Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (3): 182-195.doi: 10.3724/SP.J.1226.2022.21052.
ChengChen Pan1,XiaoYa Yu2,Qi Feng1(),YuLin Li1,ShiLong Ren3
Ahmed V, Verma MK, Gupta S, et al., 2018. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Frontiers in Microbiology, 9: 159. DOI: 10.3389/fmicb. 2018.00159 .
doi: 10.3389/fmicb. 2018.00159 |
|
Bååth E, Anderson TH, 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology & Biochemistry, 35: 955- 963. DOI: 10.1016/S0038-0717(03)00154-8 .
doi: 10.1016/S0038-0717(03)00154-8 |
|
Bai YF, Wu JG, Xing Q, et al., 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89: 2140- 2153. DOI: 10.1890/07-0992.1 .
doi: 10.1890/07-0992.1 |
|
Bastida F, Romanowicz K, Upchurch R, et al., 2017. Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 23: 4185- 4203. DOI: 10.1016/j.soilbio.2015.08.014 .
doi: 10.1016/j.soilbio.2015.08.014 |
|
Bisigato AJ, Bertiller MB, 1997. Grazing effects on patchy dry-land vegetation in northern Patagonia. Journal of Arid Environments, 36: 639- 653. DOI: 10.1006/jare.1996.0247 .
doi: 10.1006/jare.1996.0247 |
|
Campbell BJ, Kirchman DL, 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME Journal, 7: 210- 220. DOI: 10. 1038/ismej.2012.93 .
doi: 10. 1038/ismej.2012.93 |
|
Canfora L, Bacci G, Pinzari F, et al., 2014. A Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? Plos One, 9: e106662. DOI: 10.1371/journal.pone.0106662 .
doi: 10.1371/journal.pone.0106662 |
|
Chen YL, Xu TL, Veresoglou SD, et al., 2017. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology & Biochemestry, 110: 12- 21. DOI: 10. 1016/j.soilbio.2017.02.015 .
doi: 10. 1016/j.soilbio.2017.02.015 |
|
Christiansen CT, Haugwitz MS, Prieme A, et al., 2017. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Global Change Biology, 23: 406- 420. DOI: 10. 1111/gcb.13362 .
doi: 10. 1111/gcb.13362 |
|
Clarke KR, 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18: 117- 143. DOI: 10.1111/j.1442-9993.1993.tb00438.x .
doi: 10.1111/j.1442-9993.1993.tb00438.x |
|
Cross WF, Hood JM, Benstead JP, et al., 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21: 1025- 1040. DOI: 10.1111/gcb.12809 .
doi: 10.1111/gcb.12809 |
|
Delgado-Baquerizo M, Maestre FT, Reich PB, et al., 2016. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 86: 373- 390. DOI: 10.1002/ecm.1216 .
doi: 10.1002/ecm.1216 |
|
Dhami NK, Alsubhi WR, Watkin E, et al., 2017. Bacterial community dynamics and biocement formation during stimulation and augmentation: implications for soil consolidation. Frontiers in Microbiology, 8: 1267. DOI: 10.2307/4287742 .
doi: 10.2307/4287742 |
|
Faith DP, 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation, 61: 1- 10. DOI: 10.1016/0006-3207(92)91201-3 .
doi: 10.1016/0006-3207(92)91201-3 |
|
Fierer N, Jackson RB, 2006. The diversity and biogeography of soil bacterial communities. Proceeding of the National Academy of Sciences of the United States of America, 103: 626- 631. DOI: 10.1073/pnas.0507535103 .
doi: 10.1073/pnas.0507535103 |
|
Ge Y, He J, Zhu Y, 2008. Differences in soil bacterial diversity: Driven by contemporary disturbances or historical contingencies? The ISME Journal, 2: 254- 264. DOI: 10.1038/ismej.2008.2 .
doi: 10.1038/ismej.2008.2 |
|
Griffiths RI, Thomson BC, James P, et al., 2011. The bacterial biogeography of British soils. Environmental Microbiology, 13: 1642- 1654. DOI: 10.1111/j.1462-2920.2011.02480.x .
