Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (6): 502-515.doi: 10.3724/SP.J.1226.2018.00502

Previous Articles     Next Articles

Fossil Taiwannia from the Lower Cretaceous Yixian Formation of western Liaoning, Northeast China and its phytogeography significance

MingZhen Zhang1,*(),BaoXia Du2,PeiHong Jin1,2,BaiNian Sun2   

  1. 1 Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2 Key Laboratory of Mineral Resources in Western China (Gansu Province) and School of Earth Science, Lanzhou University, Lanzhou, Gansu 730000, China
  • Received:2018-10-19 Accepted:2018-11-16 Online:2018-12-01 Published:2018-12-29
  • Contact: MingZhen Zhang E-mail:zhangmzh08@lzb.ac.cn
  • Supported by:
    We are grateful to Prof. Xiaolin Wang from the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China for providing the present fossil specimen. This work was conducted under the 973 Program of China (No. 2012CB822003), the National Natural Science Foundation of China (No. 41402007, 41602023) and the Fundamental Research Funds for the Central Universities (Lzujbky-2014-132).

Abstract:

Fossil Taiwania was discovered from the Lower Cretaceous Yixian Formation of Lingyuan City, western Liaoning Province, Northeast China. It is identified as a new species, Taiwania lingyuanensis sp. nov.. The present specimen is preserved as impressions with well defined leaf shoots system and reproductive structures. Leaves are dimorphic, spirally and imbricately arranged. They are scale-like on the main and cone-bearing branchlets, and subulate to falcate-subulate on the juvenile or sterile shoots. The seed cones are singly elliptic, ovate or elongate-ovate and terminally borne on ultimate shoots, bearing 22–24 scale-bracts complexes imbricately and helically arranged around the cone axis, the bracts are broad-ovate, rhomboidal or hexagonal with entire margins. Both the leafy shoots morphology and reproductive structures are similar to extant Taiwania. Furthermore, geological distribution and molecular biological evidences support that Taiwania is probably originated from the eastern Asia at least in the Early Cretaceous and widely distributed in the North Hemisphere thereafter.

Key words: Taiwannia, Lower Cretaceous, Yixian Formation, leaves, seed cones

Figure 1

Location of the fossil site in western Liaoning, Northeast China"

Figure I

Leafy shoots morphology of Taiwania lingyuanensis (1. Fossil specimen of Taiwania lingyuanensis, scale bar=20 mm; 2. Leafy shoots and seed cones of Taiwania lingyuanensis, scale bar=10 mm; 3. Lateral sterile and fertile branches of Taiwania lingyuanensis, scale bar=5 mm; 4. main branch of Taiwania lingyuanensis, scale bar=5 mm; 5–7. The main and lateral branches of Taiwania lingyuanensis, scale bar=5 mm; 8. Leaf morphology of the main branches, scale bar=2 mm; 9–10. Leaf morphology of the lateral sterile branches, scale bar=2 mm) "

Figure II

Seed cone morphology of Taiwania lingyuanensis (1–3. singly and terminally inserted seed cones, scale bar=5 mm; 4. scale-like leaves and rhomboidal scale-bracts of Taiwania lingyuanensis, shows the distinctive keel on the abaxial surface, scale bar=5 mm; 5. spirally and imbricate scale-bracts of Taiwania lingyuanensis, shows the trace of seeds, scale bar=5 mm; 6. scale-bracts morphology of Taiwania lingyuanensis, shows the trace of the small lob with irregularly sinuate margins, scale bar=5 mm; 7. scale-bracts morphology at the base of the seed cone, scale bar=2 mm; 8–9. scale-bracts morphology at the middle and upper part of the seed cone, scale bar=2 mm) "

Table 1

Morphological comparisons among the extant families of Coniferopsida"

