition, 33(9): 1287–1300. DOI: 10.1080/01904167.2010.484090.
doi: 10.1080/01904167.2010.484090
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong, AiJun Guo, XiaoJuan Yin, JinFeng Cui, Xiao Yang, YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .