Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (3): 182-195.doi: 10.3724/SP.J.1226.2022.21052.

Previous Articles    

Climate and salinity drive soil bacterial richness and diversity in sandy grasslands in China

ChengChen Pan1,XiaoYa Yu2,Qi Feng1(),YuLin Li1,ShiLong Ren3   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.School of Tourism and Resource Environment, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China
    3.Environmental Research Institute, Shandong University, Qingdao, Shandong 266237, China
  • Received:2021-09-25 Accepted:2022-01-18 Online:2022-06-30 Published:2022-07-04
  • Contact: Qi Feng E-mail:qifeng@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(41773086);the Science and Technology Program of Gansu Province, China(18JR2RA026)

Abstract:

Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems. However, our understanding of the interactions between soil bacteria and environmental factors remains limited, especially in sensitive and fragile ecosystems. In this study, geographic patterns of bacterial diversity across four sandy grasslands along a 1,600 km north-south transect in northern China were characterized by high-throughput 16S rRNA gene sequencing. Then, we analyzed the driving factors behind the patterns in bacterial diversity. The results show that of the 21 phyla detected, the most abundant were Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes (average relative abundance >5%). Soil bacterial operational taxonomic unit (OTU) numbers (richness) and Faith's phylogenetic diversity (diversity) were highest in the Otindag Sandy Land and lowest in the Mu Us Sandy Land. Soil electrical conductivity (EC) was the most influential factor driving bacterial richness and diversity. The bacterial communities differed significantly among the four sandy grasslands, and the bacterial community structure was significantly affected by environmental factors and geographic distance. Of the environmental variables examined, climatic factors (mean annual temperature and precipitation) and edaphic properties (pH and EC) explained the highest proportion of the variation in bacterial community structure. Biotic factors such as plant species richness and aboveground biomass exhibited weak but significant associations with bacterial richness and diversity. Our findings revealed the important role of climate and salinity factors in controlling bacterial richness and diversity; understanding these roles is critical for predicting the impacts of climate change and promoting sustainable management strategies for ecosystem services in these sandy lands.

Key words: sandy land, soil bacterial diversity, biogeography, climate change, salinity

Figure 1

Relative abundances of the dominant soil bacteria groups in the four sandy grasslands in northern China"

Figure 2

Soil bacterial phylotype richness and Faith's phylogenetic diversity across the four sandy lands in northern China. Boxes with different letters indicate significant differences ( p <0.05; multiple comparisons with Kruskal-Wallis)"

Table 1

Model summary for the stepwise multiple regression of soil bacterial phylotype richness and Faith's phylogenetic diversity on environmental variables"

Adj. R2Contribution of the individual predictor
Full modelECPlant species richnessAboveground biomass
Richness0.72845.65.8%16.7%
Diversity0.70948.412.0%1.9%

Figure 3

Nonmetric multidimensional scaling (NMDS) ordination of soil bacterial community structure based on Bray-Curtis distances in the four sandy grasslands in northern China"

Table 2

Difference tests for soil bacterial community structure between different sandy grasslands"

Hulun BuirOtindagHorqin

ANOSIM

R ( p value)

Otindag0.6761 (0.001)
Horqin0.758 (0.001)0.5629 (0.001)
Mu Us0.9623 (0.001)0.8599 (0.001)0.7927 (0.001)

MRPP

δ ( p value)

Otindag0.4262 (0.001)
Horqin0.4616 (0.001)0.4386 (0.001)
Mu Us0.4815 (0.001)0.4545 (0.001)0.5014 (0.001)

Figure 4

Pearson correlations between soil bacterial Bray-Curtis dissimilarities and geographical distances"

Table 3

Pearson correlation results between the bacterial community similarity and geographic distance or environmental distance using a partial Mantel test"

ItemsControlling forrp
Geographic distanceEnvironmental distance0.580.0001
Environmental distanceGeographic distance0.290.0001

Table 4

Partial Mantel test of soil bacterial community structure with environmental variables"