Family Leaf shape Leaf arrangement Seed or Seed cone type Seed or seed cone arrangement Seed or seed cone shape Scale-bracts or bracts arrangement Scale-bracts or bracts shape
Araucariaceae Needle-like, broadly ovate or triangular-ovate, falcate, subulate, or triangular Spirally or decussate Seed cone Solitary and terminal Erect, ellipsoid, or ovoid to sub-globose Spirally Flabellate
Cupressaceae sensu lato Cupressaceae sensu stricto Scalelike or needle-like Decussate or in whorls of 3 Seed cone Solitary, terminal or axillary Globose, ovoid, oblong or ellipsoid-cylindric Decussate Peltate
Taxodiaceae Lanceolate, subulate, scale-like, or linear Spirally scattered or decussate Seed cone Solitary, terminal or sub-terminal Globose, ovoid, or cylindric-ovoid, ellipsoid Spirally or decussate Broadly ovate, triangular-ovate or triangular, peltate, rhombic, shield-shaped
Pinaceae Scale-like, blade linear or needle-like Spirally or cluster Seed cone Terminal or axillary Cylindric or ovoid Spirally and appressed Peltate or flabellate
Sciadopityaceae Scale-like, triangular or linear Scattered or whorled Seed cone Terminal Narrowly ovoid Spirally Broadly cuneate or fan-shaped
Cephalotaxaceae Blade linear, linear-lanceolate, or lanceolate Decussate or opposite, sessile or sub-sessile Seed-bearing structure Solitary Obovate, ovoid or nearly globose with long pedunculate, drupelike Decussate Ovate
Taxaceae Linear or lanceolate Spirally arranged or decussate Seed-bearing structure Solitary or paired in axils of leaves Ovoid or trigonous-ovoid, drupelike or nutlike, partially or completely enclosed in a succulent, saccate or cupular aril At the base of the seed, overlapping or decussate Triangular
Podocarpaceae Blade scale-like, subulate, or linear to elliptic Decussate, sub-opposite, or spirally arranged Seed-bearing structure Solitary, terminal or axillary Drupelike or nutlike Spirally Apical bracts fertile, basal bracts often fused to form a receptacle

Table 2

Morphological comparisons between taxodiaceous genera and the present specimen"

Genus Leaves Female cone shape and size Bract-scale number, arrangement and shape Ovules or Seed References
Cunninghamia Sessile, lanceolate or linear-lanceolate, spirally arranged, base decurrent, margin serrulate 1–3 together, terminal, globose, ovoid or cylindric-ovoid, 1.8–4.5 cm long and 1.2–4.0 cm wide 47–72, spirally arranged, sessile, connate proximally; tapered imbricate, broadly ovate or triangular-ovate, flat, large, base cordate, margin irregularly and finely serrulate Ovules 1–3 per bract axil, Seeds 2–3 Fu et al., 1999c ; Farjon and Garcia, 2003; Schulz and Stützel, 2007; Ma et al., 2009
Taiwania Sessile, falcate-subulate (juvenile stage) and scale-like (mature stage), spirally arranged, decurrent and imbricate Shortly cylindric to ellipsoid, 1.0–2.2 cm long and 6–11 mm wide 20–25, tapered, cuneately narrowed into claw, appressed, with serrulate margins and an acute, slightly keeled apex Ovules 1–2 per bract axil Fu et al., 1999c ; Farjon and Garcia, 2003; Ma et al., 2009
Sequoia Scale-like on main branches and linear on lateral branches, spirally arranged Terminal, pendulous, pedunculate, ovoid-ellipsoid or ovoid, 0.9–2.5 cm long and 1.0–2.5 cm wide 21–28, shield-shaped, peltate with an apical depression, apically grooved, expanded into a rhomboid disc, occasionally with central mucro Ovules 3–7 per bract axil, Seeds 2–5 Fu et al., 1999c ; Ma and Li, 2002; Farjon and Garcia, 2003; Ma et al., 2009
Sequoiadendron Subulate and scale-like, spirally arranged Terminal, pendulous, pedunculate, elliptic, 5–8 cm long and 3.0–5.5 cm wide 20–40, shield-shaped Ovules 3–12 per bract axil Fu et al., 1999c , Ma et al., 2009
Metasequoia Linear, decussate Ellipsoidal or spheroidal, 6.0–25 mm long and 6.0–25 mm wide 10–22, Shield-like, decussate, peltate with an apical depression 2.0–6.0 mm long and 5.0–17.0 mm wide 5–8 seeds in a row Fu et al., 1999c ; Liu et al., 1999 ; Ma et al., 2009
Athrotaxis Sessile, scale-like or needle-like, spirally arranged, loosely speading or closely appressed, with entire or serrate margins Globose, 8–21 mm long 10–30, peltate, cuneate or peltate with tapered apex 3–6 seeds per complex Miller and LaPasha, 1983; Farjon, 2005; Schulz et al., 2005 ; Eckenwalder, 2009; Ma et al., 2009
Cryptomeria Spirally, crowded, linear or subulate, base decurrent Globose or subglobose, ellipsoid, about 0.9–2.5 cm long and 1.0–2.5 cm wide 20–30, cuneate or peltate without an apical depression, 3–7 long tooth on the upper part of the seed-scale 2–5 seeds per complex Fu et al., 1999c ; Ma et al., 2007 ; Ma et al., 2009
Glyptostrobus Spirally, linear, linear-subulate and scale-like Ellipsoid, 1.4–2.5 cm long and 0.9–1.5 cm wide 20–22, obovate, base cuneate, apical margin with 6–10 triangular, outwardly curved teeth adaxially. Ovules 2 per bract axil Fu et al., 1999c ; Ma et al., 2004
Taxodium Linear or subulate spirally arranged Globose or ellipsoid, 1.4–4.0 cm long and 1.3–3.0 cm wide 15–20, shield-shaped, peltate or rhombic, spirally arranged, not overlapping, apex irregularly quadrangular, with longitudinal rib on the upside margins Ovules 2 per bract axil, Seeds 2 per cone scale Fu et al., 1999c ; Kunzmann et al., 2009 ; Ma et al., 2009
Taiwania lingyuanensis Subulate or falcate-subulate on the young branches or sterile branches, scale-like on the main branch and fertile branches Ellipsoid or cylindric, 10.7–13.0 mm long and 6.5–7.5 mm wide 22–24, spirally arranged, broad-ovate, rhomboidal or hexagon, base broad-rhomboidal, triangular or round and apex gradually tapering Ovules 2–3 The present paper