doi: 10.1111/j.1462-2920.2011.02480.x |
|
Hendershot JN, Read QD, Henning JA, et al., 2017. Consistently inconsistent drivers of patterns of microbial diversity and abundance at macroecological scales. Ecology, 98: 1757- 1763. DOI: 10.1002/ecy.1829 .
doi: 10.1002/ecy.1829 |
|
Hijmans RJ, Cameron SE, Parra JL, et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965- 1978. DOI: 10.1002/joc.1276 .
doi: 10.1002/joc.1276 |
|
Hooper DU, Bignell DE, Brown VK, et al., 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience, 50: 1049- 1061. DOI: 10.1641/0006-3568(2000)050 [ 1049: IBAABB]2.0.CO;2.
doi: 10.1641/0006-3568(2000)050 |
|
Hornstrom E, 2002. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia, 470: 115- 126. DOI: 10.1023/A:1015619921119 .
doi: 10.1023/A:1015619921119 |
|
Jiao S, Lu Y, 2020. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystemss. Environmental Microbiology, 22: 1052- 1065. DOI: 10.1111/1462-2920.14815 .
doi: 10.1111/1462-2920.14815 |
|
Jing X, Sanders NJ, Shi Y, et al., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communication, 6: 8159. DOI: 10.1038/ncomms9159 .
doi: 10.1038/ncomms9159 |
|
Kaspari M, Alonso L, O'Donnel S, 2000. Three energy variables predictant abundance at a geographical scale. Proceedings of the Royal Society B, 267: 485- 489. DOI: 10.1098/rspb.2000.1026 .
doi: 10.1098/rspb.2000.1026 |
|
Koorem K, Gazol A, Opik M, et al., 2014. Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. Plos One, 9: e91998. DOI: 10. 1371/journal.pone.0091998 .
doi: 10. 1371/journal.pone.0091998 |
|
Lozupone CA, Knight R, 2007. Global patterns in bacterial diversity. Proceeding of the National Academy of Sciences of the United States of America, 104: 11436- 11440. DOI: 10.1073/pnas.0611525104 .
doi: 10.1073/pnas.0611525104 |
|
Madigan M, Martinko J, Parker J, 1997. Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River, NJ. | |
Maestre FT, Delgado-Baquerizo M, Jeffries TC, et al., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceeding of the National Academy of Sciences of the United States of America, 112: 15684- 15689. DOI: 10.1073/pnas.1516684112 .
doi: 10.1073/pnas.1516684112 |
|
Martiny JBH, Bjm Bohannan, Brown JH, et al., 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiolgoy, 4: 102. DOI: /10.1038/nrmicro1341 .
doi: /10.1038/nrmicro1341 |
|
McCune B, Grace JB, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon, USA. | |
Nacke H, Goldmann K, Schoning I, et al., 2016. Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Frontior Microbiology, 7: 2067. DOI: 10.3389/fmicb.2016.02067 .
doi: 10.3389/fmicb.2016.02067 |
|
Oksanen J, Blanchet FG, Friendly M, et al., 2013. Package vegan. R package. . | |
Oren A, 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4: 2. DOI: 10.1186/1746-1448-4-2 .
doi: 10.1186/1746-1448-4-2 |
|
Pan XQ, Li ZC, 1987. Study on productivity and grazing succession in Hulunbeier grassland. Grassland of China, 9: 36- 39. (in Chinese) | |
Pan CC, Feng Q, Liu JL, et al., 2018. Community structure of grassland ground-dwelling arthropods along increasing soil salinities. Environmental Science and Pollution Research, 25: 7479- 7486. DOI: 10.1007/s11356-017-1011-1 .
doi: 10.1007/s11356-017-1011-1 |
|
Core Team R, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria. . | |
Rath KM, Fierer N, Murphy DV, et al., 2019. Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 13: 836- 846. DOI: 10. 1038/s41396-018-0313-8 .