Variablesrp
SOM-0.18250.9962
TN-0.14180.9842
TP0.058660.2016
AP-0.12090.5166
ph0.35730.0001
EC0.26100.0003
PR0.037050.2885
PB0.00460.4090
MAP0.22010.0032
MAT0.39950.0001

Figure S1

The sampling sites across the four sandy grasslands in the Inner Mongolia of China. The location map was created using the ArcGIS 10.5 software ( https://www.esri.com/en-us/arcgis/products/index?rmedium=esri_com_redirects01&rsource=/en-us/arcgis/products)"

Figure S2

Relationship between soil bacterial phylotype richness and Faith's phylogenetic diversity and soil salinity"

Table S1

List of all the variables collected"

ClassificationVariables
Climate factorsMean annual temperature (MAT)
Mean annual precipitation (MAP)
Edaphic variablespH
Electrical conductivity (EC)
Soil organic matter (SOM)
Total nitrogen (TN)
Total phosphorus (TP)
Available phosphorus (AP)
Vegetation proptertiesPlant species richness (PR)
Vegetation aboveground biomass (AB)

Table S2

Basic characteristics and environmental characteristics (plants and soil, main ± SE) of the sampling sites across the four sandy grasslands in northern China"

SitesLongitude (°E)Latitude (°N)MAP (mm)MAT (°C)SOM (g/kg)TN (g/kg)TP (g/kg)AP (mg/kg)pHECPRPB
Hulun Buir 1118°3′7″49°14′51″299-0.182.42 ± 0.340.25 ± 0.020.16 ± 0.019.24 ± 0.547.17 ± 0.1171.93 ± 14.986.17 ± 0.73104.02 ± 13.20
Hulun Buir 2118°16'31"48°19'57"290-0.7016.08 ± 2.380.94 ± 0.110.53 ± 0.0815.70 ± 3.797.08 ± 0.0360.10 ± 15.053.33 ± 0.88143.86 ± 34.32
Hulun Buir 3118°38′13″49°7′50″318-0.543.74 ± 0.100.26 ± 0.050.18 ± 0.0118.33 ± 3.727.29 ± 0.26127.07 ± 22.115.67 ± 0.4479.03 ± 7.65
Hulun Buir 4118°43'45"49°4'46"309-0.677.32 ± 0.250.44 ± 0.040.41 ± 0.1813.98 ± 3.447.35 ± 0.13108.90 ± 2.706.25 ± 0.75122.60 ± 42.22
Hulun Buir 5118°48′9″49°6′19″325-0.7213.88 ± 0.660.92 ± 0.050.37 ± 0.0413.82 ± 1.536.74 ± 0.15135.27 ± 30.978.33 ± 1.64133.65 ± 18.39