Figure 2

Comparison of morphological structures between the holotype and the extant Taiwania (a: foliage of the holotype; b: foliage of Taiwania cryptmerioides), derive from Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae, 1978 "

Table 3

Morphological comparisons among the reliable fossil records of Taiwania and Taiwania-like species "

Species Fossil type Age Locality Leaves Seed cone References
T. eocenica Seed cone Eocene Japan 12 mm long and 8 mm wide Matsuo, 1967
T. fushunensis Leafy shoot bearing seed cone Eocene China Scale-like 19 mm long and 14 mm wide Endo, 1942
T. paracryptomeroides Seed cones Miocene Germany 15 mm long and 6 mm wide Kilpper, 1968
T. cf. paracryptomeroides Leaves Miocene Germany Subulate, 3–5 mm long and 1.5–2.0 mm wide Mai and Walther, 1991
T. mesocryptomeroides Leafy shoot bearing seed cone Late Cretaceous (Maastrichtian) Japan Subulate and scale-like 6–8 mm long and 4–5 mm wide Matsuo, 1970
T. japonica Leafy shoot bearing seed cone Miocene and Pilocene Japan Subulate and scale-like, subulate leaves 3–14 mm long and 1–2 mm wide 10 mm long and 5 mm wide Ishida, 1970
T. cretacea Seed cones and leaves Cretaceous Russia Subulate, 7 mm long and 2.5 mm wide 17 mm long and 15 mm wide Samylina, 1988
T. microphylla Leaves Late Cretaceous (Cenomanian; Turonian) New Siberia Island Subulate leaves about 2–7 mm long and 0.7–2.5 mm wide, scale leaves about 1.25 mm long and 1 mm wide Sveshnikova and Budantsev, 1969
T. rarytkiniana Leaves Upper Eocene Russia Subulate leaves about 6–7 mm long and 3.5–4.0 mm wide Akhmetiev and Samsonenko, 1997
T. schaeferi Seed cone and leaves Paleocene and Miocene Germany Subulate leaves about 7 mm long and 3 mm wide, scale leaves 2.5–4.0 mm long and 1.5–2.0 mm wide 7–8 mm long and 3–5 mm wide Schloemer-J?ger, 1958; Kilpper, 1968; J?hnichen, 1998
T. cf. schaeferi Leaves Oligocene Germany Subulate, about 12–14 long and 2 mm wide Walther, 1999
Parataiwania nihongii Seed cone Late Cretaceous (Coniacian-Santonian) Hokkaido, Japan Elliptic, 22 mm long and 16 mm wide, 3 ovules per cone scale Nishida et al., 1992
Mikasastrohus hokkaidoensis Seed cone Late Cretaceous (Coniacian-Sanonian) Hokkaido, Japan Helically arranged, rhombic in transverse section Ovoid, 3–4 cm long and up to 2.0–3.5 cm in diameter Saiki and Kimura, 1993
T. lingyuanensis Leafy shoot bearing seed cones Early Cretaceous (Aptian) China Subulate leaves 1.5–4.0 mm long and 0.7–1.2 mm wide, scale leaves 2–3 mm long and 0.8–2.5 mm wide Elliptic, ovate or elongate-ovate, 10.7–13 mm long and 6.5–7.5 mm wide The present paper

Figure 3

Fossil and extant distribution of Taiwania (Data from: Endo, 1942; Schloemer-J?ger, 1958; Matsuo, 1967; Kilpper, 1968; Sveshnikova and Budantsev, 1969; Ishida, 1970; Matsuo, 1970; Samylina, 1988; Mai and walther, 1991; Nishida et al., 1992 ; Akhmetiev and Samsonenko, 1997; J?hnichen, 1998; McIver and Basinger, 1999; Walther, 1999; LePage, 2009) "