doi: 10. 1038/s41396-018-0313-8 |
|
Ren B, Hu Y, Chen B, 2018. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Scientific Reports, 8: 5619. DOI: 10.1038/s41598-018-24040-8 .
doi: 10.1038/s41598-018-24040-8 |
|
Schloss PD, Westcott SL, Ryabin T, et al., 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75: 7537- 7541. DOI: 10.1128/AEM.01541-09 .
doi: 10.1128/AEM.01541-09 |
|
Schnittler M, Stephenson SL, 2000. Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia, 92: 626- 637. DOI: 10.2307/3761420 .
doi: 10.2307/3761420 |
|
Shen C, Xiong J, Zhang H, et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57: 204- 211. DOI: 10.1016/j.soilbio.2012.07.013 .
doi: 10.1016/j.soilbio.2012.07.013 |
|
Sickle JV, 1997. Using mean similarity dendrograms to evaluate classifications. Journal of Agricultural Biological and Environmental Statistics, 23: 70- 88. | |
Talbot JM, Bruns TD, Taylor JW, et al., 2014. Endemism and functional convergence across the North American soil mycobiome. Proceeding of the National Academy of Sciences of the United States of America, 111: 6341- 6346. DOI: 10.1073/pnas.1402584111 .
doi: 10.1073/pnas.1402584111 |
|
Tang QY, Zhang CX, 2013. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use inentomological research. Insect Science, 20: 254- 260. DOI: 10.1111/j.1744-7917.2012. 01519.x .
doi: 10.1111/j.1744-7917.2012. 01519.x |
|
Tian J, He N, Hale L, et al., 2018. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 32: 61- 70. DOI: 10.1111/1365-2435.12952 .
doi: 10.1111/1365-2435.12952 |
|
Wang JM, Wang Y, He NP, et al., 2020. Plant functional traits regulate soil bacterial diversity across temperate deserts. Science of the Total Environment, 715: 136976. DOI: 10. 1016/j.scitotenv.2020.136976 .
doi: 10. 1016/j.scitotenv.2020.136976 |
|
Wang SK, Zuo XA, Zhao XY, et al., 2018. Dominant plant species shape soil bacterial community in semiarid sandy land of northern China. Ecology and Evolution, 8: 1693- 1704. DOI: 10.1002/ece3.3746 .
doi: 10.1002/ece3.3746 |
|
Wang XB, Lü XT, Yao J, et al., 2017. Habitat-specific patterns and drivers of bacterial β-diversity in China's drylands. ISME Journal, 11: 1345- 1358. DOI: 10.1038/ismej.2017.11 .
doi: 10.1038/ismej.2017.11 |
|
Wang XB, Van Nostrand JD, Deng Y, et al., 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 91: fiv133. DOI: 10.1093/femsec/fiv133 .
doi: 10.1093/femsec/fiv133 |
|
Xia Q, Rufty T, Shi W, 2020. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology Biochemistry, 149: 107953. DOI: 10.1016/j.soilbio.2020.107953 .
doi: 10.1016/j.soilbio.2020.107953 |
|
Xiong JB, Liu YQ, Lin XG, et al., 2012. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14: 2457- 2466. DOI: 10.1111/j.1462-2920.2012.02799.x .
doi: 10.1111/j.1462-2920.2012.02799.x |
|
Yan R, Feng W, 2020. Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China. Journal of Arid Land, 12: 473- 494. DOI: 10.1007/s40333-020-0011-z .
doi: 10.1007/s40333-020-0011-z |
|
Yang HJ, Li Y, Wu MY, et al., 2012. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Globle Change Biology, 17: 2936- 2944. DOI: 10.1111/j.1365-2486.2011.02423.x .
doi: 10.1111/j.1365-2486.2011.02423.x |
|
Zak DR, Holmes WE, White DC, et al., 2003. Plant diversity, microbial communities, and ecosystem function: are there any links? Ecology, 84: 2042- 2050. DOI: 10.1890/02-0433 .
doi: 10.1890/02-0433 |
|
Zapala MA, Schork NJ, 2006. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proceeding of the National Academy of Sciences of the United States of America, 103: 19430- 19435. DOI: 10.1073/pnas. 0609333103 .