Hulun Buir 6118°51′43″49°8′48″321-0.857.29 ± 0.230.43 ± 0.040.40 ± 0.1710.62 ± 1.187.28 ± 0.18120.43 ± 7.847.33 ± 0.88117.41 ± 2.68
Otindag 1116°0′45″42°41′1″3391.715.23 ± 0.550.44 ± 0.100.23 ± 0.047.06 ± 1.937.67 ± 0.1427.76 ± 4.455.83 ± 0.73132.75 ± 12.58
Otindag 2116°5′23″42°43′41″3431.465.45 ± 1.950.46 ± 0.080.21 ± 0.046.26 ± 1.427.91 ± 0.2429.33 ± 8.465.17 ± 0.8891.41 ± 26.21
Otindag 3116°6′33″42°44′10″3431.427.58 ± 3.050.59 ± 0.190.27 ± 0.064.32 ± 0.867.80 ± 0.1022.12 ± 3.858.83 ± 0.44130.03 ± 14.14
Otindag 4116°8′48″42°44′50″3451.373.75 ± 0.610.37 ± 0.070.20 ± 0.027.03 ± 1.928.24 ± 0.3324.75 ± 4.136.17 ± 0.1768.30 ± 2.90
Otindag 5116°11′34″42°45′53″3461.324.10 ± 0.470.42 ± 0.050.19 ± 0.023.51 ± 0.578.19 ± 0.1515.77 ± 0.476.33 ± 0.1774.95 ± 11.92
Horqin 1119°13′51″43°6′7″3676.454.26 ± 1.140.36 ± 0.070.21 ± 0.035.27 ± 0.847.66 ± 0.1617.34 ± 1.294.67 ± 0.44118.17 ± 9.29
Horqin 2119°13′52″43°7′47″3666.432.68 ± 0.510.27 ± 0.040.23 ± 0.092.71 ± 0.867.43 ± 0.0516.77 ± 0.995.00 ± 0.7686.59 ± 2.76
Horqin 3119°19′2″43°5′16″3816.272.96 ± 0.440.24 ± 0.030.17 ± 0.025.92 ± 0.607.43 ± 0.1018.80 ± 1.754.50 ± 0.2974.65 ± 7.92
Horqin 4119°34′5″43°10′35″4116.832.74 ± 0.420.31 ± 0.030.15 ± 0.023.93 ± 0.847.55 ± 0.2315.69 ± 0.765.67 ± 0.4465.90 ± 2.74
Horqin 5120°42′52″42°56′26″4397.154.78 ± 0.050.48 ± 0.010.24 ± 0.0112.91 ± 1.228.67 ± 0.25122.50 ± 11.946.67 ± 0.33201.95 ± 62.02
Mu Us 1107°36′1″37°55′31″3078.224.37 ± 0.890.36 ± 0.050.56 ± 0.034.74 ± 1.289.17 ± 0.03159.37 ± 41.414.00 ± 0.5851.20 ± 21.28
Mu Us 2107°32′18″37°58′49″2998.252.25 ± 0.740.28 ± 0.050.32 ± 0.033.63 ± 2.439.31 ± 0.09105.57 ± 19.582.83 ± 0.6721.02 ± 0.54
Mu Us 3107°44′57″37°11′17″3787.448.07 ± 2.600.66 ± 0.150.63 ± 0.105.84 ± 1.459.08 ± 0.0467.23 ± 7.771.83 ± 0.4434.27± 15.57