1 Akhmetiev MA, Samsonenko VL New species of the Eocene plants from the Rarytkin ridge (north Korjakia). Paleontologicheskii Zhurnal 1997; 2: 94- 102.
2 Arnold CA, Lowther JS A new Cretaceous conifer from northern Alaska. American Journal of Botany 1955; 42: 6 522- 528.
doi: 10.1002/j.1537-2197.1955.tb11156.x
3 Bartel JA, Fish US, Service W Cupressaceae Cypress Family. Journal of the Arizone-Nevada Academy of Science 1993; 27: 195- 200.
4 Cai CY, Huang DY A new species of small-eyed Quedius (Coleoptera: Staphylinidae: Staphylininae) from the Early Cretaceous of China. Cretaceous Research 2013; 44: 54- 57.
doi: 10.1016/j.cretres.2013.03.004
5 Cao ZY Occurrence of Ruffordia and Nageiopsis from the Early Cretaceous Yixian Formation of western Liaoning and its stratigraphic significance. Acta Palaeontologica Sinica 2001; 40: 2 214- 218.
6 Chang SC, Zhang HC, Renne PR, et al. High-precision 40Ar/39Ar age for the Jehol Biota . Palaeogeography, Palaeoclimatology, Palaeoecology 2009; 280: 1–2 94- 104.
doi: 10.1016/j.palaeo.2009.06.021
7 Chen PJ, Dong ZM, Zhen SN An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 1998; 391: 147- 152.
doi: 10.1038/34356
8 Chou YW, Thomas PI, Ge XJ, et al. Refugia and phylogeography of Taiwania in East Asia . Journal of Biogeography 2011; 38: 10 1992- 2005.
doi: 10.1111/j.1365-2699.2011.02537.x
9 Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae, 1978. Flora Reipublicae Popularis Sinicae, Tumos 7, Gymnospermae. Science Press, pp. 290–293.
10 Dilcher DL, Sun G, Qiang J, et al. An early infructescence Hyrcantha decussate (comb. nov.) from the Yixian Formation in Northeastern China. Proceedings of the National Academy of Sciences 2007; 104: 9370- 9374.
doi: 10.1073/pnas.0703497104
11 Du BX, Yan DF, Sun BN, et al. Cunninghamia praelanceolata sp. nov. with associated epiphyllous fungi from the upper Miocene of eastern Zhejiang, S.E China and their palaeoecological implications . Review of Palaeobotany and Palynology 2012; 182: 32- 43.
doi: 10.1016/j.revpalbo.2012.06.002
12 Du BX, Sun BN, Ferguson DK, et al. Two Brachyphyllum species from the Lower Cretaceous of Jiuquan Basin, Gansu Province, NW China and their affinities and palaeoenvironmental implications . Cretaceous Research 2013; 41: 242- 255.
doi: 10.1016/j.cretres.2012.12.009
13 Dong C, Sun BN, Wu JY, et al. Structure and affinities of Athrotaxites yumenensis sp. nov. (Cupressaceae) from the Lower Cretaceous of northwestern China . Cretaceous Research 2014; 47: 25- 38.
doi: 10.1016/j.cretres.2013.09.012
14 Endo S On the fossil flora from the Shulan coal field, Kirin Province and the Fushun coal fields, Fengtien Province. Bulletin of the Central National Meseum of Manchoukuo 1942; 3: 33- 43.
15 Escapa IH, Cuneo NR, Axsmith B A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: Implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 2008; 151: 3 110- 122.
doi: 10.1016/j.revpalbo.2008.03.002
16 Farjon A, Garcia SO Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution . American Journal of Botany 2003; 90: 1 8- 16.
doi: 10.3732/ajb.90.1.8
17 Farjon A, 2005. A Monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, pp. 84–90.
18 Ferguson DK On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 1967; 3: 73- 110.
doi: 10.1016/0031-0182(67)90007-7
19 Fu LG, Li N, Mill RR, 1999a. Araucariaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 9–10.
20 Fu LG, Li N, Mill RR, 1999b. Pinaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 11–52.
21 Fu LG, Yu YF, Mill RR, 1999c. Taxodiaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 54–61.
22 Fu LG, Yu YF, Mill RR, 1999d. Cupressaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 62–77.
23 Fu LG, Li Y, Mill RR, 1999e. Podocarpaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 78–84.
24 Fu LG, Li N, Mill RR, 1999f. Cephalotaxaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 85–88.