doi: 10.1073/pnas. 0609333103 |
|
Zeng Q, An S, Liu Y, et al., 2019. Biogeography and the driving factors affecting forest soil bacteria in an arid area. Science of the Total Environment, 680: 124- 131. DOI: 10. 1016/j.scitotenv.2019.04.184 .
doi: 10. 1016/j.scitotenv.2019.04.184 |
|
Zha Y, Gao J, 1997. Characteristics of desertification and its rehabilitation in China. Journal of Arid Environments, 37: 419- 432. DOI: 10.1006/jare.1997.0290 .
doi: 10.1006/jare.1997.0290 |
|
Zhang G, Bai J, Tebbe CC, et al., 2021. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environmental Microbiology, 23: 1020- 1037. DOI: 10.1111/1462-2920.15281 .
doi: 10.1111/1462-2920.15281 |
|
Zhang K, Shi Y, Cui X, et al., 2019. Salinity is a key determinant for soil microbial communities in a desert ecosystem. Msystems, 4: e00225-18. DOI: 10.1128/mSystems.00225-18 .
doi: 10.1128/mSystems.00225-18 |
|
Zhao LY, Zhao HL, 2000. A brief review on vegetation succession research in desertification processes of China. Journal of Desert Research, 20: 7- 14. (in Chinese) | |
Zhao S, Liu JJ, Banerjee S, et al., 2018. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8: 4550. DOI: 10.1038/s41598-018-22788-7 .
doi: 10.1038/s41598-018-22788-7 |
|
Zhou J, Deng Y, Shen L, et al., 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communication, 7: 12083. DOI: 10.1038/ncomms12083 .
doi: 10.1038/ncomms12083 |
|
Zhu ZD, Wu Z, Liu S, et al., 1980. An Outline of Chinese Deserts. Beijing: Science Press. (in Chinese) |
[1] | ShaoKun Wang,XueYong Zhao,Hao Qu,Jie Lian,Fei Wang,FengHua Ding. Diversity and composition of culturable fungi in Horqin Sandy Land [J]. Sciences in Cold and Arid Regions, 2022, 14(2): 109-119. |
[2] | CaiXia Zhang,JinChang Li. Simulating the effect of wind erosion on aeolian desertification process of Horqin sandy land and its significance on material cycle: a wind tunnel study [J]. Sciences in Cold and Arid Regions, 2022, 14(1): 43-53. |
[3] | ChunHai Xu,ZhongQin Li,JianXin Mu,PuYu Wang,FeiTeng Wang. High-precision measurements of the inter-annual evolution for Urumqi Glacier No.1 in eastern Tien Shan, China [J]. Sciences in Cold and Arid Regions, 2021, 13(6): 474-487. |
[4] | GuoNing Wan,MeiXue Yang,XueJia Wang. Ground temperature variation and its response to climate change on the northern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 299-313. |
[5] | Sanjaya Gurung,Saroj Dhoj Joshi,Binod Parajuli. Overview of an early warning system for Glacial Lake outburst flood risk mitigation in Dudh-Koshi Basin, Nepal [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 206-219. |
[6] | Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52. |
[7] | SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502. |
[8] | ShiYin Liu,TongHua Wu,Xin Wang,XiaoDong Wu,XiaoJun Yao,Qiao Liu,Yong Zhang,JunFeng Wei,XiaoFan Zhu. Changes in the global cryosphere and their impacts: A review and new perspective [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 343-354. |
[9] | ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388. |
[10] | LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326. |
[11] | Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217. |
[12] | YongZhong Su,TingNa Liu,JunQia Kong. The establishment and development of Haloxylon ammodendron promotes salt accumulation in surface soil of arid sandy land [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 116-125. |
[13] | RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492. |
[14] | Na Li, ChangZhen Yan, JiaLi Xie, JianXia Ma. Cultivated-land change in Mu Us Sandy Land of China before and after the first-stage grain-for-green policy [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 347-353. |
[15] | Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206. |
|