Table S3

Pearson correlations between soil bacterial phylotyperichness and Faith's phylogenetic diversity and vegetation and edaphic factors"

Phylotype richnessPhylogenetic diversity
SOM0.04-0.08
TN0.100.01
TP-0.35**-0.39**
AP-0.18-0.28*
pH-0.30*-0.19
EC-0.68**-0.70**
PR0.40**0.34**
PB0.35**0.24
MAP0.250.29*
MAT-0.26-0.16

Table S4

Correlations of soil bacterial beta diversity with geographical distance and environment factors as revealed by Mantel test"

Rp
GEODISTANCE0.71<0.001
SOM0.170.040
TN0.160.040
TP0.29<0.001
AP0.180.015
pH0.55<0.001
EC0.36<0.001
PR0.240.002
PB0.210.011
MAP0.32<0.001
MAT0.55<0.001

Table S5

Correlation coefficients between soil bacterial groups and vegetation and soil factors"

GroupsSOMTNTPAPpHECPRPBMAPMAT
Proteobacteria-0.13-0.18-0.160.18-0.140.29*0.240.130.06-0.10
Actinobacteria0.040.00-0.15-0.11-0.40**-0.38**0.000.060.10-0.01
Firmicutes-0.26-0.260.03-0.040.32*0.22-0.06-0.29*-0.27*0.03
Cyanobacteria-0.13-0.080.2-0.170.43**0.05-0.40**-0.37**-0.020.34*
Acidobacteria0.52**0.62**0.27*0.030.16-0.21-0.030.26*0.14-0.04
Bacteroidetes0.140.25-0.040.030.120.01-0.010.200.31*0.11
Gemmatimonadetes0.01-0.01-0.040.04-0.150.020.240.11-0.21-0.36**
Chloroflexi0.090.130.21-0.170.14-0.24-0.090.160.020.02
Verrucomicrobia0.63**0.57**0.160.34**-0.46**-0.060.050.29*-0.35**-0.47**
unidentified_Bacteria0.03-0.060.000.36**-0.31*0.37**0.120.15-0.19-0.34**
Armatimonadetes-0.090.010.050.010.31*0.15-0.090.090.44**0.36**
Nitrospirae0.34*0.37**0.180.36**0.170.41**0.130.41**-0.05-0.16
Rokubacteria0.230.260.11-0.080.160.110.060.11-0.20-0.01
Fibrobacteres-0.26-0.25-0.29*-0.21-0.01-0.28*0.120.070.200.08
Ahmed V, Verma MK, Gupta S, et al., 2018. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Frontiers in Microbiology, 9: 159. DOI: 10.3389/fmicb. 2018.00159 .
doi: 10.3389/fmicb. 2018.00159
Bååth E, Anderson TH, 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology & Biochemistry, 35: 955- 963. DOI: 10.1016/S0038-0717(03)00154-8 .
doi: 10.1016/S0038-0717(03)00154-8
Bai YF, Wu JG, Xing Q, et al., 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89: 2140- 2153. DOI: 10.1890/07-0992.1 .
doi: 10.1890/07-0992.1
Bastida F, Romanowicz K, Upchurch R, et al., 2017. Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 23: 4185- 4203. DOI: 10.1016/j.soilbio.2015.08.014 .
doi: 10.1016/j.soilbio.2015.08.014
Bisigato AJ, Bertiller MB, 1997. Grazing effects on patchy dry-land vegetation in northern Patagonia. Journal of Arid Environments, 36: 639- 653. DOI: 10.1006/jare.1996.0247 .
doi: 10.1006/jare.1996.0247
Campbell BJ, Kirchman DL, 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME Journal, 7: 210- 220. DOI: 10. 1038/ismej.2012.93 .
doi: 10. 1038/ismej.2012.93
Canfora L, Bacci G, Pinzari F, et al., 2014. A Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? Plos One, 9: e106662. DOI: 10.1371/journal.pone.0106662 .
doi: 10.1371/journal.pone.0106662
Chen YL, Xu TL, Veresoglou SD, et al., 2017. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology & Biochemestry, 110: 12- 21. DOI: 10. 1016/j.soilbio.2017.02.015 .
doi: 10. 1016/j.soilbio.2017.02.015
Christiansen CT, Haugwitz MS, Prieme A, et al., 2017. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Global Change Biology, 23: 406- 420. DOI: 10. 1111/gcb.13362 .
doi: 10. 1111/gcb.13362
Clarke KR, 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18: 117- 143. DOI: 10.1111/j.1442-9993.1993.tb00438.x .
doi: 10.1111/j.1442-9993.1993.tb00438.x
Cross WF, Hood JM, Benstead JP, et al., 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21: 1025- 1040. DOI: 10.1111/gcb.12809 .
doi: 10.1111/gcb.12809
Delgado-Baquerizo M, Maestre FT, Reich PB, et al., 2016. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 86: 373- 390. DOI: 10.1002/ecm.1216 .
doi: 10.1002/ecm.1216