25 Fu LG, Li N, Mill RR, 1999g. Taxaceae. In: Wu ZY, Raven PH (eds.). Flora of China, volume 4. Science Press, Beijing, pp. 89–96.
26 Gadek PA, Alpers DL, Heslewood MM, et al. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 2000; 87: 1044- 1057.
doi: 10.2307/2657004
27 He H, Wang X, Zhou Z, et al. 40Ar/39Ar dating of Lujiatun Bed (Jehol Group) in Liaoning, Northeastern China . Geophysical Research Letters 2006; 33: L04303.
28 Herman AB, Spicer RA Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya). Palaeogeography, Palaeoclimatology, Palaeoecology 2010; 295: 409- 422.
doi: 10.1016/j.palaeo.2010.02.034
29 Hou LH, Zhou Z, Martin L, et al. A beaked bird from the Jurassic of China. Nature 1995; 377: 616- 618.
doi: 10.1038/377616a0
30 Hu YM, Wang YQ, Luo ZX, et al. A new symmetrodont mammal from China and its implications for mammal evolution. Nature 1997; 390: 137- 142.
doi: 10.1038/36505
31 Huber BT, Norris RD, MacLeod KG Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 2002; 30: 123- 126.
doi: 10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2
32 Hou SL, Meng J A new eutriconodont mammal from the early Cretaceous Jehol Biota of Liaoning, China. Chinese Science Bulletin 2014; 59: 5–6 546- 553.
doi: 10.1002/gj.1083
33 Ishida S The Noroshi flora of noto peninsula, Central Japan. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy 1970; 37: 1 1- 112.
34 Jähnichen H Erstnachweis von Taiwania, Cryptomeria and Liquidambar aus dem Bitterfelder und Baltischen Bernstein . Fossil Record 1998; 1: 1 167- 178.
doi: 10.1002/mmng.19980010112
35 Ji Q, Currie PJ, Norell M, et al. Two feathered dinosaurs from northeast China. Nature 1998; 393: 753- 761.
doi: 10.1038/31635
36 Ji Q On the Mesozoic Jehol Biota of China. Geological Review 2002; 46: 290- 296.
doi: 10.16509/j.georeview.2002.03.012
37 Kunzmann L Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic. Zoologischer Anzeiger-A Journal of Comparative Zoology 2007; 246: 4 257- 277.
doi: 10.1016/j.jcz.2007.08.001
38 Kunzmann L, Kvaček Z, Mai DH, et al. The genus Taxodium (Cupressaceae) in the Palaeogene and Neogene of Central Europe . Review of Palaeobotany and Palynology 2009; 153: 1 153- 183.
doi: 10.1016/j.revpalbo.2008.08.003
39 Kilpper K Koniferen aus den tertiären Deckschichten des niederrheinischen Hauptflözes, 3. Taxodiaceae und Cupressaceae. Palaeontographica Abteilung B 1968; 121: 4–6 102- 111.
40 LePage BA Earliest Occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska: Evolution, Biogeography, and Paleoecology . Proceedings of the Academy of Natural Sciences of Philadelphia 2009; 158: 1 129- 158.
doi: 10.1635/053.158.0107
41 Leng Q, Friis EM Sinocarpus decussatusgen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Systematics and Evolution 2003; 241: 77- 88.
doi: 10.1007/s00606-003-0028-8
42 Leng Q, Friis EM Angiosperm leaves associated with Sinocarpus Leng et Friis infructescences from the Yixian Formation (mid-Early Cretaceous) of NE China. Plant Systematics and Evolution 2006; 262: 173- 187.
doi: 10.1007/s00606-006-0461-6
43 Leng Q, Gaytha AL, Yang H Early Paleogene Arctic terrestrial ecosystems affected by the change of polar hydrology under global warming: Implications for modern climate change at high latitudes. Science China Earth Sciences 2010; 53: 933- 944.
doi: 10.1007/s11430-010-3081-5
44 Li H Early Cretaceous sarraceniacean-like pitcher plants from China. Acta Botanica Gallica 2005; 152: 227- 234.
doi: 10.1080/12538078.2005.10515473
45 Li ZC, Wang XL, Ge XJ Genetic diversity of the relict plant Taiwania cryptomerioides Hayata (Cupressaceae) in mainland China . Silvae Genetica 2008; 57: 242- 249.
doi: 10.1515/sg-2008-0037
46 Linnert C, Robinson SA, Lees JA, et al. Evidence for global cooling in the Late Cretaceous. Nature Communications 2014; 5: 1- 7.
doi: 10.1038/ncomms5194