Dhami NK, Alsubhi WR, Watkin E, et al., 2017. Bacterial community dynamics and biocement formation during stimulation and augmentation: implications for soil consolidation. Frontiers in Microbiology, 8: 1267. DOI: 10.2307/4287742 .
doi: 10.2307/4287742
Faith DP, 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation, 61: 1- 10. DOI: 10.1016/0006-3207(92)91201-3 .
doi: 10.1016/0006-3207(92)91201-3
Fierer N, Jackson RB, 2006. The diversity and biogeography of soil bacterial communities. Proceeding of the National Academy of Sciences of the United States of America, 103: 626- 631. DOI: 10.1073/pnas.0507535103 .
doi: 10.1073/pnas.0507535103
Ge Y, He J, Zhu Y, 2008. Differences in soil bacterial diversity: Driven by contemporary disturbances or historical contingencies? The ISME Journal, 2: 254- 264. DOI: 10.1038/ismej.2008.2 .
doi: 10.1038/ismej.2008.2
Griffiths RI, Thomson BC, James P, et al., 2011. The bacterial biogeography of British soils. Environmental Microbiology, 13: 1642- 1654. DOI: 10.1111/j.1462-2920.2011.02480.x .
doi: 10.1111/j.1462-2920.2011.02480.x
Hendershot JN, Read QD, Henning JA, et al., 2017. Consistently inconsistent drivers of patterns of microbial diversity and abundance at macroecological scales. Ecology, 98: 1757- 1763. DOI: 10.1002/ecy.1829 .
doi: 10.1002/ecy.1829
Hijmans RJ, Cameron SE, Parra JL, et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965- 1978. DOI: 10.1002/joc.1276 .
doi: 10.1002/joc.1276
Hooper DU, Bignell DE, Brown VK, et al., 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience, 50: 1049- 1061. DOI: 10.1641/0006-3568(2000)050 [ 1049: IBAABB]2.0.CO;2.
doi: 10.1641/0006-3568(2000)050
Hornstrom E, 2002. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia, 470: 115- 126. DOI: 10.1023/A:1015619921119 .
doi: 10.1023/A:1015619921119
Jiao S, Lu Y, 2020. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystemss. Environmental Microbiology, 22: 1052- 1065. DOI: 10.1111/1462-2920.14815 .
doi: 10.1111/1462-2920.14815
Jing X, Sanders NJ, Shi Y, et al., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communication, 6: 8159. DOI: 10.1038/ncomms9159 .
doi: 10.1038/ncomms9159
Kaspari M, Alonso L, O'Donnel S, 2000. Three energy variables predictant abundance at a geographical scale. Proceedings of the Royal Society B, 267: 485- 489. DOI: 10.1098/rspb.2000.1026 .
doi: 10.1098/rspb.2000.1026
Koorem K, Gazol A, Opik M, et al., 2014. Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. Plos One, 9: e91998. DOI: 10. 1371/journal.pone.0091998 .
doi: 10. 1371/journal.pone.0091998
Lozupone CA, Knight R, 2007. Global patterns in bacterial diversity. Proceeding of the National Academy of Sciences of the United States of America, 104: 11436- 11440. DOI: 10.1073/pnas.0611525104 .
doi: 10.1073/pnas.0611525104
Madigan M, Martinko J, Parker J, 1997. Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River, NJ.
Maestre FT, Delgado-Baquerizo M, Jeffries TC, et al., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceeding of the National Academy of Sciences of the United States of America, 112: 15684- 15689. DOI: 10.1073/pnas.1516684112 .
doi: 10.1073/pnas.1516684112
Martiny JBH, Bjm Bohannan, Brown JH, et al., 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiolgoy, 4: 102. DOI: /10.1038/nrmicro1341 .
doi: /10.1038/nrmicro1341
McCune B, Grace JB, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon, USA.
Nacke H, Goldmann K, Schoning I, et al., 2016. Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Frontior Microbiology, 7: 2067. DOI: 10.3389/fmicb.2016.02067 .
doi: 10.3389/fmicb.2016.02067
Oksanen J, Blanchet FG, Friendly M, et al., 2013. Package vegan. R package. .
Oren A, 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4: 2. DOI: 10.1186/1746-1448-4-2 .
doi: 10.1186/1746-1448-4-2
Pan XQ, Li ZC, 1987. Study on productivity and grazing succession in Hulunbeier grassland. Grassland of China, 9: 36- 39. (in Chinese)