47 Liu HM, Ferguson DK, Hueber FM, et al. Taxonomy and Systematics of Ephedrites cheniae and Alloephedra xingxuei (Ephedraceae) . Taxon 2008; 57: 2 577- 582.
doi: 10.2307/25066023
48 Liu YJ, Li CS, Wang YF Studies on fossil Metasequoia fiom north-east China and their taxonomic implications . Botanical Journal of the Linnean Society 1999; 130: 267- 297.
doi: 10.1006/bojl.1998.0219
49 Ma QW, 2003. Distribution and habitat of Taiwania (Taxodiaceae). In: Li CS (ed.), Advances on plant science research, vol. 5. Higher Education Press, Beijing, pp. 245–254. (in Chinese with English abstract)
50 Ma QW, Ferguson DK, Li FL, et al. Leaf epidermal structures of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application . Review of Palaeobotany and Palynology 2009; 155: 1–2 15- 24.
doi: 10.1016/j.revpalbo.2008.12.012
51 Ma QW, Li CS Epidermal structures of Sequoia sempervirens (D. Don) Endl (Taxodiaceae) . Taiwania 2002; 47: 3 194- 202.
doi: 10.6165/tai.2002.47(3).194
52 Ma QW, Li CS, Li FL, et al. Epidermal structures and stomatal parameters of Chinese endemic Glyptostrobus pensilis (Taxodiaceae) . Botanical Journal of the Linnean Society 2004; 146: 2 153- 162.
doi: 10.1111/j.1095-8339.2004.00326.x
53 Ma QW, Li CS, Li FL Epidermal structures of Cryptomeria japonica and implications to the fossil record . Acta Palaeobotanica 2007; 47: 1 281- 289.
54 Mai DH, Walther H Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 1991; 38: 1- 230.
55 Mao KS, Milne RI, Zhang LB, et al. Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America 2012; 109: 20 7793- 7798.
doi: 10.1073/pnas.1114319109
56 Matsuo H Palaeogene floras of northwestern Kyushu, Part I: the takashima flora. The Annals of Science, Kanazawa University, Part 2: Biology. Geology 1967; 4: 15- 90.
57 Matsuo H On the Omichidani flora (Upper Cretaceous) inner side of Certral Japan. Transactions of Proceeding of Palaeontological Society of Japan, New Series 1970; 80: 371- 389.
58 McIver EE, Basinger JF Early Tertiary Floral Evolution in the Canadian High Arctic. Annals of the Missouri Botanical Garden 1999; 85: 2 523- 545.
doi: 10.2307/2666184
59 Meng FX, Gao S, Liu XM U-Pb zircon geochronology and geochemistry of volcanic rocks of the Yixian Formation in the Lingyuan area, western Liaoning, China. Geological Bulletin of China 2008; 27: 364- 373.
60 Meng XY, Chen F, Deng SH Fossil plant Cunninghamia asiatica (Krassilov) comb. nov . Acta Botanica Sinica 1988; 30: 649- 654.
61 Miller CN, LaPasha CA Structure and affinities of Athrotaxites berryi Bell, an Early Cretaceous conifer . America Journal of Botany 1983; 70: 5 772- 779.
doi: 10.2307/2443131
62 Momohara A Climatic changes from the Late Pliocene to Middle Pleistocene in and around central Japan reconstructed from plant macrofossil assemblages. Chinese Science Bulletin 1999; 44: 236- 242.
doi: 10.1007/BF02896282
63 Nishida M, Nishida H, Ohsawa T Structure and affinities of petrified plants from the Cretaceous of Northern Japan and Saghalien VI. Yezosequoia shimanukii gen. et sp. nov. a petrified taxodiaceous cone from Hokkaido . J. Jpn. Bot. 1991; 66: 280- 291.
64 Nishida M, Ohsawa T, Nishida H Structure and affinities of petrified plants from the Cretaceous of Northern Japan and Saghalien VIII. Parataiwania nihongfi gen. et sp. nov. a taxodiaceous cone from the Upper Cretaceous of Hokkaido . J. Jpn. Bot. 1992; 67: 1- 9.
65 Ohsawa T Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceaeand Sciadopityaceae. Journal of Plant Research 1994; 107: 503- 512.
doi: 10.1007/bf02344071
66 Pan YH, Sha JG, Zhou ZH, et al. The Jehol Biota: Definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem. Cretaceous Research 2013; 44: 30- 38.
doi: 10.1016/j.cretres.2013.03.007
67 Rydin C, Wu SQ, Friis EM Liaoxia Cao et.S.Q. Wu (Gnetales): ephedroids from the Early Cretaceous Yixian Formation in Liaoning, northeastern China . Plant Systemtic and Evolution 2006; 262: 239- 265.