Pan CC, Feng Q, Liu JL, et al., 2018. Community structure of grassland ground-dwelling arthropods along increasing soil salinities. Environmental Science and Pollution Research, 25: 7479- 7486. DOI: 10.1007/s11356-017-1011-1 .
doi: 10.1007/s11356-017-1011-1
Core Team R, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria. .
Rath KM, Fierer N, Murphy DV, et al., 2019. Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 13: 836- 846. DOI: 10. 1038/s41396-018-0313-8 .
doi: 10. 1038/s41396-018-0313-8
Ren B, Hu Y, Chen B, 2018. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Scientific Reports, 8: 5619. DOI: 10.1038/s41598-018-24040-8 .
doi: 10.1038/s41598-018-24040-8
Schloss PD, Westcott SL, Ryabin T, et al., 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75: 7537- 7541. DOI: 10.1128/AEM.01541-09 .
doi: 10.1128/AEM.01541-09
Schnittler M, Stephenson SL, 2000. Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia, 92: 626- 637. DOI: 10.2307/3761420 .
doi: 10.2307/3761420
Shen C, Xiong J, Zhang H, et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57: 204- 211. DOI: 10.1016/j.soilbio.2012.07.013 .
doi: 10.1016/j.soilbio.2012.07.013
Sickle JV, 1997. Using mean similarity dendrograms to evaluate classifications. Journal of Agricultural Biological and Environmental Statistics, 23: 70- 88.
Talbot JM, Bruns TD, Taylor JW, et al., 2014. Endemism and functional convergence across the North American soil mycobiome. Proceeding of the National Academy of Sciences of the United States of America, 111: 6341- 6346. DOI: 10.1073/pnas.1402584111 .
doi: 10.1073/pnas.1402584111
Tang QY, Zhang CX, 2013. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use inentomological research. Insect Science, 20: 254- 260. DOI: 10.1111/j.1744-7917.2012. 01519.x .
doi: 10.1111/j.1744-7917.2012. 01519.x
Tian J, He N, Hale L, et al., 2018. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 32: 61- 70. DOI: 10.1111/1365-2435.12952 .
doi: 10.1111/1365-2435.12952
Wang JM, Wang Y, He NP, et al., 2020. Plant functional traits regulate soil bacterial diversity across temperate deserts. Science of the Total Environment, 715: 136976. DOI: 10. 1016/j.scitotenv.2020.136976 .
doi: 10. 1016/j.scitotenv.2020.136976
Wang SK, Zuo XA, Zhao XY, et al., 2018. Dominant plant species shape soil bacterial community in semiarid sandy land of northern China. Ecology and Evolution, 8: 1693- 1704. DOI: 10.1002/ece3.3746 .
doi: 10.1002/ece3.3746
Wang XB, Lü XT, Yao J, et al., 2017. Habitat-specific patterns and drivers of bacterial β-diversity in China's drylands. ISME Journal, 11: 1345- 1358. DOI: 10.1038/ismej.2017.11 .
doi: 10.1038/ismej.2017.11
Wang XB, Van Nostrand JD, Deng Y, et al., 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 91: fiv133. DOI: 10.1093/femsec/fiv133 .
doi: 10.1093/femsec/fiv133
Xia Q, Rufty T, Shi W, 2020. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology Biochemistry, 149: 107953. DOI: 10.1016/j.soilbio.2020.107953 .
doi: 10.1016/j.soilbio.2020.107953
Xiong JB, Liu YQ, Lin XG, et al., 2012. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14: 2457- 2466. DOI: 10.1111/j.1462-2920.2012.02799.x .
doi: 10.1111/j.1462-2920.2012.02799.x
Yan R, Feng W, 2020. Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China. Journal of Arid Land, 12: 473- 494. DOI: 10.1007/s40333-020-0011-z .
doi: 10.1007/s40333-020-0011-z
Yang HJ, Li Y, Wu MY, et al., 2012. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Globle Change Biology, 17: 2936- 2944. DOI: 10.1111/j.1365-2486.2011.02423.x .
doi: 10.1111/j.1365-2486.2011.02423.x
Zak DR, Holmes WE, White DC, et al., 2003. Plant diversity, microbial communities, and ecosystem function: are there any links? Ecology, 84: 2042- 2050. DOI: 10.1890/02-0433 .
doi: 10.1890/02-0433
Zapala MA, Schork NJ, 2006. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proceeding of the National Academy of Sciences of the United States of America, 103: 19430- 19435. DOI: 10.1073/pnas. 0609333103 .
doi: 10.1073/pnas. 0609333103
Zeng Q, An S, Liu Y, et al., 2019. Biogeography and the driving factors affecting forest soil bacteria in an arid area. Science of the Total Environment, 680: 124- 131. DOI: 10. 1016/j.scitotenv.2019.04.184 .
doi: 10. 1016/j.scitotenv.2019.04.184
Zha Y, Gao J, 1997. Characteristics of desertification and its rehabilitation in China. Journal of Arid Environments, 37: 419- 432. DOI: 10.1006/jare.1997.0290 .
doi: 10.1006/jare.1997.0290
Zhang G, Bai J, Tebbe CC, et al., 2021. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environmental Microbiology, 23: 1020- 1037. DOI: 10.1111/1462-2920.15281 .
doi: 10.1111/1462-2920.15281
Zhang K, Shi Y, Cui X, et al., 2019. Salinity is a key determinant for soil microbial communities in a desert ecosystem. Msystems, 4: e00225-18. DOI: 10.1128/mSystems.00225-18 .
doi: 10.1128/mSystems.00225-18
Zhao LY, Zhao HL, 2000. A brief review on vegetation succession research in desertification processes of China. Journal of Desert Research, 20: 7- 14. (in Chinese)
Zhao S, Liu JJ, Banerjee S, et al., 2018. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8: 4550. DOI: 10.1038/s41598-018-22788-7 .
doi: 10.1038/s41598-018-22788-7
Zhou J, Deng Y, Shen L, et al., 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communication, 7: 12083. DOI: 10.1038/ncomms12083 .
doi: 10.1038/ncomms12083
Zhu ZD, Wu Z, Liu S, et al., 1980. An Outline of Chinese Deserts. Beijing: Science Press. (in Chinese)
[1] ShaoKun Wang,XueYong Zhao,Hao Qu,Jie Lian,Fei Wang,FengHua Ding. Diversity and composition of culturable fungi in Horqin Sandy Land [J]. Sciences in Cold and Arid Regions, 2022, 14(2): 109-119.
[2] CaiXia Zhang,JinChang Li. Simulating the effect of wind erosion on aeolian desertification process of Horqin sandy land and its significance on material cycle: a wind tunnel study [J]. Sciences in Cold and Arid Regions, 2022, 14(1): 43-53.
[3] ChunHai Xu,ZhongQin Li,JianXin Mu,PuYu Wang,FeiTeng Wang. High-precision measurements of the inter-annual evolution for Urumqi Glacier No.1 in eastern Tien Shan, China [J]. Sciences in Cold and Arid Regions, 2021, 13(6): 474-487.
[4] GuoNing Wan,MeiXue Yang,XueJia Wang. Ground temperature variation and its response to climate change on the northern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 299-313.
[5] Sanjaya Gurung,Saroj Dhoj Joshi,Binod Parajuli. Overview of an early warning system for Glacial Lake outburst flood risk mitigation in Dudh-Koshi Basin, Nepal [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 206-219.
[6] Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52.
[7] SuGang Zhou,XiaoJun Yao,Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan. Glacier changes in the Qaidam Basin from 1977 to 2018 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 491-502.
[8] ShiYin Liu,TongHua Wu,Xin Wang,XiaoDong Wu,XiaoJun Yao,Qiao Liu,Yong Zhang,JunFeng Wei,XiaoFan Zhu. Changes in the global cryosphere and their impacts: A review and new perspective [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 343-354.
[9] ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388.
[10] LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326.
[11] Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217.
[12] YongZhong Su,TingNa Liu,JunQia Kong. The establishment and development of Haloxylon ammodendron promotes salt accumulation in surface soil of arid sandy land [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 116-125.
[13] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[14] Na Li, ChangZhen Yan, JiaLi Xie, JianXia Ma. Cultivated-land change in Mu Us Sandy Land of China before and after the first-stage grain-for-green policy [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 347-353.
[15] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!