doi: 10.1007/s00606-006-0481-2
68 Saiki K, Kimura T Permineralized taxodiaceous seed cones from the upper Cretaceous of Hokkaido, Japan. Review of Palaeobotany and Palynologym 1993; 76: 83- 96.
doi: 10.1016/0034-6667(93)90081-5
69 Samylina VA, 1988. Arkagalinskaya Stratoflora of Northeastern Asia. Nauka leningard, pp. 132.
70 Schloemer-Jäger A Altertiäre Pflanzen aus Flözen der Brögger-Halbinsel Spitzbergens. Palaeontographica Abteilung B 1958; 104: 39- 103.
71 Schulz C, Stützel T Evolution of taxodizceaeous Cupressaceae (Coniferopsida). Organisms Diversity and Evolution 2007; 7: 124- 135.
doi: 10.1016/j.ode.2006.03.001
72 Schulz C, Knopf P, Stützel TH Identification key to the Cypress family(Cupressaceae). Feddes Repertorium 2005; 116: 1–2 96- 146.
doi: 10.1002/fedr.200411062
73 Sha J Cretaceous stratigraphy of northeast China: non-marine and marinecorrelation. Cretaceous Research 2007; 28: 146- 170.
doi: 10.1016/j.cretres.2006.12.002
74 Smith PE, Evensen NM, York D, et al. Dates and rates in ancient lakes: 40Ar/39Ar evidence for an Early Cretaceous age for the Jehol Group, northeast China . Canadian Journal of Earth Science 1995; 32: 1426- 1431.
doi: 10.1139/e95-115
75 Sun G, Dilcher DL, Zheng SL, et al. In search of the first flower: A Jurassic angiosperm, Archaefructus, from northeast China . Science 1998; 282: 1692- 1695.
doi: 10.1126/science.282.5394.1692
76 Sun G, Dilcher DL, Wang HS, et al. A eudicot from the Early Cretaceous of China. Nature 2011; 471: 625- 628.
doi: 10.1038/nature.09811
77 Sun G, Zhang SL, Dilcher DL, et al., 2001. Early Angiosperms and Their Associated Plants from Western Liaoning. China, Shanghai Science Technology Education Press, Shanghai. pp. 1–227.
78 Sun G, Ji Q, Dilcher DL, et al. Archaefructaceae, a new basal angiosperm family. Science 2002; 296: 899- 904.
doi: 10.1126/science.1069439
79 Stockey RA The Araucariaceae: an evolutionary perspective. Review of Palaeobotany and Palynology 1982; 37: 1 133- 154.
doi: 10.1016/0034-6667(82)90041-0
80 Stockey RA Mesozoic Araucariaceae: Morphology and Systematic Relationships. Journal of Plant Research 1994; 107: 493- 502.
doi: 10.1007/bf02344070
81 Stockey RA, Kvacek J, Hill RS, et al., 2005. The fossil record of Cupressaceae s. lat. In Farjon A (ed.), A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, pp. 54–68.
82 Sveshnikova IN, Budantsev LY, 1969. Florulae Fossil Arcticae. Volume I. Nauka, Leningard, pp. 130.
83 Swisher CC, Wang Y, Wang X, et al. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature 1999; 400: 59- 61.
doi: 10.1038/21872
84 Swisher CC, Wang X, Zhong Z, et al. Further support for a Cretaceous age for featured dinosaur beds of Liaoning Province, China: new 40Ar/39Ar dating of the Yixian and Tuchengzi formations . Chinese Science Bulletin 2002; 47: 135- 138.
85 Taylor EL, Taylor TN, Krings M, 2009. Paleobotany: the biology and evolution of fossil plants. Academic Press/ Elsevier. pp. 838–858.
86 Teng FF, Lu JC, Wei XF, et al. New Material of Zhenyuanopterus (Pterosauria) from the Early Cretaceous Yixian Formation of Western Liaoning . Acta Geologica Sinica-English Edition 2014; 88: 1 1- 5.
doi: 10.3969/j.issn.1000-9515.2014.01.002
87 Williams CJ, Mendell EK, Murphy J, et al. Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography Palaeoclimatology Palaeoecology 2008; 261: 160- 176.
doi: 10.1016/j.palaeo.2008.01.014
88 Walther H Die Tertiärflora von Kleinsaubernitz bei Bautzen. Palaeontographica Abteilung B 1999; 249: 63- 174.
89 Wang S, Wang Y, He H, et al. The existing time of Sihetun vertebrate inwestern Liaoning-evidence from U-Pb dating of zircon. Chinese Science Bulletin 2001; 46: 779- 782.
doi: 10.1007/bf03187222
90 Wang X, Zheng SL, Sun MX The Earliest Normal Flower from Liaoning Province, China. Journal of Integrative Plant Biology 2010; 51: 8 800- 811.
doi: 10.1111/j.1744-7909.2009.00838.x
91 Wang M, Béthoux O, Bradler S, et al. Under Cover at Pre-Angiosperm Times: A Cloaked Phasmatodean Insect from the Early Cretaceous Jehol Biota. Plos One 2014a; 9: 3 e91290.
doi: 10.1371/journal.pone.0091290
92 Wang M, Rasnitsyn AP, Shih CK, et al. A new Cretaceous genus of xyelydid sawfly illuminating nygmata evolution in Hymenoptera. BMC Evolutionary Biology 2014b; 14: 131 1- 11.
doi: 10.1186/1471-2148-14-131
93 Wang YD, Huang CM, Sun BN, et al. Paleo-CO2 variation trends and the Cretaceous greenhouse climate . Earth Science Reviews 2014; 129: 136- 147.
doi: 10.1016/j.earscirev.2013.11.001
94 Wang YQ, Sha JG, Pan YH Revision of Cypridea (non-marine Ostracoda) from the Early Cretaceous Yixian Formation of the Beipiao Yixian Basin in western Liaoning, northeast China. Cretaceous Research 2013; 40: 102- 109.
doi: 10.1016/j.cretres.2012.06.001
95 Wu HC, Zhang SH, Jiang GQ, et al. Astrochronology for the Early Cretaceous Jehol Biota in northeastern China. Palaeogeography Palaeoclimatology Palaeoecology 2013; 385: 221- 228.
doi: 10.1016/j.palaeo.2013.05.017
96 Yang W, Li S, Jiang B New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-Pb SHRIMP dating of the Yixian Formation in Sihetun, northeast China. Cretaceous Research 2007; 28: 177- 182.
doi: 10.1016/j.cretres.2006.05.011
97 Yang Y, Wang Q The Earliest Fleshy Cone of Ephedra from the Early Cretaceous Yixian Formation of Northeast China. Plos One 2013; 8: 1 e53652.
doi: 10.1371/journal.pone.0053652
98 Yu YF Origin, evolution and distribution of the Taxodiaceae. Acta Phytotaxonomica Sinica 1995; 33: 362- 389.
99 Zachos J, Pagani M, Sloan LC, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001; 292: 686- 693.
doi: 10.1126/science.1059412
100 Zhang JW, D'Rozario A, Wang LJ, et al. A new species of the extinct genus Austrohamia (Cupressaceae s.l.) in the Daohugou Jurassic flora of China and its phytogeographical implications . Journal of Systematics and Evolution 2012; 50: 1 72- 82.
doi: 10.1111/j.1759-6831.2011.00165.x
101 Zheng SL, Bo X, Zhang LJ Discovery of Pseudolarix from Lower Cretaceous Yixian Formation in Beipiao of Liaoning and its significance for origin and evolution . Global Geology 2007; 27: 2 121- 126.
102 Zhou ZH, Barrett PM, Hilton J An exceptionally preserved Lower Cretaceous terrestrial ecosystem. Nature 2003; 421: 807- 811.
doi: 10.1038/nature01420
103 Zhou ZH, Wang Y Vertebrate diversity of the Jehol Biota as compared with other lagerstätten. Science China (Earth Science) 2010; 53: 1894- 1907.
doi: 10.1007/s11430-010-4094-9
104 Zhou ZK, Momohara A Fossil history of some endemic seed plants of East Asiaand its phytogeographical significance. Acta Botanica Yunnanica 2005; 27: 5 449- 470.
105 Zhou Z Evolutionary radiation of the Jehol Biota: chronological and ecological perspectives. Geological Journal 2006; 41: 377- 392.
doi: 10.1002/gj.1045
106 Zhou Z, Barrett PM, Hilton J An exceptionally preserved Lower Cretaceous ecosystem. Nature 2003; 421: 807- 814.
doi: 10.1038/nature01420
107 Zhu R, Shao J, Pan Y, et al. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning: evidence for intracontinental rotation. Chinese Science Bulletin 2002; 47: 1832- 1837.
doi: 10.1360/02tb9400
108 Zhu R, Pan Y, Shi R, et al. Palaeomagnetic and 40Ar/39Ar dating constraints on the age of the Jehol Biota and the duration of deposition of the Sihetun fossil-bearing lake sediments, northeast China . Cretaceous Research 2007; 28: 171- 176.
doi: 10.1016/j.cretres.2006.06.003
[1] ZongQiang Chang, Hua Tao, Qiang Zhu. Seasonal characteristics of chlorophyll fluorescence kinetics of heteromorphic leaves in Populus Euphratica [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 169-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong, AiJun Guo, XiaoJuan Yin, JinFeng Cui, Xiao Yang, YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .